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Abstract

In this paper our main goal is to establish some comparative growth
relationships concerning relative weak type of entire and meromorphic
functions generated differential polynomials.
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1 Introduction

Let f be an entire function defined in the open complex plane C. The
function M, (r} on |z| = r known as maximum modulus function corresponding
to f is defined as follows:

M (r) = maxz| = r|f (2)].
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When f is meromorphic, My () can not be defined as f is not analytic.
In this situation one may define another function T (r) known as Nevanlinna’s
Characteristic function of f, playing the same role as My (r) in the following
manner:
Te(r)=Ng(r)y+mg(r) .

And given two meromorphic functions f and g the ratio ;Ff ((;; as r —
q

oo is called the growth of f with respect to g in terms of their Nevanlinna’s
Characteristic function.

When f is entire function, the Nevanlinna’s Characteristic function

Ty (r) of f is defined as
Ty (ry=my(r) .

We called the function Ny (r,a) (Ny(r,a)) as counting function of a-
points (distinct a-points) of f. In many occasions Ny (r,00) and N (r,c0) are
denoted by Ny (r) and N (r) respectively. We put

t,a) —nys (0,
Ny (r,a) :/”f( ) tnf< ‘a)dt+ﬁf (0.a)logr
0

where we denote by ny (1, ) (s (r, @) the number of a-points (distinct a-points)
of fin |z] < r and an oo -point is a pole of f and the quantity © (a; f) of a
meromorphic function f is defined as follows

Py i g Y (a5 )
O f)=1 h:ibolclp T
Also we denote by n, (r,a; f) denotes the number of zeros of f —a in |z| <
r,where a zero of multiplicity < p is counted according to its multiplicity and a
zero of multiplicity > p is counted exactly p times.
Accordingly, N, (r,a; f) is defined in terms of ny, (r,q; f) in the usual
way and we set for any a € CU {oc}

5y (a: f) =1~ limsupzln® )

T T (7‘, f) {Cf' [6}} ’

On the other hand, m (7‘, #) is denoted by my (r,a) and we mean

my (r,00) by my (r) , which is called the proximity function of f. We also put

27
1 .
my (r) = 2—/log+ |f (re) |df,  where
. ,
0
logt z = max (log z,0) for all # >0 .

Further for any non-constant meromorphic function f, b = b(z) is
called small with respect to f if Ty, (r) = St (r) where Sy () = o{T (r)} ie,
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r(r)

— 0 as r — oo. Mareover for any non-constant meromorphic function

Ty(r) - o
foowe call M; [f] = A; (£)™ (fO)™ ... (F0)™ where T4, (r) = Sy (r),
to be a differential monomial generated by it where ng;, 71 ,...... ng (B >1)

k
be non-negative integers such that for each j,> n;; > 1 . In this connection
i=0
2 k
the numbers yu;, = > ny; and I'yy, = 3 (i + 1) ny; are called respectively the
' =0 ' i=0

M

degree and weight of M, [f] {[1], [8]} . The expression P [f] = > M, [f] is called
=1
a differential polynomial generated by f. The numbers vp =

1max Y, and
<y<s N
I'p = max 'y, are called respectively the degree and weight of P [f] {[1], [8]}.

1<g<s
Also we call the numbers vp = 1m‘in ~Yar; and k (the order of the highest deriva-
- <J<s -

tive of f ) the lower degree and the order of P [f] respectively. If vp = vp. P[f]
is called a homogeneous differential polynomial. Throughout the paper we con-
sider only the non-constant differential polynomials and we denote by Py [f] a
differential polynomial not containing f i.e. for which ng; =0forj =1,2,.......s.
We consider only those P[f], Py [f] singularities of whose individual terms do
not cancel each other.

The order of a meromorphic function f which is gencrally used in com-
putational purpose is defined in terms of the growth of f with respect to the
exponential function as

pyr = lim supM = lim supM = lim supM .
r—oo 108 Texp 2 (7) rvoo log (L) r—oo log (1) + O(1)

Lahiri and Banerjee 7] introduced the definitions of relative order and
relative lower order of a meromorphic function with respect to an entire function
to avoid comparing growth just with exp z. To compare the relative growth of
two meromorphic functions having same non zero finite relative lower order with
respect to another entire function, Datta and Biswas [3] introduced the notion of
relative weak type of meromorphic functions with respect to an entire function.
Extending these notions of relative weak type as cited in the reference, Datta,
Biswas and Hoque [4] gave the definition of relative weak type of differential
polynomials generated by entire and meromorphic functions.

