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ABSTRACT. Géavruta [Frames for operators, Appl. Compu. Ilarmon. Appl.,
32, (2012), 139-144] introduced and studied K-frames for separable Hilbert
spaces. In this paper we generalize the notion of K-frames to irregular Weyl-
Heisenberg frames and call it ©-irregular Weyl-Heisenberg frames, where © is
a bounded linear operator on L?(R). A characterization ol a system in L?(R)
to be a G-irregular Weyl-Ileisenberg frame is given. Necessary and sufficient
conditions for the existence of ©-irregular Weyl-Heisenberg frames in L2(R)
are obtained.

1. INTRODUCTION

The theory of frames for Hilbert spaces were formally introduced by Duffin and
Schaeffer [3]. A sequence {fx} in a separable complex Hilbert space H with inner
product {,,.) is a frame (or Hilbert frame) for # if there exists positive constants
A and B such that

AIFIP < IHLF fid} Iz < BIAIP, for all f € H. (1.1)

If upper inequality in (1.1) holds, then we say that {fx} is a Bessel sequence for
‘H. The positive constants A and B are called lower and upper frame bounds of the
frame {f,}, respectively. They are not unique. The positive constants

Ay =inf{B: B satisty (1.1)}
By = sup{ 4 : A satisfy (1.1)}
are called optimal or best bounds of the frame. The basic theory of frames can be
found in [1, 13].
Recently, Gavruta in [7] introduced and studied K-frames in Hilbert spaces to
study atomic systems with respect to a bounded linear operator K on Hilbert spaces.
It is observed in [7] that K-frames are more general than standard frames in the
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sense that the lower frame bound only holds for the elements in the range of K,
where K is a bounded linear operator on the underlying Hilbert space. Gavruta in
[7] characterize K-frames in Hilbert spaces by using bounded linear operators. The
theory of K-frames were further studied by Xiao et al. in [12].

Definition 1.1. [7, pp. 142] Let H be a Hilbert space and let K be a bounded
linear operator on H. A sequence {fi} C H is called a K-frame for A if there exist
the constants A, B > 0 such that

ANKFI2 <> TUE o) < Bl FI?, for all feH.

k=1

Casazza in [2] introduced and studied irregular Weyl-Heisenberg frames in LZ(R).
For a survey of irregular Weyl-Heisenberg frames in L#(R) one may refer to [11].
We generalize the notion of K-frames to irregular Gabor frames, and we call it ©-
irregular Weyl-Heisenberg frames (or ©-irregular W-H frames) in L?(R), where © is
a bounded linear operator on L2(IR). Tt is observed that the standard Hilbert frames
and K-frames for Hilbert spaces are particular cases of O-irregular Weyl-Heisenberg
frames (see Definition 3.1).

2. PRELIMINARIES

In this scction, we recall notations and definitions which will be required in this
paper. For 1 < p < oc, let LP(R) denote the Banach space of complex-valued
Lebesgue integrable functions f on R satisfying

T ( /R |f(t)\"r1t> " oo

For p = 2, an inner product on LP(R) is given by
() = [ raar
R

where g denote the complex conjugate of g.

We define the unitary operators T,, Fy; a,b € R on LP(R) by :

Translation < T, f(t) = f(t — a).
Modulation < Fjf(t) = 2™t £(1).

One can easily verify that for ¢ € L*(R), EpThaeg(t) = 2™ g(t — na). If
a,b>0and (g,a,b) = {EmpTnag}mnez is a frame for L2(R), then we call (g,a,b) a
Gabor frame or a Weyl- Heisenberg frame for L2(IR). A nice introduction of Weyl-
Heisenberg frames can be found in Gréchenig [8], Feichtinger and Strohmer [6] and
in the paper of Heil and Walnut [9]. It is very difficult to classify the g, a,b so that
(g,a,b) is a Weyl- Heisenberg frame for L2(R). A deep result of Rieffel in [10] shows
that if (g,a,b) is a Weyl- Heisenberg frame for L?(R), provided ab < 1.

