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Abstract

In this paper, we propose some generalized results on the product
of distributions 3 In’zy, o Iz, 2"z, 22 Pz, 2" nz_,

¥ In" x_ and sgn x |a:\>‘ In? x given by Fisher, B.
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1 Introduction

Let the space D be the space of infinitely differentiable functions with compact support
in [a,b] and D’ be the space of distributions defined on D. Locally summable functions

:Ei‘L In? 2, and 2 In? z_ for A > —1 and p = 0,1, 2, .. defined by Fisher are

A pP
Aqp ) 2 nPx >0
(1.1) z) In a:+—{0 v <0
A J lxPInPlz] x>0
(1.2) 2 In x_—{ 0 <0
Derivatives of xi and 22, for A < —1 and \ # —2, —3,..., are given by
(1.3) (xi)’ = A mifl
(1.4) () = =Xt

If r is a positive integer and —r — 1 < A < —r then for arbitrary ¢ in D, we can define the

inner product as follows

00 =1 @) .
(15) ooy = [ [¢<$>_Z¢i!<0>xz] &
=0
0 r-1 @) .
(16 @ @) = [ ol [so(w)— £ Z.,(O)af] i
- i=0 )

For p=0,1,... the distributions xi In? 2, and 2 In? z_ are defined as,
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oP

@i o@) = o) el@)
0 r—=1 (i)
= Pz T) — L4 (O)xz T
(1.7) - [ [s&() > 5 ]d

—00

(1.8) (@2 P a_ p(x) = / M () [ ZSO ]

If ¢ is a function whose support is contained in the interval [—1,+1]. Then

r—1 (2)
; ¢ (0)
de“ZZ;u(AHH)

1 .
(1.9)<:Eilnp:c+,go(x)> :/0 2 InP(x ! ZGD

Definition 1.1. Let f be the distribution in D’ and let g be an infinitely differentiable
function. Then the product f.g is defined by

(f.9.90) = (f,9¢)

for all test function ¢ with compact support contained in (a, b).

Definition 1.2. Let f and g be distributions in D’. Let f is the k" derivative of a locally
summable function F' in LP(a,b) and ¢®) is locally summable function in L9(a,b) with
1/p+1/q = 1. Then the product f.g(= g.f) of f and ¢ is defined on the interval (a, b) and

is given by
ra=sto(, L) ayirgope
Now let p(z) be a function in D having the following properties,
(i) p(x) =0 for || > 1
(i) p(z) 20
(iii) p(z) = p(—=)
() S p(a)de =1

Putting é,(x) = np(nz) for n = 1,2,.... It follows that (§,(z)) is regular sequences
of infinitely differentiable functions converging to the dirac delta function 6(z). If f is
arbitrary distribution in D', we define for n = 1,2, ...

fa(w) = (f * 6n)(2) = (f(1), on(z — 1))

It follows that f,(z) is regular sequence of infinitely differentiable functions converging to
the distribution f(z).
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Definition 1.3. Let f and g be distributions in D’ and let g,,(z) = (g * 0,)(z). The non
commutative product f.g of f and ¢ exists and is equal to the distribution h on the interval

(a,b), if
lim (f(x)gn (), p(z)) = (h(z), p(z))

n—o0

for all function ¢ in Dla, b).
We next, provide the generalization of definitions (1.1), (1.2) and (1.3) as given in [3].

Definition 1.4. Let g,(x) = (g * d,)(z). The non commutative neutrix product fog of f
and g exists and is equal to the distribution A in the interval (a,b) if

N — lim (f(2)ga(w), ¢(2)) = (h(2), (@) ¥ g €D

where N is the neutrix, for more details we refer to [7] with domain natural numbers and
range real numbers with negligible functions n*In""'n, In"n; A > 0,7 = 1,2,... and all
functions which converge to zero in the normal sense as n — oco. It is obvious that if the
product f.g exists, then the neutrix product fog exists and f.g = fog.

The following theorem is stated in [5].

Theorem 1.1. Let f and g be distributions in D' and suppose that the non commuta-
tive neutriz products fog and fog'(orf'og) exists then the product fog'(orf'og) exists and

(fog)' = flog+ fog'.
The next theorem is proved in [5]

Theorem 1.2. The non commutative neutriz products of :I:g\_ In? z, and x’j_ In?zy and of
2N P z_ and 2" In%x_ exist and

(1.10) (mj‘_ In? z 1 )o(x!y Inzy) = xiﬂ‘ InPte g,
(1.11) (2 P z_)o(z" In9x_) = 2 InPHe 5 _

forA+pu<—-1land \,u, A\+p#—-1,-2,... and p,q=0,1,2,....

2 Product of distributions of the type 2} In” z, 22 In”z_,
sgn z|z|* In” 2, and sgn |z In” z_

In this section we provide the neutrix product of three distributions xf‘r Pz, ! In?xy

and % In" z. In the same way we can get the product of distributions 2 Pz, 2 Infx_
and z¥ In" z_.

