Some Results on the Product of distributions

Gopi Ahuja & Alka Singh

Feroze Gandhi College, Raibarely email: alkasngh786@gmail.com; gopiahuja@rocketmail.com

Abstract

In this paper, we propose some generalized results on the product of distributions $x_{+}^{\lambda} \ln^{p} x_{+}$, $x_{+}^{\mu} \ln^{q} x_{+}$, $x_{+}^{\nu} \ln^{r} x_{+}$, $x_{-}^{\lambda} \ln^{p} x_{-}$, $x_{-}^{\mu} \ln^{q} x_{-}$, $x_{-}^{\nu} \ln^{r} x_{-}$ and sgn $x |x|^{\lambda} \ln^{p} x_{+}$ given by Fisher, B.

Subject class [2010]: 46E; 46F

Keywords: Inner Product, Dirac Delta Function, Neutrix product.

1 Introduction

Let the space \mathcal{D} be the space of infinitely differentiable functions with compact support in [a,b] and \mathcal{D}' be the space of distributions defined on \mathcal{D} . Locally summable functions $x_{+}^{\lambda} \ln^{p} x_{+}$ and $x_{-}^{\lambda} \ln^{p} x_{-}$ for $\lambda \geq -1$ and p=0,1,2,... defined by Fisher are

(1.1)
$$x_{+}^{\lambda} \ln^{p} x_{+} = \begin{cases} x^{\lambda} \ln^{p} x & x > 0 \\ 0 & x < 0 \end{cases}$$

(1.2)
$$x_{-}^{\lambda} \ln^{p} x_{-} = \begin{cases} |x|^{\lambda} \ln^{p} |x| & x > 0 \\ 0 & x < 0 \end{cases}$$

Derivatives of x_{+}^{λ} and x_{-}^{λ} , for $\lambda < -1$ and $\lambda \neq -2, -3, \ldots$, are given by

(1.3)
$$(x_{+}^{\lambda})' = \lambda x_{+}^{\lambda-1}$$
(1.4)
$$(x_{-}^{\lambda})' = -\lambda x_{-}^{\lambda-1}$$

$$(1.4) (x_{-}^{\lambda})' = -\lambda \ x_{-}^{\lambda - 1}$$

If r is a positive integer and $-r-1 < \lambda < -r$ then for arbitrary φ in \mathcal{D} , we can define the inner product as follows

(1.5)
$$\langle x_+^{\lambda}, \varphi(x) \rangle = \int_0^\infty x^{\lambda} \left[\varphi(x) - \sum_{i=0}^{r-1} \frac{\varphi^{(i)}(0)}{i!} x^i \right] dx$$

(1.6)
$$\langle x_{-}^{\lambda}, \varphi(x) \rangle = \int_{-\infty}^{0} |x|^{\lambda} \left[\varphi(x) - \sum_{i=0}^{r-1} \frac{\varphi^{(i)}(0)}{i!} x^{i} \right] dx$$

For p = 0, 1, ... the distributions $x_+^{\lambda} \ln^p x_+$ and $x_-^{\lambda} \ln^p x_-$ are defined as,

(1.7)
$$\langle x_{+}^{\lambda} \ln^{p} x_{+}, \varphi(x) \rangle = \frac{\partial^{p}}{\partial \lambda^{p}} \langle x_{+}^{\lambda}, \varphi(x) \rangle$$

$$= \int_{0}^{\infty} x^{\lambda} \ln^{p} x \left[\varphi(x) - \sum_{i=0}^{r-1} \frac{\varphi^{(i)}(0)}{i!} x^{i} \right] dx$$

$$(1.8) \qquad \langle x_{-}^{\lambda} \ln^{p} x_{-}, \varphi(x) \rangle = \int_{-\infty}^{0} |x|^{\lambda} \ln^{p}(|x|) \left[\varphi(x) - \sum_{i=0}^{r-1} \frac{\varphi^{(i)}(0)}{i!} x^{i} \right] dx$$

If φ is a function whose support is contained in the interval [-1, +1]. Then

$$(1.9)\langle x_{+}^{\lambda} \ln^{p} x_{+}, \varphi(x) \rangle = \int_{0}^{1} x^{\lambda} \ln^{p}(x) \left[\psi(x) - \sum_{i=0}^{r-1} \frac{\varphi^{(i)}(0)}{i!} x^{i} \right] dx + \sum_{i=0}^{r-1} \frac{\varphi^{(i)}(0)}{i!(\lambda + i + 1)} dx$$

Definition 1.1. Let f be the distribution in \mathcal{D}' and let g be an infinitely differentiable function. Then the product f, g is defined by

$$\langle f.g, \varphi \rangle = \langle f, g\varphi \rangle$$

for all test function φ with compact support contained in (a,b).

