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ABSTRACT. In this paper, some algebraic properties of the compression of
weighted slant Hankel operators on the space H2(8), 8 = {8 }necz being a
sequence of positive numbers with Sy = 1, are discussed. It is also shown
that thec Weyl’s thecorem holds if the compression of a weighted slant Hankel
operator is compact.

1. INTRODUCTION

Let 8 = {Bn}nez be a sequence of positive numbers with 8y = 1, Z being
the set of integers. Consider the space L*{#) of all formal Laurent series f(z) =

o
> anz™, a, € C, for which

N=—>oC
O
I£13 = D lan*8,” < 0.
N=—0
L2(3) is a Hilbert space with the norm || - || induced by the inner product
oC
(f.9)= Y an b’
n=—0o0

for f(z) = > apz™amd g(z) = > b,2". The collection {e,|n € Z}, where
en(2) = 2"/ 3,, forms an orthonormal basis for L2(3).
X
Let H2(3) denote the collection of all f(z) = Y. a,z" (formal power series) for
n=>0
which Hf||§ = 3 |aa|?8,% < oo. It is a subspace of L2(3).

Let L°°(/3) denote the set of formal Laurent series ¢(z) = Z an 2" such that

n=—oc

¢L2(B) C L*(8) and there exists some ¢ > 0 satisfying ||¢f||s < ¢||f]|g for each f €
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L3(B). For ¢ € L*>(83), define the norm ||¢|| as
| $lloc = inf{e > 0: ||6flls < || fllg for each f € L2(B)}.
L°°(3) is a Banach space with respect to || - |s. Analogously, H°°(3) denotes the
sct of formal Power scrics ¢ such that ¢ H2(3) C H?(8). We refer [3,7] as well as the
references therein, for the details of the spaces L2(3), H*(8), L=(3) and H*(3).
If 3,, = 1 for each n € Z, and the functions under consideration are complex-valued
measurable functions defined over the unit circle T then these spaces coincide with
the classical spaces L2{T), H2(T), L>°(T) and H>(T). The study over these spaces
is more interesting as well as demandable because of the tendency of H2(3) to cover
Bergman spaces, Hardy spaces and Dirichlet spaces (see[7]). If ¢ € L>(5) is given
o — — [='s]
by ¢(2) = > anz", a, € C then define ¢ as ¢(z) = . a_,2™
n=—ow n=—0C

The multiplication operators or Laurent operators are the linear operators in-
duced by the multiplication by the fixed function, having it’s roots in the spectral
theory and being pursued today in such guises as the theory of subnormal operators
and the theory of Toeplitz and Hankel operators. Laurent operators on L?(3) are
discussed in detail by Shields [7] in the year 1974 and we call them as weighted
Laurent operators. In the year 2005, Lauric [5] introduced the notion of weighted
Toeplitz operator T = PPM} on H?(B), where P’ : L*() — H?(3) denotes
the orthogonal projection of L?(3) onto H?(3) and M, (f is the weighted Laurent
operator on L?(3) induced by ¢ € L>(3), that is j\f[gf =¢- f.

Let W be an operator on L2(8) given hy

Wen(z) = 52: em(z) if n=2m for some m € Z
" P — )
" otherwise

and J® denote the reflection operator on L?(§) defined as Jf = 3 a,fBne_,

n—=—o0

for each f(z) = Z 0,2" in L2(3). It is easy to verify that PPW = W P#,

In [2,3], the study is further extended to weighted Hanke. operators and weighted
slant Hankel operators, which are defined as follows.

Definition 1.1. [2] A weighted Hankel operator HY, ¢ € L(3) on H2(B) is
defined as H), = PP.J7 M.

18

(o]
If ¢(2) = 3. an2" then for j > 0, H{’:ej = % G—n—jP—nen.
¥ =ro

n=—oC n

0

Definition 1.2. [3] A weighted slant Hankel operator K*?, ¢ € L>=(8) on L2(3) is
given by K9 = JPW M}

If (2} = > anz" then for each j € Z, ngj = % ZZ C_gn_if_nen.
n=—0oc n

In this paper, some properties of the compression of \xfeighted slant Hankel op-

erators K(’Z to H2(3) are discussed. We also find a characterization for the product

of weighted Toeplitz and the compression of a weighted slant Hankel operator to

be compression of a weighted slant Hankel operator. It is also shown that the com-

pression of weighted slant Hankel operators can not be Fredholm. Throughout the
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paper, the sequence 8 = {3, }..cz is supposed to be a semi-dual sequence ( that is

Bn = By, for each n) of positive numbers with 3y =1, r < 6'8:1 <1 for n >0, for

some r > 0.

