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Abstract: In this paper, we investigate a mathematical model to conserve the resource biomass that is
depleted by industrialization, population pressure and toxicants with the help of technology. The model
equations are analyzed mathematically with regard to the nature of equilibrium points and their stabilities
using the theory of nonlinear ordinary differential equations and numerical simulations. It is shown that
under suitable conditions, there exists a unique locally as well as globally asymptotically stable positive
equilibrium. It is concluded from the analysis that density of resource biomass increases if technology is
used to conserve it. Moreover, it is observed that for large depletion rate of resource biomass due to
population, resource biomass goes to extinction if no technology is used for its conservation. However,
resource biomass does not become extinct for the same depletion rate of resource biomass due to
population if technology is applied to conserve the resource biomass. It is found that concentration of
toxicants in the environment can be reduced significantly if technology is applied to conserve resource
biomass.
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1. Introduction

Resources play a significant role in the development of any country. It is a matter of
great concern that the resources such as forestry, wildlife, energy, minerals are continuously
being depleted to meet the demands of overgrowing population. Depletion of forestry resources
occurs for agricultural land, resettlement and colonization, cutting of trees for fuel, paper and
fodder, etc. An example of extensive depletion of forestry resources is the depletion of forests
of Doon valley in Uttarakhand. Forests have been depleted largely in Doon valley due to
overgrowth of human and livestock populations, limestone quarrying, wood based industries
and various kinds of industrial discharges and chemical spills in the forms of smoke and



poisonous gas fumes (Munn and Fedorov, 1986; Shukla et al. 1989, Shukla and Dubey, 1996,
1997).

Many researchers have investigated the depletion of resource biomass by overgrowing
population, toxicants and industrialization. Shukla and Dubey (1997) have studied the effects of
population and pollution on the depletion of forestry resources. They found that if the
population density and the emission rate of pollutant increase without control, the forestry
resource may tend to extinction. Shukla et al. (1989) have proposed a mathematical model to
study the effect of industrialization on the depletion of a resource biomass. Dubey and Dass
(1999) have proposed and analyzed a mathematical model to study the survival of species
dependent on a resource, which is depleted due to industrialization. Shukla et al. (1996)
investigated the effect of changing habitat on survival of species due to industrialization. Dubey
and Narayanan (2010) have studied a mathematical model to demonstrate the effect of
industrialization, population, and pollution on the depletion of a renewable resource. They
observed that if the density of industrialization, population, and pollution increase then the
density of the resource biomass decreases. M. Agarwal et al. (2010) proposed a ratio dependent
mathematical model on the depletion of forestry resource biomass due to industrialization
pressure. They found that the density of forestry biomass decreases due to increase in
industrialization pressure that decreases the density of wildlife species. Gakkhar and Sahani
(2007) proposed a delay model to determine the effects of environmental toxicant on biological
species. Thomas et al. (1997) studied the effect of environmental pollution on a single-species
population and derived some criteria to restrict the amount of pollution in the environment to
ensure the survival of the population. Shukla et al. (2003) studied the effects of primary and
secondary toxicants on the resource biomass. They observed that the resource may even become
extinct if emission rate of primary toxicant and its transformation rate to secondary toxicant are
very large. Dubey and Hussain (2003) studied a model with diffusion. They considered
competition between two species that compete with each other and depend on a common
resource. The resource considered by them is affected by industrialization. They demonstrated
that the positive equilibrium can be stabilized by increasing diffusion coefficients. Dubey et al.

(2003) analyzed the effect of industrialization and pollution on forestry resource. They