Definition 1.2. Let f and g be distributions in \mathcal{D}' . Let f is the k^{th} derivative of a locally summable function F in $L^p(a,b)$ and $g^{(k)}$ is locally summable function in $L^q(a,b)$ with 1/p+1/q=1. Then the product f.g(=g.f) of f and g is defined on the interval (a,b) and is given by

$$f.g = \sum_{i=0}^{k} {k \choose i=0} (-1)^{i} [Fg^{(i)}]^{(k-i)}$$

Now let $\rho(x)$ be a function in \mathcal{D} having the following properties,

- (i) $\rho(x) = 0 \text{ for } |x| > 1$
- (ii) $\rho(x) \geq 0$
- (iii) $\rho(x) = \rho(-x)$
- (iv) $\int_{-1}^{+1} \rho(x) dx = 1$

Putting $\delta_n(x) = n\rho(nx)$ for $n = 1, 2, \ldots$ It follows that $\langle \delta_n(x) \rangle$ is regular sequences of infinitely differentiable functions converging to the dirac delta function $\delta(x)$. If f is arbitrary distribution in \mathcal{D}' , we define for $n = 1, 2, \ldots$

$$f_n(x) = (f * \delta_n)(x) = \langle f(t), \delta_n(x-t) \rangle$$

It follows that $f_n(x)$ is regular sequence of infinitely differentiable functions converging to the distribution f(x).

Definition 1.3. Let f and g be distributions in \mathcal{D}' and let $g_n(x) = (g * \delta_n)(x)$. The non commutative product f.g of f and g exists and is equal to the distribution h on the interval (a,b), if

$$\lim_{n \to \infty} \langle f(x)g_n(x), \varphi(x) \rangle = \langle h(x), \varphi(x) \rangle$$

for all function φ in $\mathcal{D}[a,b]$.

We next, provide the generalization of definitions (1.1), (1.2) and (1.3) as given in [3].

Definition 1.4. Let $g_n(x) = (g * \delta_n)(x)$. The non commutative neutrix product $f \circ g$ of f and g exists and is equal to the distribution h in the interval (a, b) if

$$N - \lim_{n \to \infty} \langle f(x)g_n(x), \varphi(x) \rangle = \langle h(x), \varphi(x) \rangle \quad \forall \quad \varphi \in \mathcal{D}$$

where N is the neutrix, for more details we refer to [7] with domain natural numbers and range real numbers with negligible functions $n^{\lambda} \ln^{r-1} n$, $\ln^r n$; $\lambda > 0, r = 1, 2, ...$ and all functions which converge to zero in the normal sense as $n \to \infty$. It is obvious that if the product f.g exists, then the neutrix product f.g exists and f.g = f.g.

The following theorem is stated in [5].

Theorem 1.1. Let f and g be distributions in \mathcal{D}' and suppose that the non commutative neutrix products f og and f og'(orf'og) exists then the product f og'(orf'og) exists and (f og)' = f' og+ f og'.

The next theorem is proved in [5]

Theorem 1.2. The non commutative neutrix products of $x_+^{\lambda} \ln^p x_+$ and $x_+^{\mu} \ln^q x_+$ and of $x_-^{\lambda} \ln^p x_-$ and $x_-^{\mu} \ln^q x_-$ exist and

$$(1.10) (x_+^{\lambda} \ln^p x_+) o(x_+^{\mu} \ln^q x_+) = x_+^{\lambda + \mu} \ln^{p+q} x_+$$

$$(1.11) (x_{-}^{\lambda} \ln^{p} x_{-}) o(x_{-}^{\mu} \ln^{q} x_{-}) = x_{-}^{\lambda + \mu} \ln^{p+q} x_{-}$$

for $\lambda + \mu < -1$ and $\lambda, \mu, \lambda + \mu \neq -1, -2, \dots$ and $p, q = 0, 1, 2, \dots$

2 Product of distributions of the type $x_+^{\lambda} \ln^p x_+$, $x_-^{\lambda} \ln^p x_-$, $\operatorname{sgn} x |x|^{\lambda} \ln^p x_+$ and $\operatorname{sgn} x |x|^{\lambda} \ln^p x_-$

In this section we provide the neutrix product of three distributions $x_+^{\lambda} \ln^p x_+$, $x_+^{\mu} \ln^q x_+$ and $x_+^{\nu} \ln^r x_+$. In the same way we can get the product of distributions $x_-^{\lambda} \ln^p x_-$, $x_-^{\mu} \ln^q x_-$ and $x_-^{\nu} \ln^r x_-$.

