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Abstract: In this paper, we investigate a mathematical model to conserve the resource biomass that is 
depleted by industrialization, population pressure and toxicants with the help of technology. The model 
equations are analyzed mathematically with regard to the nature of equilibrium points and their stabilities 
using the theory of nonlinear ordinary differential equations and numerical simulations. It is shown that 
under suitable conditions, there exists a unique locally as well as globally asymptotically stable positive 
equilibrium. It is concluded from the analysis that density of resource biomass increases if technology is 
used to conserve it. Moreover, it is observed that for large depletion rate of resource biomass due to 
population, resource biomass goes to extinction if no technology is used for its conservation. However, 
resource biomass does not become extinct for the same depletion rate of resource biomass due to 
population if technology is applied to conserve the resource biomass. It is found that concentration of 
toxicants in the environment can be reduced significantly if technology is applied to conserve resource 
biomass. 
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1. Introduction 

Resources play a significant role in the development of any country. It is a matter of 
great concern that the resources such as forestry, wildlife, energy, minerals are continuously 
being depleted to meet the demands of overgrowing population. Depletion of forestry resources 
occurs for agricultural land, resettlement and colonization, cutting of trees for fuel, paper and 
fodder, etc.  An example of extensive depletion of forestry resources is the depletion of forests 
of Doon valley in Uttarakhand. Forests have been depleted largely in Doon valley due to 
overgrowth of human and livestock populations, limestone quarrying, wood based industries 
and various kinds of industrial discharges and chemical spills in the forms of smoke and 
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poisonous gas fumes (Munn and Fedorov, 1986; Shukla et al. 1989, Shukla and Dubey, 1996, 
1997). 

Many researchers have investigated the depletion of resource biomass by overgrowing 

population, toxicants and industrialization. Shukla and Dubey (1997) have studied the effects of 

population and pollution on the depletion of forestry resources. They found that if the 

population density and the emission rate of pollutant increase without control, the forestry 

resource may tend to extinction. Shukla et al. (1989) have proposed a mathematical model to 

study the effect of industrialization on the depletion of a resource biomass. Dubey and Dass 

(1999) have proposed and analyzed a mathematical model to study the survival of species 

dependent on a resource, which is depleted due to industrialization. Shukla et al. (1996) 

investigated the effect of changing habitat on survival of species due to industrialization. Dubey 

and Narayanan (2010) have studied a mathematical model to demonstrate the effect of 

industrialization, population, and pollution on the depletion of a renewable resource. They 

observed that if the density of industrialization, population, and pollution increase then the 

density of the resource biomass decreases. M. Agarwal et al. (2010) proposed a ratio dependent 

mathematical model on the depletion of forestry resource biomass due to industrialization 

pressure. They found that the density of forestry biomass decreases due to increase in 

industrialization pressure that decreases the density of wildlife species. Gakkhar and Sahani 

(2007) proposed a delay model to determine the effects of environmental toxicant on biological 

species. Thomas et al. (1997) studied the effect of environmental pollution on a single-species 

population and derived some criteria to restrict the amount of pollution in the environment to 

ensure the survival of the population. Shukla et al. (2003) studied the effects of primary and 

secondary toxicants on the resource biomass. They observed that the resource may even become 

extinct if emission rate of primary toxicant and its transformation rate to secondary toxicant are 

very large. Dubey and Hussain (2003) studied a model with diffusion. They considered 

competition between two species that compete with each other and depend on a common 

resource. The resource considered by them is affected by industrialization. They demonstrated 

that the positive equilibrium can be stabilized by increasing diffusion coefficients. Dubey et al. 