For entire and meromorphic functions, the notion of their growth indi-
cators such as order, lower order and weak type are classical in complex analysis
and during the past decades, several researchers have already been continuing
their studies in the area of comparative growth properties of composite entire
and meromorphic functions in different directions using the same. But at that
time, the concept of relative order ( respectively relative lower order) and con-
sequently relative weak type of entire and meromorphic functions with respect
to another entire function was mostly unknown to complex analysts and they
are not aware of the technical advantages of using the relative growth indicators
of the functions. Therefore the growth of composite entire and meromorphic
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functions needs to be modified on the basis of their relative order ( respectively
relative lower order) and relative weak type some of which has been explored
in this paper. Actually in this paper we establish some newly developed results
based on the growth properties of relotive weak type of differential polynomials
generated by entire and meromorphic funcrions.

2 Notation and preliminary remarks

We use the standard notations and definitions of the theory of entire and
meromorphic functions which are available in [5] and [9]. Henceforth, we do
not cxplain thosc in details. Now we just recall some definitions which will be
needed in the sequel.

Definition 1 The order p; and lower order Ay of a meromorphic function f
are defined as
log T (r log T (r
ps = lim sup%() and Ay = lim infgif() .
=00 ogr TG ogr

To determine the relative growth of two meromorphic functions having
same non zero finite lower order, Datta and Jha [2] introduced the definition
of weak type of a meromorphic function of finite positive lower order in the
following way:

Definition 2 [2] The weak type 75 of a meromorphic function f of finite pos-
itive lower order Ay is defined by

T
Ty = liminf 1 (1) .
r—00 rAf
Similarly, one can define the growth indicator 7y of a meromorphic function
f of finite positive lower order Ay as
- Iy (r)

T¢ = limsup
’ rooc TN

Given a non-constant entire function f defined in the open complex
plane C, its Nevanlinna’s Characteristic function is strictly increasing and con-
tinuous. Hence there exists its inverse function 7' : (T, (0) , 00) — (0, %0) with
slggch L(s) = 0.

Lahiri and Banerjee [7] introduced the definition of relative order of a
meromorphic function f with respect to an entire function g , denoted by pg (f)
as follows:

pg (f)

inf {p > 0: Ty (r) < T, (r*) for all sufficiently large r}
] log T, " T (r)

= limsup————— .

00 logr
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The definition coincides with the classical one [7] if g (z) = exp z. Simi-
larly, one can define the relative lower order of a meromorphic function f with
respect to an entire g denoted by A, (f) in the following manner :

-1
Ao (f) = hminfw .
r—=o0 logr

In the case of relative order, it therefore seems reasonable to define suitably
the relative weak type of a meromorphic function with respect to an entire func-
tion to determine the relative growth of two meromorphic functions having same
non zero finite relative lower order with respect to an entire function. Datta and
Biswas [3] gave such definitions of relative weak type of a meromorphic function
f with respect to an entire function g which are as follows:

Definition 3 [3] The relative weak type 7, ( f) of a meromorphic function f with
respect to an entire function g with finite positive relative lower order Mg (f) is
defined by

T (r
()= liminfgif() .

T ——
rooc prralf)

g

In o like manner, one can define the growth indicator 7, (f) of a meromor-
phic function [ with respect to an entire function g with finite positive relative
lower order Ay (f) as

Ty Ty (r)
T
7y (f) = lim sup—=

3 Some Examples

In this section we present some examples in connection with definitions
given in the previous section.