Theorem 2.1. The noncommutative neutrix products of $x_+^{\lambda} \ln^p x_+$, $x_+^{\mu} \ln^q x_+$, and $x_+^{\nu} \ln^r x_+$ and of $x_-^{\lambda} \ln^p x_-$, $x_-^{\mu} \ln^q x_-$ and $x_-^{\nu} \ln^r x_-$ exist and

$$(2.1) (x_+^{\lambda} \ln^p x_+) o(x_+^{\mu} \ln^q x_+) o(x_+^{\nu} \ln^r x_+) = x_+^{\lambda + \mu + \nu} \ln^{p+q+r} x_+$$

$$(2.2) (x_{-}^{\lambda} \ln^{p} x_{-}) o(x_{-}^{\mu} \ln^{q} x_{-}) o(x_{-}^{\nu} \ln^{r} x_{-}) = x_{-}^{\lambda + \mu + \nu} \ln^{p+q+r} x_{-}$$

for $\lambda, \lambda + \mu, \lambda + \mu + \nu < -1$ and $\lambda, \mu, \nu, \lambda + \mu, \lambda + \mu + \nu \neq -1, -2, \dots$ and $p, q, r = 0, 1, 2, \dots$

Proof. We will first prove the following results

$$(2.3) (x_+^{\lambda})o(x_+^{\mu})o(x_+^{\nu}) = x_+^{\lambda+\mu+\nu}$$

$$(2.4) (x_{-}^{\lambda})o(x_{-}^{\mu})o(x_{-}^{\nu}) = x_{-}^{\lambda+\mu+\nu}$$

Fisher has proved that

$$(2.5) (x_{+}^{\lambda})o(x_{+}^{\mu}) = x_{+}^{\lambda+\mu}$$

$$(2.6) (x_{-}^{\lambda})o(x_{-}^{\mu}) = x_{-}^{\lambda+\mu}$$

Using equation (2.5) and equation (2.6) in equation (2.3) and equation (2.4), we get

$$(2.7) (x_{+}^{\lambda+\mu})o(x_{+}^{\nu}) = x_{+}^{\lambda+\mu+\nu}$$

$$(2.8) (x_{-}^{\lambda+\mu})o(x_{-}^{\nu}) = x_{-}^{\lambda+\mu+\nu}$$

So our aim is to prove above two equations. For proving equation (2.7) we are taking here $-s-1 < \nu < -s$, for some nonnegative integer s; $\lambda, \mu > -1, \lambda + \mu > -1$ and $\lambda + \mu + \nu \neq -1, -2, \ldots$ Let k be the smallest positive integer greater than $-\lambda - \mu - \nu$. We know that

$$(2.9) x_{+}^{\nu} * \delta_{n}(x) = \int_{-1/n}^{1/n} (x-t)^{\nu} \delta_{n}(t) dt$$
$$= \int_{-1/n}^{x} (x-t)^{\nu} \delta_{n}(t) dt + \int_{x}^{1/n} (x-t)^{\nu} \delta_{n}(t) dt$$

Using

(2.10)
$$(x-t)^{\nu}_{+} = \begin{cases} (x-t)^{\nu} & \text{for } x > t \\ 0 & \text{for } x < t \end{cases}$$

second integral of equation (2.9) vanishes and further using the property of $\delta_n(t)$ we get

$$x_{+}^{\nu} * \delta_{n}(x) = \int_{-1/n}^{x} (x-t)^{\nu} \delta_{n}(t) dt$$

$$= \frac{1}{\nu+1} \left[\delta_{n}(t)(x-t)^{\nu+1} \right]_{-1/n}^{x} + \frac{1}{\nu+1} \int_{-1/n}^{x} (x-t)^{\nu+1} \delta_{n}^{(1)}(t) dt$$