2. COMPRESSION OF WEIGHTED SLANT HANKEL OPERATORS

We denote the compression of weighted slant Hankel operators K f to H2(3) by
Lg By the definition of compression, we have L‘i = PPK £| H2'g), equivalently,
LIPf = PPKZPP. As the sequence 8 = {fplnez is assumed to be semi-dual

=) e
sequence, sa if #(z) = > a,z" then for each j > 0, L';Zej = % X:O a 2n jPnen.
n=—00 n—
Consider the transformation V on L?(8) given by

>0

Vi) = f(z%) = Z a2,
for f(z) = 5 ap2™ in L*(8). Then V is bounded if and only if {%}nez is

n=—oc

bounded. If {%}nez is bounded and ¢ € L>®(3) then (see [3])
Birr _ wirasB
(1) Myw =W My 2.
6 _ apb
(2) VMg = M)V
(3) WMJV = M where ¢ = W¢ € L=(3).
Using these observations, one can prove the following:
B

Proposition 2.1. Let {%2},cy be bounded and ¢ € L=(8). Then H W P? =
3
Lg(z2y

A routine computation shows that LZ = WH 2 . Hence if ¢ € zH?(5) then

L;; =0 as Hg = 0. Also, if {ﬁ,ff"},,,ez is bounded and ¢ € L*>(53), then TZ[LLg =
8 B _ B B _ By
T WHy =WT, . Hy=LT,.. /

It is known [2, Theorem 3] that the product H (‘; Tlf of a non-zero weighted Hankel
operator H f; and a non-zero weighted Toeplitz operator Tlf is a weighted Hankel
operator if and only if © € H*(f).

It is a natural problem to look for a similar result for the compression of weighted
slant Hankel operators. A simple computation shows that for ¢,% € L*>(4),
LZTf, = ng. The condition ¢» € H>(83) does not seem to be necessary for
Lng:wa‘ For, if ¥(z) = 27! and ¢(z) = 1 then Lng(: L7 ) is compression of
the weighted slant Hankel operator K, without being ¢ in H>°(3). However, we
obtain a result in the following form.

Theorem 2.2. Let {%}HEZ be bounded. Let ¢, € L>(3) be such that Li(ZQ) and

Tj are non-zero operators on H2(8). Then the product LZ(22>T5 is the compression
of a weighted slant Hankel operator if and only if 210 € H>(8).

S 0O
Proof. Let ¢(2) = >, a,2" and (2] = . by2™ in L(8) be such that
LY .., # 0 and T} #0.
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Suppose zt:(z) € H>®(B). Then ¢(z3)w(z) = Z n? z", with ¢, given by

Con = Y. apbay_op and co,_y = Y. agbo,—1_2x. A routine computation shows
k=—oc k=—o0

that for 7,7 > 0

-
Sj > ak—iibak ifj =2

8 _ k=0
<L¢:(72)Ti/) > - 8 o0 o
5o 2 0op—imtbopoy i =(2041)
k=0
and
—i—1
§—7 > apb_giio—on if j =21
S k=—2
<L¢(vz‘¢;fb i) = 5 st o
ﬁ Z akb 2i421—2k—1 1fj=(2l+1)
gj Z a_;—1—1boy if j =2
— ) 7 k=0 .
2—7 Do ipgba 1 i j=(21+1)
k=0
This proves L;( 2 'TS = Lfﬁ(zz)w

-i

= L‘ for some £ € L*(3). This gives Ld)(ZZ)Tw VPP =

L’RVP’*, which on using the fact L? ¢ = I/VH 7 and the observations listed before
Proposition 2.1 reduces to H(}Tg,w = H‘i/;/i Ab qu(w2 %0 so Hg # 0 and from

2, Theorem 3.6] we deduce that Wy € H*(8). Also, we have L7 bz Z)TL TPV PP —
L? TPV PP and on applying the similar arguments we get W(zw) € H*(5). Finally,
it is elementary to see that the conditions W, W(z4) € H*(5) implies that z¢ €
H>(j). 0

For converse, let Lq)( 2) w

Our next result, proof of which is almost along the lines of the proof of Theorem
3.6 of [5], is stated as a lemma without proof.
Lemma 2.3. Let Hd/f and T{ be non-zero operators on H?(3) for ¢, € L>(5).
Then the product TfH(f 15 a weighted Hankel operator if and only zfz,; € H>(3).