Definition 2.1. [2] Let (%, ) € R? and let ¢ € L*(R). A system {E, T, g(t)}nnez
is called an irreqular Weyl-Heisenberg frame for L2(R), if {Ey,. Ty, 9(t) }mnez is a
frame for L2(R) .

Definition 2.2. A family of real numbers {A\,}ncz has uniform density D =
D({A}) if there is an L > 0 such that for all n € Z, we have [A, — 5| < L.
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Definition 2.3. A family of real numbers {A, },ez is separated if there isa 6 > 0
such that |\, — A,,| > d, whenever m # n and it is relatively separated if it is a
finite union of scparated sequence.

Remark 2.4. Duffin and Schaeffer in [3] showed that if {A,,} is separated and has
uniform density D > (a — b), then the complex exponentials {€>™~t}, o7 form a
frame for L*[a, b].
Theorem 2.5. [4] Let Ty € B(H,, H), Tz € B(Hs, H) be two bounded linear opera-
tors, where H, Hy, Hs are Hilbert spaces. The following statement are equivalent.
(i) R(11) C R(1y), where R(T;) denote the range of T;.
(ii) TiTy < X2ToTy for some A >0
(iti) There exists a bounded linear operator § € B(Hy, H) such that T, = T5S5.

3. MAIN RESULTS
We start with the definition of G-irregular Weyl-Heisenberg frames in L?(IR).

Definition 3.1. Let g € L*(R) and let © be a bounded linear operator on L?(R).

A systen {E;, Ty, 9}m,nez is said to be a O-irregular Weyl-Heisenberg frame (or

O-irregular W-H frame) for L?(R) if there exist finite positive constants 0 < o <
Bo < o0 such that

allOFIF < D Wf B, T ) < BollOF I, forall fEL*®)  (3.1)

mneZ
The positive constants ag and fy are called lower and upper frame bounds of
the ©-irregular Weyl-Heisenberg frame {E,., T}, 0 }monez » respectively . If upper

ineqality in (3.1) is satisfied, then {E, T, ¢}m nez is called the ©-Bessel sequence
for L2(R) with Bessel bound 5.

Remark 3.2. A ©-irrcgular Weyl-Heisenberg frame is a /-frame. More preciscly,
if {E,, Ty, 9} necz is a O-irregular Weyl-Heisenberg frame for a suitable measure
space L?(Q) (for example discrete signal space) with a choice of bound ag, by, then
{Ez.. Ty g} m.nez is a K-frame for the underlying space with bounds ag and by [|©]|%.

Suppose that F = {E,, T, g}mmnecz is a O-irregular W-H frame for L%(R). The
operator T : 12 @ 1? — L2(R) given by
T{Cm,n,}’m,m,é/z - Z c'm,'n,E,T,,,,,, T‘y,,,ga
mneEL
is called the pre-frame operator or synthesis operator associated with F and the
adjoint operator T : L*(R) — [> D ? is given by
T*f: {<f7 E,’r,,,,Ty,,,,g>}'m,,'nEZ
is called the analysis operator associated with F. Composing T" and T, we obtain
the frame operator S : L*(R) — L*(R) given by
Sf=T1TT"f= Z i b, Ly, 9) B, Ty, 9 (3.2)
m,neZ

Since F is a ©-Bessel sequence for L?(R), the series in (3.2) converges uncondition-
ally for all f € L?(R). Note that, in general, frame operator of F is not invertible
on L2(R), but it is invertible on a subspace Range{©) C L*(R).
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Example 3.3. Let x[o,1] denote the characteristic function for the interval 0,1,
and let x,, = m, Yy, = n, where m,n € Z and g = xjo,1). Choose © = T}, a
translation operator. Then, F = {627”:”7’(._5))([(),1](0 — & —n)}nnez 18 a O-irregular
W-H-frame for L?(R) with bounds oy = 8y = 1.

Indeed

Z I(f. e%im(FOX[m] (o —¢&— ni)>|2 = HTg*fHQ

m,nEZ

= || T_¢f|?
= | Tef|?, for all f € L*(R).
Example 3.4. Consider the Gaussian function i = e~#". Choose Ty =My Yp =N

for all m.n € N. Then, {e > E, Ty, htmnez = {Ty, Ev,,t}mnez which is not
a ©-irregular W-H-frame for L?(R).