(2003) analyzed the effect of industrialization and pollution on forestry resource. They 
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considered three types of rate of emission of pollutant into the environment: industrialization 

dependent, constant, zero, or periodic. They concluded that resource biomass may become 

extinct in case of industrialization-dependent emission rate of pollutants. Shukla et al. (2011) 

studied the effect of technology on the conservation of forestry resource biomass. However, 

they did not consider the effect of toxicants on the depletion of resource biomass. Role of 

toxicants on the depletion of renewable resources like forests is considerable. They concluded 

that the resource biomass density decreases due to over growing population and 

industrialization. Resource biomass density was observed to decrease further as the resource-

dependent industrial migration increases. They found that resource does not become extinct if 

some technology is applied for its conservation. It may be pointed out that in all the above-

mentioned studies; effect of technology on the conservation of resource biomass that is depleted 

by combined effect of industrialization, population pressure and toxicants is not studied. As we 

all know that forests occupy central position in nature. They restore ecological balance of all 

ecosystems, maintain biological diversity, act as catchments for soil and water conservation, 

prevent floods and safeguard future of tribal people. Hence, sustainable management of forestry 

resource biomass is desirable. Sustainable management of forests is possible by using modern 

technologies such as genetic engineering like tissue culture and clonal seedlings, root-trainers 

etc. for new varieties of trees for plantation in forests. It is therefore very essential to study the 

effect of technology on conservation of forestry resources (Reed and Heras, 1992). We modify 

the paper of Dubey and Narayanan (2010) by considering the effect of technology on the 

conservation of forestry resource biomass keeping in mind the importance and efficacy of using 

technology  in the conservation of resource biomass.  

We, therefore, analyze a nonlinear ordinary differential equation model to investigate 

the efficacy of technology on the conservation of resource biomass. The stability theory of 

nonlinear ordinary differential equations and fourth order Runge–Kutta method are used to 

analyze and predict the behavior of the model. 

2. Mathematical Model 

We formulate a nonlinear ordinary differential system of equations to study an 

ecosystem where forestry resource biomass is being continuously depleted due to 
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industrialization, population and toxicants. We also study the impact of technological effort 

applied to conserve the resource biomass that is the main objective of our paper. Resource 

biomass, industrialization and population grow according to the logistic law. Intrinsic growth 

rate of resource biomass is assumed to be a negative function of population. It is further 

assumed that density of resource biomass decreases due to industrialization and increases due to 

technology applied for its conservation. Moreover, it is assumed that carrying capacity of 

resource biomass in the environment, that is, maximum density of resource biomass that the 

environment can sustain decrease with the increase in industrialization, population and 

toxicants. Industrialization increases due to resource biomass since establishment of industries 

need resource biomass. Industrialization also increases due to increase in population to meet 

their demands. In addition, growth rate of population increases with the increase in density of 

resource biomass. Carrying capacities of industrialization and population is assumed to be 

constant. Emission of toxicants in the environment is assumed to occur due to industrialization 

as well as due to human population. We incorporate the effort applied to conserve the resource 

biomass through technology to balance the ecosystem. The rate at which technological effort is 

applied depends upon the resource biomass left that can be conserved. Further, depletion of 

technology due to technology failure is also considered in the model. Keeping these things in 

mind, we have the following system of differential equations:  

,
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Here B is the density of resource biomass, I  is the density of industrialization, P  is 

the density of population, T  is the concentration of toxicant present in the environment and M  

is the technological effort applied to conserve resource biomass.  is the depletion rate 

coefficient of resource biomass due to industrialization,   is the growth rate of coefficient of 

industrialization due to industries being set up by population to meet the increasing demands of 

overgrowing population. 10   is the growth rate coefficient of resource biomass due to 

technological efforts. 2r  is the intrinsic growth rate of industrialization and   is the growth rate 

of industrialization due to resource biomass. L is the maximum density of industries which the 

environment can support. S is the maximum density of population which the environment can 

support. 0  is the natural depletion rate of toxicants. 1 is the depletion rate coefficient of the 

toxicants due to its uptake by forestry resource biomass. constant   is the growth rate 

coefficient of technological efforts and 0  is the depletion rate coefficient of technological 

efforts due to failure of technology.  