Now we discuss the situation under which the product Tg Lg is the compression
of a weighted slant Hankel operator.

82‘ nez be bounded and Li, Tf be non-zero operators for
¢, € L”C(B) Then tﬁe product T[ Lﬁ is a compression of a weighted slant Hankel
operator if and only if ¥ € He (8.

Proof. Suppose first that IE € H>(3). Using the observation that Lg =WH g , the
definition of T(f and observation (1) listed before Proposition 2.1, one has
)L =T)WH] = PPMIWH,

= POW M) o H) = W T;Y (z?)H‘j.
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Since v € H>(8), we have ( 2) € H%( ) (see [2,Corollary 2.10]). Thus, it follows
from Theorem 4.2 of [2] that 71., )H” = H, T’g( 2y This gives
TyLy=WHJT? , = LiT2 , =L}

with £(2) = ¢(2)¢(2?), which proves that Tf L;b is the compression of a weighted
slant. Hankel operator.

For converse, let ¢,1 € L>(3) be such that L # 0 T,:f # 0 and T,,‘;fL; = L;‘;
for some £ € L™®(3). This gives TﬁL‘BVPS = L?VP'B and by arguing as in the
proof of Theorem 2.2, we obtain T’ H gv o= H ‘dm By Lemma 2.3, we conclude that

¥ € H(8) provided H, - # 0. Agam, we have TngTf VP = L?TfVPﬁ, which

implies that TdH W(26) H‘i kZ £)" Now by repeating the arguments made above,
we get ¢ € H® (8) provided HW(;/@’) # 0. But Lf.) # 0, therefore either H’g,(b #0
or Hip(.p # 0. Thus ¥ € H¥(B). 0

Theorem 2.5. Let {%}HGZ be bounded. Then W’Li is compression of a weighted
slant Hankel operator if and only if zd € H™(0).

(o) .
Proof. Supposc that for ¢(z) = > an2z" in L>(3), VVLZ is compression of a
n=—oc

weighted slant Hankel operator. This gives that, for each ¢,7 > 0
(TP WLiej.e;) = (WL T s e:).
This yields that a_,, = 0 for n > 2 and thus z¢ € H*®{(8). For converse, let

z¢ € H>((), then simple computations show that for each n > 0, VVLgen = Lgen.
Hence the result. g

We usc this theorem to conclude the following.

Corollary 2.6. Let {’52" Ynez be bounded. Then LgW’ H2(3) 1S the compression of
a weighted slant H(mkel operator if and only if ¢ € H>(5).

Proof. From observation (1) listed before Proposition 2.1, one has
LiWlges = PUIPWMIW g2
_ 818 7 8
= PPJTWWM,, 2)|H 3 =W Lw( 2
Now result follows using Theorem 2.5 and the fact that z¢(z?) € H™®{3). d

In [8], it is shown that the compression of a slant Hankel operator on H%(T)(Hardy
space) cannot be an isometry. In the same direction we prove the following.

Theorem 2.7. The compression of a weighted slant Hankel operator on H2(5)
cannot be an isometry.

Proof. Tf possible, Lg on H2(B), ¢(2) = Z a, 2", 18 a non-zero compression and
n=—oc
is an isometry. Then for each j > 0, HH¢ el =11ie.
3 2 la_o,—; 282, = 1. (2.8.1)
7
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Equation (2.8.1) used for j = 0,2 gives that ay = 0. Now assume that for a natural
number m, ap = a_2 = aG_4 = -+ = G_3,, = 0. Then equation (2.8.1) for 7 = 0 and
Jj=2(m+ 2) gives

o o
§ 2 §
‘a72n‘ n = 8 ‘(L 25— 2(m+2)| d
n=m+1 2(m=+2) n=0
oc
E 2 2
S ‘a72n| ,‘87', .
n=m-2