considered three types of rate of emission of pollutant into the environment: industrialization
dependent, constant, zero, or periodic. They concluded that resource biomass may become
extinct in case of industrialization-dependent emission rate of pollutants. Shukla et al. (2011)
studied the effect of technology on the conservation of forestry resource biomass. However,
they did not consider the effect of toxicants on the depletion of resource biomass. Role of
toxicants on the depletion of renewable resources like forests is considerable. They concluded
that the resource biomass density decreases due to over growing population and
industrialization. Resource biomass density was observed to decrease further as the resource-
dependent industrial migration increases. They found that resource does not become extinct if
some technology is applied for its conservation. It may be pointed out that in all the above-
mentioned studies; effect of technology on the conservation of resource biomass that is depleted
by combined effect of industrialization, population pressure and toxicants is not studied. As we
all know that forests occupy central position in nature. They restore ecological balance of all
ecosystems, maintain biological diversity, act as catchments for soil and water conservation,
prevent floods and safeguard future of tribal people. Hence, sustainable management of forestry
resource biomass is desirable. Sustainable management of forests is possible by using modern
technologies such as genetic engineering like tissue culture and clonal seedlings, root-trainers
etc. for new varieties of trees for plantation in forests. It is therefore very essential to study the
effect of technology on conservation of forestry resources (Reed and Heras, 1992). We modify
the paper of Dubey and Narayanan (2010) by considering the effect of technology on the
conservation of forestry resource biomass keeping in mind the importance and efficacy of using
technology in the conservation of resource biomass.

We, therefore, analyze a nonlinear ordinary differential equation model to investigate
the efficacy of technology on the conservation of resource biomass. The stability theory of
nonlinear ordinary differential equations and fourth order Runge—Kutta method are used to
analyze and predict the behavior of the model.

2. Mathematical Model
We formulate a nonlinear ordinary differential system of equations to study an

ecosystem where forestry resource biomass is being continuously depleted due to



industrialization, population and toxicants. We also study the impact of technological effort
applied to conserve the resource biomass that is the main objective of our paper. Resource
biomass, industrialization and population grow according to the logistic law. Intrinsic growth
rate of resource biomass is assumed to be a negative function of population. It is further
assumed that density of resource biomass decreases due to industrialization and increases due to
technology applied for its conservation. Moreover, it is assumed that carrying capacity of
resource biomass in the environment, that is, maximum density of resource biomass that the
environment can sustain decrease with the increase in industrialization, population and
toxicants. Industrialization increases due to resource biomass since establishment of industries
need resource biomass. Industrialization also increases due to increase in population to meet
their demands. In addition, growth rate of population increases with the increase in density of
resource biomass. Carrying capacities of industrialization and population is assumed to be
constant. Emission of toxicants in the environment is assumed to occur due to industrialization
as well as due to human population. We incorporate the effort applied to conserve the resource
biomass through technology to balance the ecosystem. The rate at which technological effort is
applied depends upon the resource biomass left that can be conserved. Further, depletion of
technology due to technology failure is also considered in the model. Keeping these things in

mind, we have the following system of differential equations:
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Here B is the density of resource biomass, I is the density of industrialization, P is
the density of population, T is the concentration of toxicant present in the environment and M
is the technological effort applied to conserve resource biomass. « is the depletion rate

coefficient of resource biomass due to industrialization, ¥ is the growth rate of coefficient of
industrialization due to industries being set up by population to meet the increasing demands of
overgrowing population. 0 < ¢ < 1is the growth rate coefficient of resource biomass due to
technological efforts. 7, is the intrinsic growth rate of industrialization and 8 is the growth rate

of industrialization due to resource biomass. L is the maximum density of industries which the

environment can support. .S is the maximum density of population which the environment can
support. O, is the natural depletion rate of toxicants. «,is the depletion rate coefficient of the
toxicants due to its uptake by forestry resource biomass. constant 77 is the growth rate
coefficient of technological efforts and 7, is the depletion rate coefficient of technological
efforts due to failure of technology.

In addition, 75 (P)denotes the intrinsic growth rate of the resource biomass. It is

assumed that 7 (P) decreases as P increase. Hence we take,
dry
rB(O):rBO>0,d—P<0 for P>0. (2.2)

Kz(1,P,T)represents the maximum density of the resource biomass which the
environment can support in the presence of industrialization, population and pollution, and it
also decreases as / , P and T increase. Hence, we take
oKz (I,P,T oKz (I,P,T oKz (I,P,T

B(”)<0' B(”)<0' B(”)

ol oP oT
1>20,P>0,T2>0. (2.3)

K 5(0,0,0)=K 5, >0, < 0for

7p(B) represents the intrinsic growth rate of population, and it is assumed that intrinsic

growth rate of population increases as the density of the resource biomass increases. Hence,



7p(0) = rpg >0, ‘6%’ >0 for B>0. 2.4)

The rate of introduction of pollutant into the environment is denoted by Q(/,P) that

increases as / and P increase. Hence, we take function Q(Z, P) of the following form:

0(0,0)= 0, >0, %> 0

9

%>0 for/ >0, P>0. (2.5)

All the functions considered in the model are assumed to be sufficiently smooth so that
solutions to the initial value problem exist uniquely and are continuable for all positive times.
We will analyse the model using stability theory of differential equations.