Example 1 (Order {lower order)) Given any natural number n, let f(z) =
expz”. Then My (r) = expr™. Therefore putting R = 2 in the inequality
Ty (r) <log My (r) < B2 (R) {cf. [5]} we get that Ty (r) < r™ and Ty (r) >

1 (r\" - f
$(%)". Hence

log T (: logT
py = lim supo(r) =n and A; = lim infw =n

r—oo  logr T—00 ogr

ﬁ (r — o). Therefore
273 1) 2

Further if we take g = exp! z, then Ty (r) ~

P = )\f = .
Example 2 (Weak type) Let f =expz. Then Ty (r) = Z. and py = 1. So

) f )1
ff—l]"nigclf oy and Tf—hTHLbolclp yai
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Further, if we consider g = 1—@)(2%7 then one can easily verify that

2
Ty =Tg=— .
g 9= 5

Example 3 (Relative order ( relative lower order)) Suppose f = g = exp-2 2
then Ty (r) =T, (r) ~ % (r — 00). Now we obtain that
2msr) 2

Ty (r) < logM,(r) <3T,(2r) {cf [5]}
<

ie,Ty(r) expr < 31, (2r) .
Therefore
T Ty (r) 2 log | —ar
(273r)2
log T VT (r
i.e‘,liminfggif() 1
T r—o0 log r
and
-1 Sexpr
T, Ty (r) < 2log =
(2m3r)=
log T T (v
i.e.,limsupggif() 1.
r—r00 logr
Hence

pg () =X (f)=1.

Example 4 (Relative weak type) Suppose f = g = expz. Then Ty (r) =
Tg (’f’) = Texpz (7‘) =ZI and T;le (1") = T;l (ﬂ) =7 .

™ ™

So e
A (f) = liminfw 1
K T logr
Therefore
TY7. (p SN
79 (f) = lim infgif() =1 and 7, (f) = lim supgif() =

=00 'r’\g () =00 7‘>‘y f)

4 Lemmas

In this section we present a lemma which will be needed in the sequel.

Lemma 1 [4] If f be a meromorphic function either of finite order or of non-
zero lower order such that © (co; f) = 3. 6, (a; f) =1ord(co; /)= > d(a; f) =

aF#oc aF#oo
1 and g be an entire function of reqular growth having non zero finite order and
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O(o059) = X dplas9) =1 ord(ooyg) = > dla;g) = 1. Then the relative
a#£o0 a#oo

lower order of Py [f] with respect to Py[g] are same as those of | with respect

to g where Py [f] and Py [g] are homogeneous.

Lemma 2 [/] Let { be a meromorphic function either of finite order or of non-

zero lower order with @ (oc; fy = > 6, (a; f)=1ord(oo; fl= > d(a; f)=1
aFoc az#oo

and g be an enfire function of reqular growth having non zero finite type and

O (05 9) = iz dp(asg) =1 ord(coig) = ;éz 6 (a;9) = 1. Then 7p,1g (Fo [f])

and T pyg) (Fo [f]) ave (M)W times that of f with respect to g i.e., Tp g (Po [f]) =

, VFylel

(3242) o, 1) g (PO ) = (322) ™ 7, (1) when 3, (7 s s

RET)] YPylg]

finite and Py [f] and Py [g] are homogeneous.

5 Theorems
In this section we present the main results of the paper.

Theorem 1 Suppose f be a meromorphic function such that © (x; f) = > 6, (a; f) =
a#oc
1 ord(oosf) = > 8(a;f) = 1. Also let h be an entire function of reg-

aFtoc
ular growth having non zero finite type with © (cosh) = > d,(a;h) = 1
aFoc
or 6 (oo;h) = > d(aih) = 1 and g be any entire function such that 0 <
aFoc

Th(fog) LTh(fog) <co, 0 <7, (f) < Tu(f) < oo and Ap(fog) = (f)
Then

T Ty,
Th (io g) S ].inl iIlf_ 7}71, fog (T)
(”'Po[ﬂ)f"b a7 Trm T (r)
YPy k] t
7 (fog)

- T
()™ )
T, 'To, -
< limsup _’i foy (r) < Th (J;o g) -
r—00 71])n [}L]TPD[f] ('F) <'\7'Po[f] ) o . (f)

Vrolhl

Proof. From the definition of 7, (f}, 75, (f © g) and in view of Lemma 1, Lemma
2 we have for arbitrary positive ¢ and for all sufficiently large values of r that

T Tog (1) 2 (7 (0 9) =€) ()7 ()

and
_ (— Ao a0
ToinTrr) (r) < (T (Polf]) + ) () o TolD
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1 )
o TopTraln (r)

< ((WPO[f]) h T (f) +E) (:,,,,)Ah,(f:] ) (2)
YPy[R]

Now from (1), (2) and in view of the condition Ay (fog) = A\, (f), it follows
for all large values of r that

ﬂ:leofl (r) S (Th (fog) —¢)
T4 T - e\ P ’
o Lol (7) ((z;m "o (f) +5)