This implies that, a_3(,,41y = 0. Therefore, by the principle of mathematical induc-
tion, ag, = 0 for each n < 0. Again, on applying (2.8.1) for j = 1,3, we get a3 = 0.
Now by the same arguments as above we can see that a_s, 1 = 0 for each n < 0.
Consequently, ¢ € 2H°(3) and hence Lg = (. This is a contradiction. Hence the
result. O

Now we discuss the compactness of the compression of a weighted slant Hankel
operator. Consider the semi-dual sequence § = {3, }nez of positive numbers, where
Bo=171r< ﬂfT <lforn>0andr < # <1 for n <0, for some r > 0. Define
scmi-dual sequences v = {7y, }nez and 8" = {8], }nez of positive numbers as

and
OO
for n > 0, where [-] is the greatest integer function. If ¢(z) = 3. a@,2" then we
n=—oc
o ac
define ¢4 (z) = 3 a_,z". We use these notations to obtain a generalization for

n=0
the compression of weighted slant Hankel operator to be Hilbert-Schmidt.

Proposition 2.8. If ¢ € L(5) is such that ¢ € H*(5') then Lg is a Hilbert-
Schmidt operator.

Proof. 1t can be deduced from [4] that H g is a Hilbert-Schmidt operator, which
provides the result. O

Proposition 2.9. Let { }nEZ is bounded. Then L” 5027 is a compact operator if

and only if Hd) s a compact operator.

Proof. Proof follows using the facts L V H and H(; W = LH O

#(2%)"

Theorem 2.1/0; Li on H2() induced by ¢ € L>(3) is a Hilbert-Schmidt operator
if and only if ¢ € H*(B).
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Proof. The proof follows as

Do IEge P =l > aon—jBrexl’?
7=0 j=0 "I k=0

=0
N R 2 52
= = laai?582)
=0 ”63' k=0
~ 18] 32
— ( L k )|a_n‘2
; k=0 Br i

O

In the familiar case of the compression of a slant Hankel operator Ly on H 2,
where T is the unit circle, Ly is Hilbert-Schmidt if and only if ¢4 lies in the weighted
Hardy space H?(#'), where 8/ = (8, )n>0 and 8, = \/[2] + 1 for cach n > 0.

Remark 2.11. Each Lﬁ satisfies 7T f, 1L§ = L“;sz. Hence we have the following.
(1) Lg cannot be invertible.
(2) The kernel of Lg, if non-zero, is always infinite dimensional.

(3) The kernel of the adjoint of L’Z, if non zcro, is also infinitc dimensional.
In the next result we find that no Lg on H?(j3) can be a Fredholm operator.
Theorem 2.12. Lg on H%*(B) can never be a Fredholm operator.

Proof. In the light of Remark 2.11, we prove the result when the kernels of Lg
and its adjoint are zero. Now, on contrary, if we assume that the operator L;

is Fredholm then it gives that Li is invertible, which contradicts the fact (1) of
Remark 2.11. Hence the result follows. ]

3. SPECTRA OF Li

Now we discuss some spectral properties of the compression of weigh-tea slant
Hankel operators. The symbols o(T),cp(T), II(T)}, Hoo(T), w(T) and o.(T) re-
spectively refer to the spectrum, the point spectrum, the approximate point spec-
trum, the set of isolated points of the spectrum of T that are eigenvalues of finite
multiplicity, the Weyl spectrum and the essential spectrum of an operator T on a
ITilbert space. We refer [1] for the details and meaning of the symbols. An operator
T is said to satisfy the Weyl's theorem if o(T) \ w(T") = oo (T) (see [1]). We use
the symbols N(T') and R{T') to denote the kernel and the range of the operator T'
respectively. Symbol dim(N(7)) is used for the dimension of N(7") and T™* stands
for the adjoint of the operator T'.

Proposition 3.1. If Li and Lﬁ on H?(B) are non-zero and their product LgLﬁ 18
the compression of a weighted slant Hankel operator on H?(3) then 0 € U'P(Lg) N

Byx ‘
ap((Ly)")-
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Proof. Suppose LiL‘i = Lg for some £ € L*°(B). If possible UP(L:Z) does not,
contain 0. Now
BB B 1B _ rBmB B BB 18
L¢>(Tz2 =T )Ly =LT2Ly,—L,T L,
_ B Brf _ pBrBm8
= Tz,lL@LJJ — L¢Lsz2

=717, L - L{T) = 0.