3. Boundedness

In this section, we show that solutions of model system (2.1) are bounded.
Boundedness of the system is proved in the form of following lemma 1, which establishes the
region of attraction (Freedman and So, 1985).

Lemma 1. The set

Q={BIPTM:O<B<Ky, 0<I<I_,0<P<P _, 0<T<T,  O0<M<M,_}

max”’ - max”’ - max’
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M. .. = 1% o , 1is the region of attraction for system (2.1) that attracts all solutions initiating
Mo

in the interior of positive orthant.
Proof. From fifth equation of the system (2.1) we have,
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B0

B
] +¢BM, (3.1
We observe that when B — K ,, M — 0and all the terms of the right hand side of

dB
the (3.1) tend to zero suggesting that Z <0for B2 Ky,.

This implies that B — K, for large ¢. Thus, we have 0 < B < K.

From second equation of the system (2.1), we get
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From third equation of the system (2.1) we have,
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From fourth equation of system (2.1), we have
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Thus, we have proved the lemma 1 and hence bounded of the system .



4. Equilibrium Analysis
It is observed that the system (2.1) has eight non-negative equilibria, namely,

E,(0,0,0,7,,M,),  E(00,P,T;,M,), E;(0,1,,0,T,,M,), E;(0,1;,P,T5,M5),
E,(B,0,0,T,,M,), Es(Bs.0,P;,Ts, M), Eo(Bg,1¢,0,T,, M), E;(B*,1",P*,T*,M").

K
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Existence of E,(B,,0,0,7,,M,),

Here B, T,,M , are the positive solutions of the following algebraic equations:

rg0B
Tpg ——————+¢M =0, 4.1
B0 T K 00.T) ¢ 4.1)
Oy —06,T —a,BT =0 (4.2)
N(Kpgo—B)—nyM =0 (4.3)
From (4.2) we have,
o
=— = B), 4.4
5.+ B J11(B) (4.4)

Similarly (4.3) gives,
n
M:_(KBO_B):flz(B)' (4.5)
o
Putting the values of 7 and M in equation (4.1) we have a function Fj(B) of the following
form,

Fi(B)=rgoB—{rpo +¢M }K 3(0,0,T),



such that
Fi(0)=—{rgo +¢M }K 5(0,0,T) <0 and
F1(Kpo)=rgoKpo —rgoKp(0,0,T) >0 since Koy > Kp(L,P,T) from our assumption.

It is easy to observe that a unique equilibrium By lies in (0,K () if the following inequality
holds:

}aK s df,(B) df1 (B)

B K (0,0, 1,(B))p ==

F{(B) = rgo —{rzo + ¢/, (B) (4.6)

Putting the value of B4 in (4.4) and (4.5), we can easily obtain the equilibrium values 74 and
My.
Existence of E;(B5,0,P,Ts,M5),

Here Bs, Ps, T, M s are the positive solutions of the following algebraic equations:

r50B = {M + 1, (P)}K 4 (0, P,T), 4.7)
P15 _ (B, @$)
T'po
:%:fls(ﬁ’), (4.9)
M="1(K,, - B)=f,,(B). (4.10)

0

Similar to the existence of E,(B,,0,0,7,,M,),It is easy to observe that a unique equilibrium

B, lies in (0,K p() if the following inequality holds:

Ky dfia(B) , 0Ky dfM(B)}
dB oT dB

Fy(B)=rgy - {”B (f14(B))+¢f12(B)}{
@.11)

dflz(B) Org df 4 } >0

K50, f14(B), flS(B)){¢ 4B oP dB



Putting the value of Bsin (4.8), (4.9) and (4.10), we can easily obtain the equilibrium values
P5 N T5 and M5 .
Existence of E¢(B;,1,,0,T4, M),