As g (> 0) is arbitrary , we obtain from above that

lim inf T}?]Tfog (T) > ( Og) (3)
oo Tt Tryi (1) (wu n) = ( f)

Yrglh

Again for a sequence of values of r tending to infinity,

T g (1) < (71 (f 0 g) + ) (1)o7 (4)

and for all sufficiently large values of r,

T Tenis) (1) 2 (T (Polf]) — ) (r) ot FolD

i.€., T;[}[h]TPO[.ﬂ (T)

g G

Combining (4) and (5) and in view of the condition Ay (f o g) = Ap (f), we get
for a sequence of values of r tending to infinity that

0, Trog(r) . (mlfog)+e)
7548 T )~ . ’
Py b Folfl (r) ((;/iguo m(f) — C)

Since ¢ (> 0) is arbitrary, it follows from above that

T Ty () mllog)
700 T];()[}J}TPU[ ]( ) B (M)p_}l -~ Th (f)

YPy[h]

Also for a sequence of values of r tending to infinity that

ey Teais (1) < (T (POl 1) + €) ()N roraFoliD
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iees Tp by Try (1)

)T )
((mm) h<f>+><> . (7)

Now from (1), (7) and in view of the condition A, (f o g) = An (f). we obtain
for a sequence of values of r tending to infinity that

LTy (1) (mlfog)—2)

=1 =z T :

TP[h]TP[J"] (r) ((’YPo[f] ) o () + 5)

YPg k]

As e (> 0) is arbitrary, we get from above that

T T, .
lim sup—2 oo (1) > L (flog) : (8)

r—00 TPO[h]TPO[f] {’I“) - (M)E *Th (f)

RE

Also for all sufficiently large values of r,
Ty Tyog (r) < (Fa (f 0 g) ) ()7 (9)

As the condition Ay (f ¢ g) = Ap (f) holds, it follows from (5) and (9) for all
sufficiently large values of r that

T}_leOy (1)

3

-1 =
TPU [A] Leypy1 (r)

(Thifog)+e) .
((22)™ 7))

Since ¢ (> 0) is arbitrary, we obtain that

<

T, T, h
lim sup—&—F° () < T (flog) : (10)

r—o0 TPOI[h]TPO[f] {r) B ('YPU[)“] ) Pn T (f)

R

Thus the theorem follows from (3),(6),(8) and (10).
The following theorem can be proved in the line of Theorem 1 and so
its proof is omitted.

Theorem 2 Suppose g be an entire function either of finite order or of non-zero
lower order such that © (c0;9) = Y §,(a;9} =1 ord(oo;g9) = > 6{a;g) =1.
a#co az£oo
Also let h be an entire function of regular growth having non zero finite type
with © (oo;h) = > d,(aih) =1 ord(coih) = > 6(a;h) =1 and f be any
a#£oo a7oo

meromorphic function such that 0 < 7, (fog) <7, (fog) <oc, 0 < 1, (g) <
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Tr(g) < oo and A, (fog) = A (g). Then

T4
Th (io g) S hln lnf 7}?,1 fog (T)
(’YP[)[.q] ) L (g) r=>20 Tp i Palal (r)
VP[] >
7 (fog)

= T
’Y 0Llg
(vi—ihi)h "Th(9)
TV, 7
< lim sup—2= sog (1) < AU

=00 T71 T al T o * e '
—oo T i Tryl) (7) (gﬁ.)ﬂh )

Theorem 3 Suppose f be a meromorphic function such that © (oc; f) = Y 6, (a; f) =

aF£oo
lord(oo; f) = >, d(a;f) =1. Also let h be an entire function of reqular growth
aFoo
having non zero finite type with © (oo;hy = > d,(a;h) = 1 or §(oo;h) =

aFoo
>>d0(azh) = 1 and g be any entire function such that 0 < T, (fog) < oo,
aFtoc
0<7h(f)<oo and Ap(fog)=An(f). Then
T, ' Tro T T, ' Tro
lim inf —hi sreg (7) < Th (J;O 9 < limsupi_"l’ ‘_f s (1) .
70 Tp i Troin (7) (Vpom ) E T Toim et (1)

Yig(n)

Proof. From the definition of 7 p,[;,) (Fo[f]) and in view of Lemma 1 and Lemma
2, we get for a sequence of values of r tending to infinity that