As Lg is onc-onc so this implics (sz — Tf_l)Lﬁ =0. If ¢(z) = Z by 2™, then

n=—ocxo
foreachn > 0,0 = (T; — Tf,J )Lf,;e,,,,. This provides that b_,, = 0 for each n > 0
so that L'Zi = 0. This is a contradiction and hence 0 € orp(LZ).

5S4 /
Similarly, if ¢(z) = > a,2" and we assume that 0 is not in Jp(L‘i*) then on
n——0o<C
using the fact (L},)*((T%)* — (T2,)")(L5)* = 0, we have L5 (T, — T ,) = 0. This
yields a contradiction against the fact that Lg is a non-zero operator. Evidentally,
the result follows. O

Corollary 3.2. If the product LyL., of non-zero operators Ly and Ly, on HQ(T) is
the compression of a slant Hankel operator on H*(T) then 0 € op(Lg) (op(Ly).

Proof. If (8,)nez is bounded then dim(N(Hﬁ))z dim(N((Hé:)*)) (see [4]). Also

0 € op(Ly) implies 0 € op(H). Thus 0 € ap(Ly). O

We note that for each f(z) = Z agzl € H*(8), T2 (DOIF = 32 lajal?8; =0
=0 =0

as n — oc. This helps us to show in the next result that 0 € UP(L’E)). However, we
know that for each ¢ € L®(8), 0 € o(L}).

Proposition 3.3. For ¢ € L>=(3), 0 € UC(LQZ).

Proof. If we suppose that UP(L'(;) does not contain 0 then we find operators A and
K with K compact and ALg = I+ K. Since Tf,ng = L’S)Tzz and Ke,, — 0 as

n — oo ( K being compact), s0 we have

1= |[(AL] — K)ez,|| < | ALges | + [ K ezl
1

/32”

1 . .
5 AT L1 + [ Kean|| — 0
n

JAZET2" 1| 1 | Ko

<

as n — oo. This is an absurd. This completes the proof. |

Theorem 3.4. Let (%)nEZ be bounded. Then for ¢ € L>(3), {0} rrp(Li) =
O—P(L,(Z(;r?))‘
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Proof. Suppose that 0 # X € O’p(L ). Then there exists a 0 # f € H?(j3) such that
LLf = \f, that is, \f = WH, f. Tt yields that H} f # 0 and

LY, o (HJf) = PAIPWMS . H] f

— PBIBMPWHE f = HPLP

— POIPMPWHE f = HOLDf

By 3

= H(P(/\f) = )‘(H@f)
Therefore A € U,,(Li( 2). Conversely, let 0 # p € ap(LB) Then we find a g(# 0)
in H?(3) satisfying L;(Zu)g = pg, which gives Wg # 0 and L (VVg) = u(Wgq).
Therefore it € UP(LZ(ZZ)
By using the fact that {0} Uo(AB) = {0} Uo(BA), we can prove the following.

). Since 0 always belongs to o, (L ¢(z2))7 hen(,e the result. [

Theorem 3.5. Let (£ 52 Inez be bounded. Then for ¢ € L=(f O'(Lﬂ) (Lg(ZQI).

Proof. The proof follows as

(L 2)) = o(LE) ) U{0}
o(HSWPP)U {0}
(
(L

o(PPWHS) U {0}
7. 0

a

Now we discuss the Weyl’s theorem for the compression of slant Hankel operators
and get the following result.

Theorem 3.6. Weyl’s theorem holds for each compact L’i on H?(B).

Proof. Suppose that L is compact. Then rr(L’ )= O'p(Lﬁ) U{0} and w(L' ) {0}.
Now we divide the proof in two cases. )
Case (i): Let 0 is not in UP(L/?:). Then HOG(Lg) = O’p(Lg) and hence

oo (L5}

op(Ly)
= o(Lp)\{0}
= o(Lf)\w(L).
Case (ii): Let 0 € op (Las) then 0 is an eigenvalue of L:Z of infinite multiplicity and

hence oo (L) = op(LI)\ {0} = o(L5) \ w(L5).
Hence the result. O
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