Here By, I, T, M4 are the positive solutions of the following algebraic equations:

reoB =M + 1y (P)—al }K 5 (1,0,T), (4.12)
I:r£(r2+ﬁB):fl6(B)’ (4.13)
2
_O(/(B)0) _
T= 5, +a,B = f]7(B), (4.14)
M =n1(1<30 —~B)= f,,(B). (4.15)
0

Similarly, equilibrium E(B,,14,0,T,,M ) exists if

0Ky dfio(B) , 3K, dfn(m}

F3(B) =71y _{’”Bo +¢f12(3)_af16(3)}{ ol dB or dB

(4.16)
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Existence of interior equilibrium £, (B*,I",P*,T",M"),
Here B*, 1", T",M " are the positive solutions of the following algebraic equations:
reoB =M +r,(P)—al}K 5 (1, P,T), (4.17)
L
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2
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o, +oB

10



M ="L(K, - B)= f,(B). (421)
0

Taking
F,(B)=ryyB—{¢M +ry(P)—al |K s(1,P,T),

= 1508~ {13 (/14 (B)+ 91(B) ~ of1s (B)IK 5 (115 (B): 4 (B). f15(B)) (4.22)
It can be checked easily that the equilibrium E,(B*,1°,P",T",M ") exists if

0Ky dfis(B) _ 0K, dfs(B) 0K, dfm(B)}
ol dB oP dB oTr dB (4.23)
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K
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b po Fro
5. Stability Analysis

The local stability analysis of each equilibrium point can be studied by computing eigen
values of the corresponding variational matrix from the general variational matrix. The general

variational matrix of the system (2.1) is given as:

a, a a3 ay ¢B |
Pl ay rd 0 0
or,(B)
VE)=|"ng ay 0 0 |
Car 0OUP) 20UP) o
ol oP
L —n 0 0 0 —1 |
where
a, =r5(P)—2r, +¢M,

—————al
K,(I,P,T)
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=r
" K2(1,P,T) oI

B*  OK,(I,P,T)

aB,

o, (P)B B> 0K,(I,P,T)

2

+r
oP " K2(1,P,T)y  oP

1 1
:rz(l—z]—rzz'FﬁB'F]/]P,

P

= rp(B)—2rp0§.

Local stability conditions for various equilibrium points of the system are as follows:
E,is a saddle point with stable manifold in the 7'—M plane and with unstable
manifold in the B—/1 — P space.

E|is a saddle point with stable manifold in the P—7 —M plane and with unstable
manifold in the B — 1 plane.

E, is a saddle point with stable manifold in the / —7 —M plane and with unstable
manifold in the B — P plane.

E is a saddle point with stable manifold in the / — P —T — M plane and with unstable
manifold in the B - direction.

E, is a saddle point with stable manifold in B —T7 — M space and the unstable manifold

, : B n
in / — P plane if 2r30m> max{rBo +9M, —¢B, _O’rBO +¢M, _770}-

E s also a saddle point with unstable manifold in the / - direction.

E is unstable equilibrium according to Routh Hurwitz criteria if any of the following
conditions do not hold:
4,B,C,Dand E are positive

—C>0

o

4
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(AB-C)C —(AD-E)4>0
(AB - C)CD-BE)-(AD-E)* >0
where A,B,C,Dand E are the coefficients of characteristic equation:

AS + 214 + Eﬂﬁ + 5&2 + 51 +E£=0 of the variational matrix about E6 and are given as

below:

B +”216

A=8 +a,B. +n,—ro(B)+r
0 1B +19 —1rp(B) BOKB(Iﬁ,O,Té) I
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~ B I
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rp(Be)rgoBetsyl rl rp(Bg)ry 1
— (6, +a, B + P67 BOTO6276 4 BL(Sy + oty B )| =% — 1y (B, ) | — L6276
(6 +a,Bg +1y) K,(1,,0.T,)L $B- (0, 1Bs) I »(Bs) I

Orp(By) reoBe 0K 5(15,0,Ty)
-8, +a,B, + — Bl (B ) +—L""82y [ | = BI (S, +, B —aB
{( 0 156 ’70)( Blgrp(Byg) B 71 j Bls(6, 1 6)’70}([(2([6’0’7,6) ol 6
 rgoBeBls K (15.,0,T,) 00, 0)( no = (Be))— reoBEa, T 6[(3([6,0,7'6){ O(rZLI6 B )) rZLI(,}