The following lemma gives a characterization of ©-irregular W-H frame in term
of operator inequality. This is similar to Hilbert frames for Hilbert spaces [13]. For
completeness we include its proof.

Lemma 3.5. Let g € L*(R). Then, {E,, T, g}t mnez is a O-irregular W-H frame
with bounds A,B if and only if AOO* < § < BO*O, where S is frame aperator for
{Ee,, Ty, gbmnez-

Proof. We compute

A1 P < 3 [(F.Ba Ty} 2 < BIOSI2, for all f € L2(R)

mn€EL
& Al f|* < (Sf. f) < B|Of|?, forall f € L*(R)
& AO7F,0%f) < (SF,f) < B(Of,6f), forall fe L*(R)
& A(OOf, ) < (Sf,f) < B(O©"Of, f), forall f € L*(R)
& ABBF <8 < BO'O.

The lemma is proved. O

The following theorem provides necessary and sufficient conditions for a given
system to be O-irregnlar Weyl-Heisenberg frame for L?(IR).

Theorem 3.6. Let g € L2(R) and let © be a bounded linear coercive operator on
L*(R). Then, {E,, Ty, 9}mnez is a O-irregular Weyl-Heisenberg frame for L*(R)
if and only if there exist a bounded linear operator L : 1> 1% — L%(IR) such that

L{eyn) = E,,,T,,.9 ond Range(@) C Range(L), (3.3)
where {em,} is an orthonormal basis for > 2.

Proof. Suppose lirst that {#F,, Ty, ¢}m.mnez is a O-irregular Weyl-Heisenberg [rame

for L2(R). Then, we can found positive constant ag, bg such that

a0 fIP < Y7 1 Br Ty @) < ol ©F|P, for all f € LA(R). (3.4)

m.nE€l
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Define S : L*(R) — /2D {2 by

S(H)= > (f Ea, Ty 0)€mn

mymew

Clearly, & is a well defined bounded lincar operator on L2(IR).
Now

<S*emn: h/> = <€mn: Sh>
= <6'm'.'1, Z <h E{I:m,j—;jn g>emn>

m.neZ
Z <ha Ewm Tyng><e'mﬂm 6mn>
m.n€z
= <hvEmeyn9>
= (E,.. T,.g.h), for all h € L*(R).

Ton

Therefore, S* ey, = B, T, 9.
Now by using (3.4), we have

a0 fI2 < 3 [, S emn)l = ISFI?, for all f € L2(R).
mnel
Thus, ag@0* < §*S , where L = §*. Also, by Theorem 2.5, we have Range(®) C Range(L).
Conversely, assume that E, T,.9 = Ley,, where L € B(I2)1?, L?(R)) and

Range(©) CRange(L). First we find conjugate of L. For this we compute

<L*f7 h’> = <L*f7 Z a'7n71077171>

m,nEL
- Z m‘:f-,Lemn>
m.nel
= Z m(ifvErmTyng>
m,new
= Z (P e ) (s B, Ty 9)
m,neEL
= Z <€7nn7h><faE-’EmTyng>
m.nel
_< > <f,EImTyng>emn,h>, fih e LA(R).
mneL
Therefore
L*f: Z <f~ Em,,,,,ry,,,g>€mnaf ELQ(R)' (35)
mnEL

Now © is coercive, there exists a positive constant ¢ such that

1O = dlIfl, for all f € L*(R). (3.6)
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Therefore, by using (3.3) and (3.6), we have
Z ‘(f,E;,;ngnQHZ = Z I{f. Le’rrm>|2

m,nEL mnEL

Z |(L" f, €mn)|?

mmnez
= |IL*fI?
< ||Z*|IP6 2|0 f||?, for all f € L*(R) (3.7)
By Theorem 2.5 and using fact that Range(®) C Range(L)., we can find a
positive constant A such that A©0* < LL*. Therefore, by (3.6) and lower frame
inequality in (3.4), we have

Alle* fI* < |IL*fIP

= > W Br, Ty 0) P for all f € LA(R). (3:8)

mneZ
By using (3.7) and (3.8), we conclude that {E,, T, g}m.nez is a O-irregular W-H
frame for L(R). O

Remark 3.7. In the forward part of Theorem 3.6, the coercivity of © is not re-
quired.