Theorem 2.1. The noncommutative neutriz products ofacﬁ‘r Iz, 2t In?2, and 2 In" a2y
and of a* InP x_, " InYx_ and z¥ In" x_ exist and

(2.1) (2 In? w4 )o(a!) In% 2 )o(2 In" z4) = xf‘ﬁ’”” InP Tt g,
(2.2) (2} P z_Yo(z" In% z_)o(a” In" x_) = 2 THH InPHatr o

for A+ A+p+v<—1land A\, u, v, \A+p, A+p+v # —1,-2,...andp,q,r =0,1,2,. ...
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Proof. We will first prove the following results

(2.3) (2} )o(x )o(z") = AL
(2.4) (2 )o(z" o(z" ) = AL

Fisher has proved that

A
(2.5) (x})o(aht) = a2
(2.6) (z))o(at) = ™
Using equation(2.5) and equation(2.6) in equation(2.3) and equation(2.4), we get
A v A v
(2.7) (x++”)0($+) = :L'++'u+
(2.8) (X0 (a?) = AT

So our aim is to prove above two equations. For proving equation(2.7) we are taking
here —s — 1 < v < —s, for some nonnegative integer s; A\, > —1, A4+ g > —1 and
A+pu+vz#—-1,-2,.... Let k be the smallest positive integer greater than —\ — p — v.
We know that

1/n
2% 0u() = /_ ( — )76, (1) dt

1/n
(2.9) = /j/ (x — )"0, (t) dt + /l/n(a: — )"0, (t) dt
Using

210) @ty ={ 0 12

second integral of equation(2.9) vanishes and further using the property of d,(t) we get

2% 0a(x) = /_ e a
1

1 T
_ _ p\w+11% o _ \w+1g(1)
g B0 g [ @

L T s
a (V+1)(V+2)/1/n( D) de
1 z »
S CEDIOEE) /un(x — R de

N 1 ’ x — t)VTss)
(1/+1)(1/+2)(1/+3)...(y+5)/1/n( t)reoy) di
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_ T(w+1) 1 24 5)
(2.11) T+ v+ D +2)(v+3)...(v+s) ++ ’
(2.12) - lmxTS 0

where I' denotes the gamma function.

We have
+1 1
[ @ = [ et
—1 0
n L
= / o T (3 ) pd + / 2 (Y )
0 1/n
1/n o
SR / Pt / (2 — 1) 60 (t)dt dar
F(V+S+1) 0 71/TL
1 o rl/n
+ / g / (z — 1) 6, () dtd
1/n —1/n
(2.13) =0 + I

On putting nt = v and nz = u and using 6, (t) = np(nt) in I;, we have

I = I'(v+1) Lyt (g )t 5L () (v)dj du
b Fv+s+1) )y nrteti nv+s P e,
Tv4+1) [ wrer s o

- M'v+s+1) /0 nAtutitr+l /1(u — )" p ¥ (v) dv du

1 u
I = n_)‘_“_y_i_lir(y +1) / UA—HLH/ (u— U)V+SP(S) (v)dvdu
0 —1

F'v+s+1)
(2.14)
Hence,
(2.15) N—-liml; =0 fori=0,1,2,...k—1

n—oo
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On changing the order of integration in I

1/n 1 ]
I, = / 6n(t)/ e M (g — )V dadt
—1/n 1/n

for nt = v and nt = v

+1 n . )
— / ,0('1)) / nfzf)\fyfuflu)\+u+l [u _ U}”dudv
-1 1

. 1 n . vV
— n—z—)\—,u—u—l/ p(v)/ u>\+,u+1/+z [1 _ 7} dudv
1 u

-1

1
_ n—z’—)\—u—u—l/ p(v) /n A tHtvt [1 Yot } dudv
—1 1 u

+1
N—-limI, = (z'-l—)\—f—,u-l-l/-l-l)_l/ p(v)dv

n—oo —1
(2.16) = (i+A+p+v+1)7"
fori =0,1,2,...,k — 1 and using property (iv) of the function p(x).
By equation(2.13), equation(2.15) and equation(2.16)

+1
(2.17) N —lim e (@) de = (i A+ p v+ 1)

n—o0 —1
fori=0,1,2,...k—1
When we take i = k in equ.(2.14), we get

1 u
I = nikf)‘f“f”ir(y—i_l) )/ uk+)‘+“/ (u—v)”+5p(8)(v)dvdu
0

F'v+s+1 1
1/n
(2.18) = /0 g AT (), da
If 4 is an arbitrary continuous function then
1/n
(2.19) Jm | ()i (z)de = 0

since k+A+pu+v>0
Next if x > 1/n, we have

1/n
(@) = / (x — )", (t)dt

—1/n

1
= /_1(;U —u/n)" p(u)du using t = u/n
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(@) = x”/l [1— i]yp(u)dt