$$= \frac{1}{(\nu+1)(\nu+2)} \int_{-1/n}^{x} (x-t)^{\nu+2} \delta_{n}^{(2)}(t) dt$$

$$= \frac{1}{(\nu+1)(\nu+2)(\nu+3)} \int_{-1/n}^{x} (x-t)^{\nu+3} \delta_{n}^{(3)}(t) dt$$

$$= \frac{1}{(\nu+1)(\nu+2)(\nu+3) \dots (\nu+s)} \int_{-1/n}^{x} (x-t)^{\nu+s} \delta_{n}^{(s)} dt$$

$$(2.11) \qquad = \frac{\Gamma(\nu+1)}{\Gamma(\nu+1)} \left[\frac{1}{(\nu+1)(\nu+2)(\nu+3)\dots(\nu+s)} \right] x_{+}^{\nu+s} * \delta_{n}^{(s)}$$

(2.12)
$$= \frac{\Gamma(\nu+1)}{\Gamma(\nu+s+1)} x_+^{\nu+s} * \delta_n^{(s)}$$

where Γ denotes the gamma function.

We have

$$\int_{-1}^{+1} x^{i} x_{+}^{\lambda+\mu}(x_{+}^{\nu})_{n} dx = \int_{0}^{1} x^{i+\lambda+\mu}(x_{+}^{\nu})_{n} dx
= \int_{0}^{1/n} x^{i+\lambda+\mu}(x_{+}^{\nu})_{n} dx + \int_{1/n}^{1} x^{i+\lambda+\mu}(x_{+}^{\nu})_{n} dx
= \frac{\Gamma(\nu+1)}{\Gamma(\nu+s+1)} \int_{0}^{1/n} x^{\lambda+\mu+i} \int_{-1/n}^{x} (x-t)^{\nu+s} \delta_{n}^{(s)}(t) dt dx
+ \int_{1/n}^{1} x^{\lambda+\mu+i} \int_{-1/n}^{1/n} (x-t)^{\nu} \delta_{n}(t) dt dx
= I_{1} + I_{2}$$
(2.13)

On putting nt = v and nx = u and using $\delta_n(t) = n\rho(nt)$ in I_1 , we have

$$I_{1} = \frac{\Gamma(\nu+1)}{\Gamma(\nu+s+1)} \int_{0}^{1} \frac{u^{\lambda+\mu+i}}{n^{\lambda+\mu+i}} \int_{-1}^{u} \frac{(u-v)^{\nu+s}}{n^{\nu+s}} n^{s+1} \rho^{(s)}(v) \frac{dv}{n} \frac{du}{n}$$
$$= \frac{\Gamma(\nu+1)}{\Gamma(\nu+s+1)} \int_{0}^{1} \frac{u^{\lambda+\mu+i}}{n^{\lambda+\mu+i+\nu+1}} \int_{-1}^{u} (u-v)^{\nu+s} \rho^{(s)}(v) dv du$$

$$I_{1} = n^{-\lambda - \mu - \nu - i - 1} \frac{\Gamma(\nu + 1)}{\Gamma(\nu + s + 1)} \int_{0}^{1} u^{\lambda + \mu + i} \int_{-1}^{u} (u - v)^{\nu + s} \rho^{(s)}(v) dv du$$
(2.14)

Hence,

(2.15)
$$N - \lim_{n \to \infty} I_1 = 0 \quad \text{for } i = 0, 1, 2, \dots k - 1$$

On changing the order of integration in I_2

$$I_{2} = \int_{-1/n}^{1/n} \delta_{n}(t) \int_{1/n}^{1} x^{\lambda+\mu+i} (x-t)^{\nu} dx dt$$
for $nx = u$ and $nt = v$

$$= \int_{-1}^{+1} \rho(v) \int_{1}^{n} n^{-i-\lambda-\mu-\nu-1} u^{\lambda+\mu+i} [u-v]^{\nu} du dv$$

$$= n^{-i-\lambda-\mu-\nu-1} \int_{-1}^{1} \rho(v) \int_{1}^{n} u^{\lambda+\mu+\nu+i} \left[1 - \frac{v}{u}\right]^{\nu} du dv$$

$$= n^{-i-\lambda-\mu-\nu-1} \int_{-1}^{1} \rho(v) \int_{1}^{n} u^{\lambda+\mu+\nu+i} \left[1 - \frac{v}{u} + \dots\right] du dv$$

$$N - \lim_{n \to \infty} I_2 = (i + \lambda + \mu + \nu + 1)^{-1} \int_{-1}^{+1} \rho(v) dv$$

$$= (i + \lambda + \mu + \nu + 1)^{-1}$$
(2.16)

for i = 0, 1, 2, ..., k-1 and using property (iv) of the function $\rho(x)$. By equation(2.13), equation(2.15) and equation(2.16)