K3(I,0,T,) or or K3(I,0,T,) or
reoBeyils 0K 5(14.,0,Ty) 0rp (B )6Q(16,0)
K 5{s,0,T,) oT OB ol

rp(Be)rpoBery 1 " UOVP(BG)VBoBgﬁlﬁ 0K 5(14,0,T5) 00(14,0)
Kp(15,0,T5)L K3(16:0,T¢) or ol

. By I
= (8 +a,B; )770{ B ORpUe0.Te) OCB](— Blgrp(B) + MJ

E= —(6p + @, Bg )Ny

K5 (I4,0,Ty) ol oB
rp(Bg )’”BOB rlg 0Kp(1,0,T) a,T, —n ”303629/1[6 0K 5 (14,0, T¢) Orp(Bs) 00(14,0)
* K2(1,.0,T,)L or e g ory  or oB oI

1
_¢B6FP(B6)%(50 +a,Bg).

Theorem 1: Let the following inequalities hold:

4 rr
ey < 902%% (5.1)
00", P B
( Q(él )] <§Cl R (5.2)
00", P B
( Q(al )] <902”’0“‘ s’ >y

where,
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B K.(I* P*.T"
C]:l{ rBO a B( 9 5 )+a}>0’

Bl K21, P,T) ol
1 reoB Ky, OKz(I*,P*,T*)
CZ = % 2 * * * >0’
orp(BHY\ K2(I",P°,T") oP
OB
1 B oK, (I*,P'.T*
¢y =—— zrzo _ 5( )>0’
a,T* K2(I",P",T") oT
e, =2
n

Then FE, is locally asymptotically stable equilibrium point.

Proof of this theorem is stated in Appendix A.

(5.4)

(5.5)

(5.6)

(5.7)

Now we explore the conditions of global stability of the system (2.1) in the form of following

theorem:

Theorem2. In addition to assumptions (2.2) —(2.5), let rz(P), rp(B), Kz({,P,T)and

O, P) satisfy the following conditions in the region of attraction € :

K <K (PTV<K, 0< KsLPT) o OKy(LPT)
ol oP
Og_wgl3’ Og_arP(B)gpl’
oT OB
org(P)
0<-——2"2<p,,
oP P2
90(1,P) o0, P)
0<——=2J<p o<l <y 5.8
ol Ps oP Ps (5.8)

for some positive constants K, , [}, [5, I5, p;, Py, P53, P4-

Then if the following inequalities hold in €2
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2
—rBOKfOI' +a+pB| < £ (5.9)
K 3K, (1", P",T")L

m

2
+rBOKBOIZ +p < rBOrPO (510)
‘ K2 *) 3K, P TS’
* 2 *®\ 2
rBOK§OI3 +l”_2(50 "‘02‘13 )aleaX < ’”Bo”zz(‘so"‘?lB*) _ 5.11)
Km 9L Ps3 27Lp3KB(I aP aT)
2 4Ty
—— 5.12
"WS<9T g (5.12)
2
D Ps y4lk0 (5.13)
L p; S

E is globally asymptotically stable with respect to all solutions initiating in the interior of the

positive orthant.
The proof of this theorem is given in Appendix B.
The above theorem implies that if conditions (5.6) — (5.10) hold forestry resource may

settle down to its equilibrium level. Further, it may be pointed out that if o,a,, 3,¥, are kept

at lower level then these conditions may be satisfied easily. This implies that stability of our
system is more feasible when depletion rate coefficient of resource biomass due to
industrialization, growth rate coefficient of industrialization due to easily available forestry
resource biomass, depletion rate coefficient of toxicants from the environment due to its uptake
by the forestry resource biomass and growth rate coefficient of industrialization due to increased
population is kept at lower level.
6. Numerical Simulation

In the previous sections, the qualitative analysis of the model is presented. To study the
system numerically we consider following particular forms of functions used in the model (2.1)