In addition, )(PrB denotes the intrinsic growth rate of the resource biomass. It is 

assumed that )(PrB  decreases as P  increase. Hence we take, 

,0)0( 0  BB rr 0
dP
drB  for 0P .                                                                                     (2.2) 

),,( TPIK B represents the maximum density of the resource biomass which the  

environment can support in the presence of industrialization, population and pollution, and it 

also decreases as I , P  and T  increase. Hence, we take 

,0)0,0,0( 0  BB KK 0),,(
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




T
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,0I 0P , 0T .                                                                                                                           (2.3) 

)(BrP represents the intrinsic growth rate of population, and it is assumed that intrinsic 

growth rate of population increases as the density of the resource biomass increases. Hence,  
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,0)0( 0  PP rr 0
dB
drP  for .0B                                                                                      (2.4) 

The rate of introduction of pollutant into the environment is denoted by ),( PIQ  that 

increases as I  and P  increase. Hence, we take function ),( PIQ of the following form: 

,0)0,0( 0  QQ 0),(





I
PIQ

,  0),(





P
PIQ

 for ,0I 0P .                                      (2.5) 

All the functions considered in the model are assumed to be sufficiently smooth so that 

solutions to the initial value problem exist uniquely and are continuable for all positive times. 

We will analyse the model using stability theory of differential equations. 

3. Boundedness 

In this section, we show that solutions of model system (2.1) are  bounded. 

Boundedness of the system is proved in the form of following lemma 1, which establishes the 

region of attraction (Freedman and So, 1985). 

Lemma 1. The set  
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 BKM   is the region of attraction for system (2.1) that attracts all solutions initiating 

in the interior of positive orthant. 

Proof. From fifth equation of the system (2.1) we have, 
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.0 max
0
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


 

Using this value of M in first equation of the system (2.1), we have, 
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We observe that when ,0BKB  0M and all the terms of the right hand side of 

the (3.1) tend to zero suggesting that 0
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From third equation of the system (2.1) we have, 
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From fourth equation of system (2.1), we have  
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Thus, we have proved the lemma 1 and hence bounded of the system . 
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4. Equilibrium Analysis 

It is observed that the system (2.1) has eight non-negative equilibria, namely, 

),,,0,0,0( 000 MTE  ),,,,0,0( 1111 MTPE  ),,,0,,0( 2222 MTIE  ),,,,,0( 33333 MTPIE  

),,,0,0,( 4444 MTBE   ),,,,0,( 55555 MTPBE  ),,,0,,( 66666 MTIBE ).,,,,(7
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Here we have, ,
0

0
0 

QT  ,
0

0
3210 

 BKMMMM   

,31 SPP  ,),0(

0
1 

SQT  ,2 LI   

,)0,(

0
2 

LQT  ,)(

2

12
3 r

LSrI 
 .

,)(

0

2

12

3 









 


S

r
LSrQ

T  

Existence of ),,,0,0,( 4444 MTBE  

Here 4B 44 ,MT  are the positive solutions of the following algebraic equations: 
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B
B                                                                                                    (4.1) 

0100  BTTQ                                                                                                               (4.2) 

0)( 00  MBK B                                                                                                            (4.3) 

From (4.2) we have,    
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                                                                                                         (4.4) 

Similarly (4.3) gives, 

)()( 120
0

BfBKM B 



.                                                                                                (4.5) 

Putting the values of T  and M  in equation (4.1) we have a function )(1 BF of the following 

form,  

  ),,0,0()( 001 TKMrBrBF BBB   
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such that  

  0),0,0()0( 01  TKMrF BB   and  

0),0,0()( 00001  TKrKrKF BBBBB  since ),,(0 TPIKK BB  from our assumption. 

It is easy to observe that a unique equilibrium 4B lies in ),0( 0BK  if the following inequality 

holds: 
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Putting the value of 4B in (4.4) and (4.5), we can easily obtain the equilibrium values 4T and 

.4M  

Existence of ),,,0,( 55555 MTPBE , 

Here ,5B ,5P 55 , MT  are the positive solutions of the following algebraic equations: 
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 Similar to the existence of ),,,0,0,( 4444 MTBE It is easy to observe that a unique equilibrium 

,5B lies in ),0( 0BK  if the following inequality holds:  
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Putting the value of 5B in (4.8), (4.9) and (4.10), we can easily obtain the equilibrium values 

,5P 5T and .5M  

Existence of ),,0,,( 66666 MTIBE , 

Here ,6B ,6I 66 , MT  are the positive solutions of the following algebraic equations: 

  ),,0,()(0 TIKIPrMBr BBB                                                                                  (4.12) 
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Similarly, equilibrium ),,0,,( 66666 MTIBE  exists if  
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Existence of interior equilibrium ),,,,(7
 MTPIBE , 