(2.17)
$$N - \lim_{n \to \infty} \int_{-1}^{+1} x^i x_+^{\lambda + \mu} (x_+^{\nu})_n dx = (i + \lambda + \mu + \nu + 1)^{-1}$$

for $i = 0, 1, 2, \dots k - 1$

When we take i = k in equ.(2.14), we get

$$I_{1} = n^{-k-\lambda-\mu-\nu} \frac{\Gamma(\nu+1)}{\Gamma(\nu+s+1)} \int_{0}^{1} u^{k+\lambda+\mu} \int_{-1}^{u} (u-v)^{\nu+s} \rho^{(s)}(v) dv du$$

$$= \int_{0}^{1/n} x^{k+\lambda+\mu} (x_{+}^{\nu})_{n} dx$$

$$(2.18)$$

If ψ is an arbitrary continuous function then

(2.19)
$$\lim_{n \to \infty} \int_0^{1/n} x^{k+\lambda+\mu} (x_+^{\nu})_n \psi(x) dx = 0$$

since $k + \lambda + \mu + \nu > 0$

Next if x > 1/n, we have

$$(x_{+}^{\nu})_{n} = \int_{-1/n}^{1/n} (x-t)^{\nu} \delta_{n}(t) dt$$

= $\int_{-1}^{1} (x-u/n)^{\nu} \rho(u) du$ using $t = u/n$

$$(x_{+}^{\nu})_{n} = x^{\nu} \int_{-1}^{1} \left[1 - \frac{u}{nx} \right]^{\nu} \rho(u) dt$$

$$= x^{\nu} \int_{-1}^{1} \left[1 - \frac{\nu u}{nx} + \dots \right] \rho(u) du$$

$$= x^{\nu} + o(x^{\nu - 1}n^{-1})$$
(2.20)

(2.21)
$$\lim_{n \to \infty} \int_{1/n}^{1} x^{k+\lambda+\mu} (x_{+}^{\nu})_{n} \psi(x) dx = \int_{0}^{1} x^{k+\lambda+\mu+\nu} \psi(x) dx$$

Now let φ be an arbitrary function in $\mathcal{D}[-1,1]$. By the mean value theorem we have

(2.22)
$$\varphi(x) = \sum_{i=0}^{k-1} \frac{\varphi^{i}(0)}{i!} x^{i} + \frac{\varphi^{k}(\xi x)}{k!} x^{k} \quad \text{where } 0 < \xi < 1$$

then

$$\left\langle x_{+}^{\lambda+\mu}(x_{+}^{\nu})_{n}, \varphi(x) \right\rangle = \int_{-\infty}^{\infty} x_{+}^{\lambda+\mu}(x_{+}^{\nu})_{n} \varphi(x) dx$$

$$= \sum_{i=0}^{k-1} \frac{\varphi^{i}(0)}{i!} \int_{-1}^{+1} x^{i} x_{+}^{\lambda+\mu}(x_{+}^{\nu})_{n} dx + \int_{0}^{1/n} \frac{x^{k+\lambda+\mu}(x_{+}^{\nu})_{n} \varphi^{k}(\xi x)}{k!} dx$$

$$+ \int_{1/n}^{1} \frac{x^{k+\lambda+\mu}(x_{+}^{\nu})_{n} \varphi^{k}(\xi x)}{k!} dx$$