The following thcorem provides sufficicnt conditions for the cxistence of a ©-
irregular W-H frame for L%(R).

Theorem 3.8. Let © be a bounded linear coercive operator on L?(R). Suppose that
{Zm tmez 5 a set of uniform density in R and g € L*(R) is bounded with support
[—a,a]. Let {yn}tnez be a separated sequence in R with

Aol <> gt —ya)* < B|O * ae. (0<ABER)
nEL

Then, {Ey, T, gt mmez is a O-irregular W-H frame for L*(R).

L

Proof. Since {Zp, tmez 18 a set of uniform density in R, there is an @ > 0 such
that {E,,_}mez is a frame for L?[—a,a]. Let Ay, By be a choice of bounds for
{E. Ymez. Then, for all f € L3(R), we have

> WAEL TP = Y (f1,7Eu)l

m,ne’ mn€Z

<BiY_|IfT,.9l°

nEh

=503 [ 170 gte = ) P

nezr” R

=B /R FOP S lot = ya)[2dt

neL

< B.B|O] /R )R
< BBO]2 £
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< BiBs*|e]|ef%, (3.9)

where § is a positive constant which appear in the coercivity of ©.
For lower frame condition, we compute

AiAllo* I < AsAlle* |2 f11?

WEE / i)t

/|f VS Lot — )Pt

neZ
=AY £ T,,91°
nez

=Y AfT, G

neZ
<D AT T B

n€Z meZ
= Y {fi B, Ty9)7 forall f e LX(R). (3.10)

m,n€Z

By using (3.9) and (3.10), {Es,, Ty, 9 }tmnez is a O-irregular W-H frame for L?(RR)
with bounds A; A and B;B||©||~2. This completes the proof. |

The following theorem gives necessary condition for the existence of @-irregular
W-H frame for L%(R).

Theorem 3.9. Let {E. Ty, g}mnez be a O-irregular W-H frame for L*{R) with
bounds A and B. Then, there exists a positive number c such that {E,  }mez 15 @
frame for L2[0,a]. Purthermore, if Ay, By are bounds of {E,, Ymez, then

. B
Z |g(t - y'n.)‘z < 4_| @”2
A1

ncz

Proof. Let J = {(2,yn) : m,n € Z}. Then, there exist r,w > 0 such that for all
e, d € R (Je,e+r] x [d,d+w]) T # ¢. Therefore, {z,,},nez is a system of uniform
density in R. Thus, there exists o > 0 such that {E,., }nez is a frame for L2[0, a.
Let Aq, B be a choice of bounds for {E,;  }.mez. Then, for any interval I = [b, b+«
and bounded function f € L2(I), we have

f Bu, Ty 0) = / JE BTy gt
I
- [ st
/f g t*’y, eQTrzzmtdt

- [, DL, @
<f yng Ezm>
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Taerefore

DIFTE < D KT8 B )
nez m,nEL
= Z (f Ea:mT.?,'ng>|2
m.neEZ
< Blef|?
< BllelP|lf]*.
Taus
Ay [ FOF S lote - w)Pde < BlOJP [ 110 for all £ € L)
1 neZ 4
Hence ZnEZ |g(t - y”)‘z S AALHG)H2 0

Now we give the construction of a new Hilbert ©-frame for L?(IR) from a given
Hilbert ©-frame for L?(R) with estimate of the excess of a given Hilbert ©-frame

for the underlying space. This can be generalised to ©-irregular W-H frame for
L*(R).

Proposition 3.10. Assume that {f;} is a Hilbert ©-frame for L2(R) with bounds

A, B and that {| fi||} is bounded below by C > 0. Asswme that each gr appear ny

times in the system {f;}. Then, N := supn; < %%HZ, and {gi} is a O-frame with
k

baunds % NDB.