Here ,B ,I  MT ,  are the positive solutions of the following algebraic equations: 
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Taking  
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It can be checked easily that the equilibrium ),,,,(7
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5. Stability Analysis 

The local stability analysis of each equilibrium point can be studied by computing eigen 

values of the corresponding variational matrix from the general variational matrix. The general 

variational matrix of the system (2.1) is given as: 
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Local stability conditions for various equilibrium points of the system are as follows: 

1. 0E is a saddle point with stable manifold in the MT   plane and with unstable 

manifold in the PIB   space. 

2. 1E is a saddle point with stable manifold in the MTP   plane and with unstable 

manifold in the IB   plane. 

3. 2E is a saddle point with stable manifold in the MTI   plane and with unstable 

manifold in the PB   plane. 

4. 3E is a saddle point with stable manifold in the MTPI   plane and with unstable 

manifold in the B - direction. 

5. 4E is a saddle point with stable manifold in MTB  space and the unstable manifold 

in PI  plane  if 

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6. 5E is also a saddle point with unstable manifold in the I - direction. 

7. 6E is unstable equilibrium according to Routh Hurwitz criteria if any of the following 

conditions do not hold:   

DCBA ~,~,~,~ and E~ are positive  

0~~~
 CBA  
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0~)~~~(~)~~~(  AEDACCBA  

0)~~~()~~~~)(~~~( 2  EDAEBDCCBA  

where DCBA ~,~,~,~ and E~  are the coefficients of characteristic equation: 

0~~~~ 2345  EDCBA   of the variational matrix about 6E  and are given as 

below:  
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Theorem 1: Let the following inequalities hold: 

,
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rcc P                                                                                                                  (5.1) 
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where, 
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c                                                                                                                                     (5.7) 

Then 7E is locally asymptotically stable equilibrium point. 

Proof of this theorem is stated in Appendix A. 

Now we explore the conditions of global stability of the system (2.1) in the form of following 

theorem:   

Theorem2.  In addition to assumptions (2.2) –(2.5), let ),(PrB ),(BrP ),,( TPIK B and 

),( PIQ satisfy the following conditions in the region of attraction  : 

,),,( 0BBm KTPIKK   ,),,(0 1lI
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PIQ

                                              (5.8) 

for some positive constants ,mK ,1l ,2l ,3l ,1 ,2 ,3 .4  

Then if the following inequalities hold in   
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7E is globally asymptotically stable with respect to all solutions initiating in the interior of the 

positive orthant. 

The proof of this theorem is given in Appendix B. 

The above theorem implies that if conditions (5.6) – (5.10) hold forestry resource may 

settle down to its equilibrium level. Further, it may be pointed out that if  11 ,,,   are kept 

at lower level then these conditions may be satisfied easily. This implies that stability of our 

system is more feasible when depletion rate coefficient of resource biomass due to 

industrialization, growth rate coefficient of industrialization due to easily available forestry 

resource biomass, depletion rate coefficient of toxicants from the environment due to its uptake 

by the forestry resource biomass and growth rate coefficient of industrialization due to increased 

population is kept at lower level. 

6. Numerical Simulation 

In the previous sections, the qualitative analysis of the model is presented. To study the 

system numerically we consider following particular forms of functions used in the model (2.1) 

(Dubey and Narayanan, 2010): 

,)( 10 PrrPr BBB   



17 

 

,),,( 3210 TKPKIKKTPIK BBBBB   

,)( 10 BrrBr PPP   

.),( 210 PQIQQPIQ                                                                                                      (6.1) 

Now, to see the dynamical behavior of the system (2.1), we integrate it numerically by 

fourth order Runge – Kutta Method using the following set of hypothetical parameters (Dubey 

and Narayanan, 2010): 

10,0 Br 0.5, 1 Br 12.5,0 BK 0.2,1 BK 0.1,2 BK 0.2,3 BK ,200 Pr ,6.01 Pr
10,0 Q  0.3,1 Q  0.2,2 Q  0.03,  0.05,1   0.5,  0.29,1   2,0   