(Dubey and Narayanan, 2010):
rg(P) =rgy —rg P,

16



Ky(,P,T)=Kyo— Kl ~KgP—KpT,
rp(B) =rpy +1p B,

O,P)=0y +O 1 +0,P. (6.1)
Now, to see the dynamical behavior of the system (2.1), we integrate it numerically by

fourth order Runge — Kutta Method using the following set of hypothetical parameters (Dubey

and Narayanan, 2010):

rgo =10, rg =0.5, K, =12.5, K5, =0.2, K, =0.1, K5y =0.2, rpy =20, rp; = 0.6,

0,=10, 0,=03, 0,=02, a=0.03, o, =0.05, B=0.5, , =0.29, 6, =2,

r,=105, L=5, M =10, k, =10, [, =02, [, =0.1, [;=0.2, p, =05, p, =02,
p;=04, p, =05, $=0.5, n=0.05, n,=0.03. (6.2)

With the above parameter values, we get following equilibrium values of variables used
in the model
B* =6.9569, I" =8.3256, P*=12.0871, T* =6.3527, M™ =9.2385. (6.3)

On comparing the numerical values of the equilibrium obtained in Dubey and
Narayanan, (2010) with our model, it is observed that if we introduce technology in the system,
density of resource biomass, industrialization and population increases and concentration of
toxicants decrease. Thus, introduction of technology not only help in conservation of resource
biomass but also leads to increase in biomass density. Increase in biomass density lead to
increase in industrialization and due to industrialization population increases in the ecosystem
but concentration of toxicant remains under control. Moreover, it is observed that all the
conditions for local and global stability are satisfied for above set of parameter values given in
(6.2) and for the equilibrium values of the variables used in the model given by (6.3).

We compare the dynamics of resource biomass, industrialization and toxicants with and
without technological effort applied and investigate the effect of various parameters on them by
plotting their graphs with respect to time. It is found in all the figures that equilibrium level of

resource biomass is less when technological effort is not applied to conserve the resource

17



biomass. However, when some technological effort is applied to conserve the resource biomass,
the density of resource biomass in the system increases.

Figure 1 displays the dynamics of resource biomass for different values depletion rate
coefficient of resource biomass due to industrialization ¢, with respect to time ¢.It is observed
that as « increases, resource biomass decreases with and without application of technological
effort applied to conserve it. When technological effort is applied, resource biomass first
increases and then attains a steady equilibrium value and when no technology is used to
conserve the resource biomass, it decreases first due to industrialization and then attains an
equilibrium level.

Figure 2 is plotted between resource biomass and time to investigate the effect of

resource biomass depletion due to population r4,,both in the presence and absence of

technological effort. It is observed from the figure that as ry,increases resource biomass

decreases. It is further observed that in the absence of technology the decrease in resource
biomass is comparatively more and it declines significantly.
In figures 3, 4 and 5, variation of resource biomass with time for different rate of

decrease of carrying capacity of resource biomass due to industrialization, population pressure

and toxicants present in the environment K 5, K, and K, is displayed both in the presence

and absence of technology. It is observed from the figure that resource biomass decreases with
the increases in K B, K, and K 4, respectively. It is further observed that due to these factors
resource biomass decrease considerably and the condition gets worse when no technology is
applied for the conservation of resource biomass.

Figure 6 shows the variation of industrialization with time for different growth rate of
industrialization due to resource biomass f,in the presence and absence technological effort
applied to conserve the resource biomass. It is observed from the figure that as f increases

industrialization increases. When technological effort is applied, industrialization first increases
and then attains an equilibrium value. However, without any technological effort

industrialization first decrease and then attains equilibrium level.
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Figure 7 is drawn to exhibit the variation of toxicants present in the atmosphere with
time for different depletion rate coefficient of the pollutant from the environment due to the
forestry resource biomass ¢;.It is observed that as ¢ increases toxicant concentration
decreases. Thus, toxicant concentration in the environment can be reduced if forests are present
to absorb the pollutant concentration present in the atmosphere. In figures 8 and 9, global
stability of the system is displayed graphically. It is observed from the figures that system

always reach the equilibrium point whatever initial position is considered.