Proof. Given k € Z , the element g, appears ny times in {f;}. Thus
nellgsll* < Haw: £ P < Bl©gul* < B [|gx >
i€z
Taerelore
< Blel® _ Blol?
= lgellr 0

Ble|?
czr -

Hence N =supn; <

S
Now the family of elements consisting of all gz, each of them repeated N-times
contains {f;}. Therefore, for each f € L2(R), we have

NY K fge)lP =0 AF FP
k€L iz
= Allo fII*.
Taerefore, 40" f||2 < 3, o, [{f, gx)[2. Similarly we can show that N B is ©-Bessel
censtant for {gy} . Henee {gi} is a Hilbert ©-frame for L?(R) with bounds %, NB.

The proposition is proved. O

To conclude the paper we show that O-irregular W-H frame for L?(IR) are invari-
ant under a linear homeomorphism, provided both © and its conjugate commutes
with the given homeomorphism. A relation between the best bounds of a given
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O-irregular W-H frame and best bounds of O-irregular W-H frame obtained by the
action of lincar homcomorphism is given in the following thocrem.

Theorem 3.11. Let {z,,} and {y,} be relatively separated sequence, let g € L*(R)
and © € B(L*(R)). Suppose that {E.., T, g}tmmnez is a O-irregular W-H frame for
L?(R) with best bounds Ay and By. If U : L*(R) — L2(R) is a linear homeomor-
phism such that U commutes with both © and %, then {U(E,,, Ty, 9)tmnez 05 a

Lon

O-frame for L2(R) and its best bounds As, Bs satisfy the inequalities
AU 72 < A < AUTHP 5 Bi|U| 2 < By < Ba||UJP°. (3.11)

Proof. Since By is an upper bound for {E,, T, gtmnez. Therefore, for all f € L*(R),

we have

Tm

S WA UEL TP = S (U BT, )

m,neL m,neL
< B)|oU* f||?
< Bi|U*|*[of]*. (3.12)

Also, by using the fact that A4 is one of the choice for lower bound for {E;,, Ty, g }m.nez,
we have
" fII* = lo (U= |
=|lverwnl*
< uFle*w="Hi
Ul? _ s
D R Gy AR
! m.neL
_ H(]”2 U'U—l Uk 2
=5 X (U U, Ty

m.neL

=W S~ g v, 10 (3.13)

Al m.nex
By using (3.12) and (3.13), we obtain
AU FIP < Y7 WA U(Es, Ty )P < BUIUT|IOFIP, for all f € LA(R).

mnel

Hence {U(E,,, Ty, 9) }mnez is a O-irregular W-H frame for L?(R) with one of the

choice of a pair (4 |U|| =2, By|U||?) as its bounds.
Now A; and Bj are best bounds for {U(E,,, Ty, 9)}m.nez, we have

A|U(I7% < A2, B2 < Bi|JU|*. (3.14)

Also {U(E,;, . Ty, 9) tmnez is a O-irregular W-H frame for L2(R) with (Az, Ba)
as one of the choice of bounds. So, for all f € L%(R), we have

A O fIP < > KL U(ER, Ty, 9)* < BaflOFI. (3.15)
mnet
Now
|o*f|I> = |U~'Ue" f|?
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= U Ul
< U@ Uf|?, for all f € L*(R). (3.16)
By using (3.15) and (3.16), we have
A U2l fI1? < A |07 U £

< Y WULUE, T, (= Y (f B, Ty 9))

mneZ mmneZ
< Bo||@U f||?
< B|[U|2O 2, for all £ € L2(R). (3.17)

Now A; and By are the best bounds for {E, T, ¢}mncz. Therefore, by using
(3.17), we have

ApllUT| 7% < Ay, By < By|[U] (3.18)
The inequalities in (3.11) is follows from (3.14) and (3.18). O

Corollary 3.12. IfU : L*(R) — L*(R) is a unitary operator, then the best bounds
of {U(Ey,, Ty, 9) }m.nez coincides with the best bounds of {E.., Ty, 9}m.nez-
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