10.5,2 r  5,L  10,M  10,mk  0.2,1 l  0.1,2 l  0.2,3 l  0.5,1   0.2,2   

0.4,3   0.5,4   0.5,  0.05,  0.03.0                                                             (6.2) 

With the above parameter values, we get following equilibrium values of variables used 

in the model  

,9569.6B  ,3256.8I   ,0871.12P  ,3527.6T   .2385.9M                    (6.3) 

On comparing the numerical values of the equilibrium obtained in Dubey and 

Narayanan, (2010) with our model, it is observed that if we introduce technology in the system, 

density of resource biomass, industrialization and population increases and concentration of 

toxicants decrease. Thus, introduction of technology not only help in conservation of resource 

biomass but also leads to increase in biomass density. Increase in biomass density lead to 

increase in industrialization and due to industrialization population increases in the ecosystem 

but concentration of toxicant remains under control. Moreover, it is observed that all the 

conditions for local and global stability are satisfied for above set of parameter values given in 

(6.2) and for the equilibrium values of the variables used in the model given by (6.3). 

We compare the dynamics of resource biomass, industrialization and toxicants with and 

without technological effort applied and investigate the effect of various parameters on them by 

plotting their graphs with respect to time. It is found in all the figures that equilibrium level of 

resource biomass is less when technological effort is not applied to conserve the resource 
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biomass. However, when some technological effort is applied to conserve the resource biomass, 

the density of resource biomass in the system increases. 

Figure 1 displays the dynamics of resource biomass for different values depletion rate 

coefficient of resource biomass due to industrialization , with respect to time .t It is observed 

that as  increases, resource biomass decreases with and without application of technological 

effort applied to conserve it. When technological effort is applied, resource biomass first 

increases and then attains a steady equilibrium value and when no technology is used to 

conserve the resource biomass, it decreases first due to industrialization and then attains an 

equilibrium level. 

Figure 2 is plotted between resource biomass and time to investigate the effect of 

resource biomass depletion due to population , 1Br both in the presence and absence of 

technological effort. It is observed from the figure that as 1Br increases resource biomass 

decreases. It is further observed that in the absence of technology the decrease in resource 

biomass is comparatively more and it declines significantly. 

In figures 3, 4 and 5, variation of resource biomass with time for different rate of 

decrease of carrying capacity of resource biomass due to industrialization, population pressure 

and toxicants present in the environment ,1BK  2BK   and 3BK is displayed both in the presence 

and absence of technology. It is observed from the figure that resource biomass decreases with 

the increases in ,1BK  2BK   and 3BK  respectively. It is further observed that due to these factors 

resource biomass decrease considerably and the condition gets worse when no technology is 

applied for the conservation of resource biomass. 

Figure 6 shows the variation of industrialization with time for different growth rate of 

industrialization due to resource biomass , in the presence and absence technological effort 

applied to conserve the resource biomass. It is observed from the figure that as   increases 

industrialization increases. When technological effort is applied, industrialization first increases 

and then attains an equilibrium value. However, without any technological effort 

industrialization first decrease and then attains equilibrium level. 
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Figure 7 is drawn to exhibit the variation of toxicants present in the atmosphere with 

time for different depletion rate coefficient of the pollutant from the environment due to the 

forestry resource biomass .1 It is observed that as 1 increases toxicant concentration 

decreases. Thus, toxicant concentration in the environment can be reduced if forests are present 

to absorb the pollutant concentration present in the atmosphere. In figures 8 and 9, global 

stability of the system is displayed graphically. It is observed from the figures that system 

always reach the equilibrium point whatever initial position is considered.  
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Figure 1. Dynamics of resource biomass for different values of depletion rate coefficient of 

resource biomass due to industrialization , with respect to time .t  
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Figure 2. Dynamics of resource biomass for different values depletion rate coefficient of resource 

biomass due to population , 1Br with respect to time .t  
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Figure 3. Dynamics of resource biomass for different values of depletion rate coefficient of carrying 

capacity of resource biomass due to industrialization , 1BK with respect to time .t  



21 

 

0 200 400 600 800 1000
3

4

5

6

7

B
(t)

 

 

0 200 400 600 800 1000
2

3

4

5

6

Time (t)