Figures
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Figure 1. Dynamics of resource biomass for different values of depletion rate coefficient of
resource biomass due to industrialization ¢, with respect to time 7.
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Figure 2. Dynamics of resource biomass for different values depletion rate coefficient of resource
biomass due to population 75, with respect to time 7.
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Figure 3. Dynamics of resource biomass for different values of depletion rate coefficient of carrying
capacity of resource biomass due to industrialization K ;,, with respect to time ?.
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Figure 4. Dynamics of resource biomass for different values of depletion rate coefficient of

carrying capacity of resource biomass due to population K ;,, with respect to time 7.
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Figure 5. Dynamics of resource biomass for different values of depletion rate coefficient of

carrying capacity of resource biomass due to toxicants K ;;, with respect to time 7.
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Figure 6. Dynamics of industrialization for different values of growth rate of
industrialization due to resource biomass 3, with respect to time ¢.
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Figure 7. Dynamics of toxicant concentration for different values of depletion rate coefficient of
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Conclusion

In this paper, a nonlinear mathematical model for determining the efficacy of
technology in the conservation of resource biomass that is continuously being depleted due to
industrialization, population and toxicants emitted in the environment is proposed and analyzed.
The model is analyzed by using stability theory of differential equations and simulation. Both
local and global stability of the system is studied and sufficient conditions for the equilibrium to
be stable in both the local and global sense are determined. We have found from the analysis
that density of resource biomass increases if some technology is used to conserve it. A little
decrease in industrialization is also observed if no technology is applied to conserve resource
biomass. This is obvious because industries use resource biomass for its establishment (e.g.
wood and paper based industries). Further, we have observed that for large depletion rate
coefficient of resource biomass due to population, resource biomass goes to extinction if no
technology is used for its conservation. However, resource biomass does not become extinct for
the same depletion rate of coefficient of resource biomass due to population if some technology
is applied to conserve the resource biomass. It is observed that as depletion rate of resource
biomass and its carrying capacity due to industrialization, toxicants and population growth
increases resource biomass decreases. Moreover, we have observed that concentration of
toxicants in the environment decreases due to resource biomass and if in addition new
technology is applied to conserve the resource biomass concentration of toxicants in the
environment can be reduced to a significant level.
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Appendix A.

Proof of theorem 1.

We consider small perturbations b,i, p,7,u around the positive interior equilibrium,
E,(B*,I",P",T",M") and linearize system (2.1) by using following transformations

B=B"+bI=1"+i,P=P +p,T=T +t,M =M +m. (A1)

To determine conditions for linearized stability we use the following positive definite function

in the linearized model:

i+ 1 G2y Gy (A2)
: PPt -

1
CZ—Z/S ——ay,b* + aybi——ay,i* ——a;\b* +a;;bp——ay, p°
1 2 1 2 1 2 2
—Zanb +a14br—§a44r _Za”b +a,sbm —assm
) . 2 .2 . 1 2
~3 %! +a23zp—§a33p ~3%! +a24zr—§a44r
1 2 1 2
—§a33p +a34pr—§a44r (A.3)
where,
r or c,yr .
ay = K ([*BIOD* ")’ 2 :%’ ay3 = ZSPO s Gy =04 B, ass = cyny,
B ) )
B* aK [*,P*,T*
a, =— rfo — 1 )—a+clﬁ,
Kz(I",P",T") ol
g o rgoB” 6[(3(1*,P*,T*)_|_c2 orp(B)
13 K;(I*,P*,T*) aP 6B 5
B” oK z(I",P°,T" x
a, "o 5( )—c3a1T ’

KX, PT) or
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o0(I",P") 20", P")
A5 =@ —1Cy, Ay3 =17, d3q = C3 ~ap Ay =C3——————,

P ol

. . dv . . . "
Sufficient conditions for d_ to be negative definite are that the following conditions hold:
t

, 1

(112 < Eallazz, (A‘4)
, 1

ap < §a11a33a (A.5)
, 1

ay <§a”a44, (A.6)
.1

ays < Eanassa (A7)
, 4

s < 5“22“33’ (A.8)
, 4

ay, < §a22a33, (A.9)
, 4

B3 < 33%44 (A.10)

It may be easily seen that if conditions (5.4), (5.5), (5.6) and (5.7) hold then (A.4),
(A.5), (A.6) and (A.7) respectively are satisfied automatically. We further observe that (5.1)

implies (A.8), (5.2) implies (A.9) and (5.3) implies that (5.10) hold. It implies that CZ—I; is

negative definite and hence equilibrium £, is locally asymptotically stable.

Appendix B.