Using equation (2.16), equation (2.19) and equation (2.21)

$$N = \lim_{n \to \infty} \left\langle x_{+}^{\lambda + \mu}(x_{+}^{\nu})_{n}, \varphi(x) \right\rangle$$

$$= \sum_{i=0}^{k-1} \frac{\psi^{i}(0)}{(i)!} \int_{0}^{1} x^{\lambda + \mu + \nu + i} dx + \int_{0}^{1} x^{\lambda + \mu + \nu} \frac{x^{k} \varphi^{k}(\xi x)}{k!} dx$$

$$= \int_{0}^{1} x^{\lambda + \mu + \nu} \left[\varphi(x) - \sum_{i=0}^{k-1} \frac{\varphi^{i}(0)}{i!} x^{i} \right] dx + \sum_{i=0}^{k-1} \frac{\varphi^{(i)}(0)}{i!(\lambda + \mu + \nu + i + 1)}$$

$$= \left\langle x_{+}^{\lambda + \mu + \nu}, \varphi(x) \right\rangle$$

$$(2.23)$$

This implies the result

$$(2.24) (x_{\perp}^{\lambda+\mu}) o(x_{\perp}^{\nu}) = x_{\perp}^{\lambda+\mu+\nu}$$

Thus equation holds on the interval [-1,1] for $\lambda > -1$, $\mu > -1$ and $\nu < 0$ and $\nu, \lambda + \mu, \lambda + \mu + \nu \neq -1, -2, \ldots$ Now differentiating above equation partially with respect to λ , p times we get

$$(2.25) (x_{+}^{\lambda} \ln^{p} x_{+}) o (x_{+}^{\mu}) o (x_{+}^{\nu}) = x_{+}^{\lambda + \mu + \nu} \ln^{p} x_{+}$$

Differentiating partially with respect to μ , q times, we get

$$(2.26) (x_+^{\lambda} \ln^p x_+) o(x_+^{\mu} \ln^q x_+) o(x_+)^{\nu} = x_+^{\lambda + \mu + \nu} \ln^{p+q} x_+$$

Again differentiating partially with respect to ν , r times, we have

(2.27)
$$(x_{+}^{\lambda} \ln^{p} x_{+}) o (x_{+}^{\mu} \ln^{q} x_{+}) o (x_{+}^{\nu} \ln^{r} x_{+})$$
$$= x_{+}^{\lambda + \mu + \nu} (\ln^{p} x_{+}) o (\ln^{q} x_{+}) o (\ln^{r} x_{+})$$

By Fisher[6], we have

$$(2.28) \qquad (\ln^p x_+) \ o \ (\ln^q x_+) = \ln^{p+q} x_+$$

Using this, we get

$$(2.29) (x_+^{\lambda} \ln^p x_+) o(x_+^{\mu} \ln^q x_+) o(x_+^{\nu} \ln^r x_+) = x_+^{\lambda + \mu + \nu} \ln^{p+q+r} x_+$$

Theorem 2.2. The neutrix products of $x_{+}^{\lambda} \ln^{p} x_{+}$, $x_{+}^{\mu} \ln^{q} x_{+}$, $x_{+}^{\nu} \ln^{r} x_{+}$, and of $x_{-}^{\lambda} \ln^{p} x_{-}$, $x_{-}^{\mu} \ln^{q} x_{-}$, $x_{-}^{\nu} \ln^{r} x_{-}$ exist and

$$(2.30) (x_{+}^{\lambda} \ln^{p} x_{+}) o (x_{-}^{\mu} \ln^{q} x_{-}) o (x_{+}^{\nu} \ln^{r} x_{+}) = 0$$

$$(2.31) (x_{-}^{\lambda} \ln^{p} x_{-}) o (x_{+}^{\mu} \ln^{q} x_{+}) o (x_{-}^{\nu} \ln^{r} x_{-}) = 0$$

for
$$\lambda + \mu < -1$$
, $\lambda + \mu + \nu < -1$, $\lambda, \mu, \nu, \lambda + \mu, \lambda + \mu + \nu \neq -1, -2, \dots$ and $p, q, r = 0, 1, 2, \dots$

Proof. Fisher in [6] has given the neutrix product of $x_-^{\lambda} \ln^p x_-$ and $x_+^{\mu} \ln^q x_+$ and of $x_+^{\lambda} \ln^p x_+$ and $x_-^{\mu} \ln^q x_-$ in [6] as-

$$(2.32) (x_-^{\lambda} \ln^p x_-) o(x_+^{\mu} \ln^q x_+) = 0$$

$$(2.33) (x_+^{\lambda} \ln^p x_+) o(x_-^{\mu} \ln^q x_-) = 0$$

for $\lambda + \mu < -1, \lambda, \mu, \lambda + \mu \neq -1, -2, \dots$ and $p, q = 0, 1, 2, \dots$

Composing these two equation by $x_+^{\nu} \ln^r x_+$ and $x_-^{\nu} \ln^r x_-$ from the left, we get the required result.