B
(t)

 

 

KB2 = 0.1

KB2 = 0.2

KB2 = 0.4

KB2 = 0.1

KB2 = 0.2

KB2 = 0.4
 = 0.00

 = 0.05

 
Figure 4.  Dynamics of resource biomass for different values of depletion rate coefficient of 

carrying capacity of resource biomass due to population , 2BK with respect to time .t  
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Figure 5. Dynamics of resource biomass for different values of depletion rate coefficient of 

carrying capacity of resource biomass due to toxicants , 3BK with respect to time .t  
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Figure 6. Dynamics of industrialization for different values of growth rate of 

industrialization due to resource biomass , with respect to time .t  
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Figure 7. Dynamics of toxicant concentration for different values of depletion rate coefficient of 

toxicants due to uptake by resource biomass ,1 with respect to time .t  
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Figure 8. Variation of technological effort applied to conserve the resource 

biomass with resource biomass density 
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Figure 9. Variation of technological effort applied to conserve the 

resource biomass with population  
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Conclusion 

In this paper, a nonlinear mathematical model for determining the efficacy of 
technology in the conservation of resource biomass that is continuously being depleted due to 
industrialization, population and toxicants emitted in the environment is proposed and analyzed. 
The model is analyzed by using stability theory of differential equations and simulation. Both 
local and global stability of the system is studied and sufficient conditions for the equilibrium to 
be stable in both the local and global sense are determined. We have found from the analysis 
that density of resource biomass increases if some technology is used to conserve it. A little 
decrease in industrialization is also observed if no technology is applied to conserve resource 
biomass. This is obvious because industries use resource biomass for its establishment (e.g. 
wood and paper based industries). Further, we have observed that for large depletion rate 
coefficient of resource biomass due to population, resource biomass goes to extinction if no 
technology is used for its conservation. However, resource biomass does not become extinct for 
the same depletion rate of coefficient of resource biomass due to population if some technology 
is applied to conserve the resource biomass. It is observed that as depletion rate of resource 
biomass and its carrying capacity due to industrialization, toxicants and population growth 
increases resource biomass decreases. Moreover, we have observed that concentration of 
toxicants in the environment decreases due to resource biomass and if in addition new 
technology is applied to conserve the resource biomass concentration of toxicants in the 
environment can be reduced to a significant level.  
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Appendix A.  

Proof of theorem 1. 

We consider small perturbations upib ,,,,   around the positive interior equilibrium, 

),,,,(7
 MTPIBE  and linearize system (2.1) by using following transformations 

,* bBB  ,* iII  ,* pPP  ,*  TT .* mMM                                           (A.1) 

To determine conditions for linearized stability we use the following positive definite function 

in the linearized model: 
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Differentiating (A.2) with respect to time ,t we have 
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Sufficient conditions for  
dt
dV

 to be negative definite are that the following conditions hold: 
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9
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2
34 aaa                                                                                                                      (A.10) 

It may be easily seen that if conditions (5.4), (5.5), (5.6) and (5.7) hold then (A.4), 

(A.5), (A.6) and (A.7) respectively are satisfied automatically. We further observe that (5.1) 

implies (A.8), (5.2) implies (A.9) and (5.3) implies that (5.10) hold. It implies that 
dt
dV

 is 

negative definite and hence equilibrium 7E is locally asymptotically stable. 

Appendix B.  

Proof of theorem 2 

To prove global stability of the equilibrium 7E we consider the following positive 

definite function with some positive constants 1k and 2k . 
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Differentiating (B.1) with respect to time ,t we have 
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From (5.8) and mean value theorem we have, 
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Now 
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 can be written as sum of quadratics as given below: 
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 to be negative definite are that the following conditions hold: 
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It may be easily seen that if conditions (5.9), (5.10), (5.11), (5.12)and (5.13) hold then 

(B.5), (B.6), (B.7) (B.9) and (B.11) respectively are satisfied automatically. We further observe 

that (B.10) is satisfied automatically if 2
3
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automatically if  .2 
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k  This demonstrates that 
dt

dW
is negative definite inside the region of 

attraction  if (5.9)-(5.13) hold ensuring global stability of interior equilibrium point 7E . 