Proof of theorem 2

To prove global stability of the equilibrium E,we consider the following positive

definite function with some positive constants & and &, .
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W=B-B" —B*ln§+l—l*—l*h1[i*+P—P*—P*]n P

*

k .
+ (T -T%)?
2
(B.1)
k .
+—2(M-M")?
2
Differentiating (B.1) with respect to time #, we have

dW<_ 50
dt — Ky(I",P*,T")

r
(B—B*)? —%(1—1*)2 —%O(P—P*)z — k(8 + B )T —T*)?

~Noky (M =M ™) +[-rpop (I, P,T)B—c+ BYB-B*)I-1")

15 (P) = ryo& 5o (I, P.T)B 41, (B) B~ BY)(P - P7)

+[_FBO§B3(I*aP*aT)B_klalTkB_B*)(T_T*)"'(¢_k277)(B_B*)(M_M*)

+7/1(I—I*)(P—P*)+k19Q1(I,P)(I—I*)(T—T*)+k19Q2(1*,P)(P—P*)(T—T*) (B.2)

where,
! — *1 1-17, IEYA
Ky(I,P,T) Kyz(I",P,T)
éBl(I’P’T): "
3 1 oKz(I ,P,T) o7
K2(I",P,T) ol ’
3 — *1 . P-P", P#PpP"
K,(I",P,T) Ky, ,P.,T)
532(1 ’P’T): " .
K.(I ,P,T N
- 2 *1 % a B( : . )a P:P
Kz;(I ,P.,T) oP
*1 . — *1* . T-T", T#T"
K,(I",P,T) Ky ,P.,T")
533(1 ’P ’T): " .
K.(I ,P,T N
T T=T
Kz ,P,T) oT
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[FB(P)_FB(P*)]/P—P*, P#P
ng(P)= ,

rB (P*)’ P:P>x<

[rp(B)—rp(B*)]/B—B*, B#B*
np(B)= ’

rP (B*)’ B:B*

ou.py -0 P)1-1",  1sr
0,,P)= .
ey
ol
lour.py-our.PH)P-P,  P2P
6 (I*’P): Pa—
. 20U, P"). o
oP

From (5.8) and mean value theorem we have,

En (LT <1 /K., |E5(LP,T)| <1, /K,

Eu(ILP,T) <1 K2,

m

ns(P)| < py,

001(1.P)|< ps.

n,(B)|< ps. 0> (I",P) < py.

aw . . .
Now 7 can be written as sum of quadratics as given below:
t

aw 1 . . s 1 .
= ybu(B=B') +b,(B=B ) ~1')~ by (I=I')

1 . . o1 .
-~ (B-B )’ +b,(B=B")(P-P )= bs (PP )?

1 . . | .
P (B=B') b (BB )T ~T")~b, (T=T")’

1 * % * *
b (B-B ) +b(B=B)YM-M")=by(M—-M")?
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1

1

_gbna—lﬁz+@AI—FXP—P3—§@AP—P32

1 . . | .
S hn =1 by (=TT =T) =2 b (T =T")

1 * 5 * 1 EY
b =) by (I =1 )T =T") =2 byy (T =T")? (B4)

T'go

bll

by, =-r3o8p (L, P, T)B—ax + B,

bys :nB(P)_rBogBZ(I*’P’T)B+77P(B)a

by = _V30§B3(1*ap*aT)B_kla1Ta

K (I", PN T

g , by =k (8 +a,B), bss = kyn,,

bis=¢—nky, byy =7y, by :klte(IaP)a by, :k19Q2(1*,P).

. . aw . . . ..
Sufficient conditions for 7 to be negative definite are that the following conditions hold:
t

1
b§<§@¢n,
, 1
b <§b11b33’

1
b124 < §b11b44a

1
b125 < gbnbss’

4
b223 < §b22b33 )

4
b3y < §b22b33a

4
bss < 517331744’

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)
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It may be easily seen that if conditions (5.9), (5.10), (5.11), (5.12)and (5.13) hold then

(B.5), (B.6), (B.7) (B.9) and (B.11) respectively are satisfied automatically. We further observe
17, (8, +a,B"
that (B.10) is satisfied automatically if &, = g%w and (B.8) is satisfied
Ps3

. . . aw . . o .
automatically if &, = Q This demonstrates that 7 is negative definite inside the region of
t

attraction €2 if (5.9)-(5.13) hold ensuring global stability of interior equilibrium point £ .
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