Tr i Troin) (1) = (e (Polf]) — &) () rom oD

2'.6., T};(_]l[h]TPO If] (’T’)

((”_’Pﬂ-ﬂ) () - €> (" (an;
YPy[h]

Now from (9), (11) and in view of the condition Ay, (f o g) = Ay (f)}, it follows
for a sequence of values of r tending to infinity that
Ty ' Treg(r) __ (Tn(fog)+e)
—1 > T .
TPn [h]TPu[f] (r) (('YPU[J"] ) L, o - C>

VPg[h]

As £ (> 0) is arbitrary, we obtain that

T o (r 7
lim inf —2 oy () < Th(flOg)

. —1 1
oo T Teots) (7) (W’nm)ph T (f)

. (12)

VPy (k]
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Again for a sequence of values of r tending to infinity ,

Ty MTyey (r) > (7a (f o g) =) (M) (13)
So combining (2) and (13) and in view of the condition Ay, (f o g) = An (f), we
get for a sequence of values of r tending to infinity that

T ' Tyeg () (Tu(fog) —¢)

1

—1 ; = 1 .
Trin Trols) (1) ((”wnm ) TR () + 5)

TPy[h]

Since & (> 0) is arbitrary, it follows that

T, Tro Th

lim sup _’71 rog () > kil (flog) . (14)
00 TPQ[]I TP[) (7‘) (')Pu[f ) T (f)

YPylh]

Thus the theorem follows from (12) and (14).
The following theorem can be carried out in the line of Theorem 3 and
therefore we omit its proof.

Theorem 4 Suppose g be an entire function either of finite order or of non-zero
lower order such that © (c0; g) Z dpla;9) =1ord(oojg)= > 0(a;9) =1
aFoo
Also let h be an entire function of regular growth having non zero finite type
with © (cojh) = > §p(ash) =1 or §(oosh) = > d(a;h) =1 and f be any
aFoc a#oc
meromorphic function such that 0 < Tp(fog) < oo, 0 < Th(g) < oo and
M (fog) =M (g). Then

T_lT 04 T ) T—IT o
lim inf _h Jog (T) < KL (io g) < lim SupM X
7 T Trula) (1) ()™ 7 (g) T eyt Teols) (7)
YPy(h]

The following theorem is a natural consequence of Theorem 1 and The-
orem 3:

Theorem 5 Suppose f be a meromorphic function such that © (oc; f) = > 8, (a;

1 ord(oo;f) = > 6(asf) = 1. Also let h be an entire function bf reg-
a#oo
ular growth having non zero finite type with © (cojh) = > d,(a;h) = 1
aFtoc
or d(oosh) = 3 d(a;h) = 1 and g be any entire function such that 0 <
aFoc

Th(fog) <Tu(fog) <oc, 0 <7, (f) <Th(f) <ooand Au(fog)=Mu(f).
Then

—1 _
hn]lnf%og{r) <min{A.Th {fog),A Th_(fog)}
=00 Tp i Tr s (1) 7 (f) 71 (f)

w(feg) , Talfog) } T}, Tyoq (r)
< A. A- < li —n =
= max { Th (f) ’ 7h (f) 111”2&;ng7 [}L]TPo[f] (7)
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1
- .
Trylf] \ Ph
()
The proof is omitted.
Analogously onc may statc the following theorem without its proof.

where A =

Theorem 6 Suppose g be an entire function of finite order or of non-zero lower
order and © (oc;g) = > du(a;9) = 1 or d(oo39) = >, d{a;g) = 1. Also
a# aFoo

let h be an entire function of regular growth having non zero finite type with

O(ocih) = > d,(a;h) =1 ord(oco;h) = > d(ash) =1 and f be any mero-
aoo a#too

morphic function such that 0 < 14 (fog) < Tn(foyg) < oo, 0 < T (g) <

Th{g) < o0 and Ay, (fog) =X (g). Then

T Trog () { p.mog) o Th(fo g)}
ree TI;ol[lL]TPO[y] (7) h Th (g) ’ Fh (g)

= T*l.T o
< max {D Twlfog) .D- Th_(f °9) } < lim supM
Th (g) Th (g) r—oc TP“[h]TP()[g] (’I)
where D = —L1 |
Yholal N PR
(G}
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