Theorem 2.3.

(2.34)
$$\left(\operatorname{sgn} x |x|^{\lambda} \operatorname{ln}^{p} |x|\right) o\left(|x|^{\mu} \operatorname{ln}^{q} |x|\right) o\left(\operatorname{sgn} x |x|^{\nu} \operatorname{ln}^{r} |x|\right)$$

(2.35)
$$\left(|x|^{\lambda} \ln^p |x| \right) o \left(\operatorname{sgn} x |x|^{\mu} \ln^q |x| \right) o \left(|x|^{\nu} \ln^r |x| \right)$$
$$= \operatorname{sgn} x |x|^{\lambda + \mu + \nu} \ln^{p+q+r} |x|$$

for
$$\lambda + \mu < -1$$
, $\lambda + \mu + \nu < -1$, $\lambda, \mu, \nu, \lambda + \mu, \lambda + \mu + \nu \neq -1, -2, \dots$ and $p, q, r = 0, 1, 2, \dots$

Proof. Fisher in [2] have shown that

(2.36)
$$\operatorname{sgn} x |x|^{\lambda} \ln^{p} |x| = x_{+}^{\lambda} \ln^{p} x_{+} - x_{-}^{\lambda} \ln^{p} x_{-}$$

$$(2.37) |x|^{\lambda} \ln^p |x| = x_+^{\lambda} \ln^p x_+ + x_-^{\lambda} \ln^p x_-$$

In [6], it is proved that

(2.38)
$$\left(\operatorname{sgn} x |x|^{\lambda} \ln^{p} |x| \right) o \left(|x|^{\mu} \ln^{q} |x| \right) = \operatorname{sgn} x |x|^{\lambda + \mu} \ln^{p+q} |x|$$

(2.39)
$$(|x|^{\lambda} \ln^{p} |x|) o (\operatorname{sgn} x |x|^{\mu} \ln^{q} |x|) = \operatorname{sgn} x |x|^{\lambda + \mu} \ln^{p+q} |x|$$

Using equations (2.36), (2.37), (2.38) and (2.39)

$$\left(\operatorname{sgn} x |x|^{\lambda} \ln^{p} |x|\right) o\left(|x|^{\mu} \ln^{q} |x|\right) o\left(\operatorname{sgn} x |x|^{\nu} \ln^{r} |x|\right)
= \left(\operatorname{sgn} x |x|^{\lambda+\mu} \ln^{p+q} |x|\right) o\left(\operatorname{sgn} x |x|^{\nu} \ln^{r} |x|\right)
= \left(x_{+}^{\lambda+\mu} \ln^{p+q} x_{+} - x_{-}^{\lambda+\mu} \ln^{p+q} x_{-}\right) o\left(x_{+}^{\nu} \ln^{r} x_{+} - x_{-}^{\nu} \ln^{r} x_{-}\right)
= x_{+}^{\lambda+\mu+\nu} \ln^{p+q+r} x_{+} + x_{-}^{\lambda+\mu+\nu} \ln^{p+q+r} x_{-}
= |x|^{\lambda+\mu+\mu} \ln^{p+q+r} |x|$$

Similarly we can prove equation (2.35).

References

- [1] Gelfand, I. M.; Shilov, G. E.: Generalized Functions, Vol.I, Academic Press, London, New York, 1964
- [2] Fisher, B.: The product of distributions. Quart. J. Math. Oxford (2), 22, 291-298 (1971)
- [3] Fisher, B.: On defining the product of distributions. Math. Nachr., 99, 230-240 (1980)
- [4] Fisher, B. : A noncommutative neutrix product of distributions. Math. Nachr., 108, 117-127 (1982)
- [5] Fisher, B.: Some noncommutative products of distributions. Publ. Math. (Debrecen), 64(3-4), 253-259 (2004)
- [6] Fisher, B. and Taş, K.: On the Non-Commutative Neutrix Product of the Distributions x_+^{λ} and x_+^{μ} . Acta Mathematics Sinica, English Series (2006), Vol.22, No.6, pp. 1639-1644.
- [7] Von der Corput, J. G.: Introduction to the neutrix calculus. J.Analyse Math., 7, 291-398 (1959-60)

.