—1 nx
e vu
= x g [1—E+...} p(u)du
(2.20) = 2’4oz In7h)
1 1
(2.21) li_)m 2P TR )i (z)da = / gAY (1) dae
n=oe Ji/n 0

Now let ¢ be an arbitrary function in D [—1, 1]. By the mean value theorem we have

i k
(2.22) o(z) = Soi(‘o)xi +2 ]Efx)xk where 0 < { <1

then

(@ np@) = [ A (s

k-1
_x- g0 i M gk AT (@ ) g (fw)
_z:0 it /—1 T ’u( ) dx+/0 k! e
1 k+>\+u( ) (f:U)
+ /1/n Rl

[t

Using equation(2.16), equation(2.19) and equation(2.21)
N —lim xi+“(x‘_’~_)n,g0(m)>

n—oo
i 1 1
¢(0)/ a;/\+“+”+id:v+/ Aputv® ‘Pk(gx)
: 0 0

k—1

1 i

¢'(0)

Z/ ghtety [@(1‘) - 7!

0 i=0
A

<x++“+ya¢(l’)>

This implies the result

(224) (™) o (@) =

Thus equation holds on the interval [—1,1] for A > —1, p > —1 and v < 0 and v, A\ + p, A\ +
n+v#—1,-2, ... Now differentiating above equation partially with respect to A, p times
we get

(2.25) (2} InPzy) o (z) o (a%) = xfr“ﬂ' InP x4

(z

¥ (0)

d

x+zz' A+p+v+i+1)

(2.23) =
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Differentiating partially with respect to u, g times, we get
(2.26) (2} nPzy) o (2 n%zy) o (z4)" = x:\ﬁ‘ﬁ'/ InPte g,
Again differentiating partially with respect to v, r times, we have
(3 InPzi) o (zh In%xy) o (% In" xy)
(2.27) = 3 (P 2y ) o (In2y) o (In” 2 y)

By Fisher[6], we have

(2.28) (In”x;) o (In?xy) = InPT9z
Using this, we get
2.29 APz ) o (e Inlz.) o (2% In" z,) = THHY InPHatr 4
¥ + i + + + + +
O]

Theorem 2.2. The neutriz products of ﬂ:j‘_ Pz, 2 In%xy, o4 In" 24, and of X InP z_,
2 In%z_, ¥ In" x_ exist and

(2.30) (2} Pay)o (2! Infz_)o (x4 In"xy) =0
(2.31) (22 nPz_)o (zXIn%z;)o(x” In"x_) =0
forx+p < =1, Apt+v <=1, A\, v, \+p, A+pu+v #—1,-2,... and p,q,r=0,1,2,...

Proof. Fisher in [6] has given the neutrix product of 2} In”z_ and 2/ Inz, and of
2 InP 2 and 2" In?z_ in [6] as-

(2.32) (2} InP z_)o(a!; InTa;) =0
(2.33) (2} InP 4 )o(a" nla_) =0

for A\ +pu< -1, A\ u,AX+pu#—-1,-2,...and p,g=0,1,2,...
Composing these two equation by 2%, In" x4 and 2 In" z_ from the left, we get the required
result. O

Theorem 2.3.
(Sgn |z In? |ac]> 0( || In? \:c|>0(sgn x|z| In" |z| )

(2.34) = | T Pt | g

<|:L'|A In? |m|) 0<sgn x |x|" In? |x| )0( |z” In" \:U|)
(2.35) = sgn x [z TPV PO (g

forA\+p < =1, Apt+v <=1, A\, v, \A+p, A+p+v # —1,-2,... and p,q,7r=0,1,2,...
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Proof. Fisher in [2] have shown that

(2.36) sgn z |z In? || = a2t Py —at nPa_

(2.37) |z InP || = a2t Py + 2 InPa_

In [6], it is proved that

(2.38) (Sgn |z In? |x!> 0 <|:L'|”lnq |x]> = sgn z || M InP |z
(2.39) <|x]’\ In? |a:\) 0 <sgn x |z In? |:c]) = sgn x 2| InPt |z
Using equations (2.36), (2.37), (2.38) and (2.39)

(Sgn |z InP \x|> 0 (\x|“ In? |x]) 0 (sgn x |x|” In" |x|)

= (sgn z |z[MH Pt |x|> 0 (sgn x|z’ In" |ZL‘|)

= <wi+“ P+ g, — g M Pt a:_) 0 <xi In"z; —a¥ In" :c_)
xiﬂtﬁ/ lpPtatr Ty + x>_\+u+u InPtatr 4
Atptp lnPtatr ‘$|

= ||

Similarly we can prove equation (2.35). O
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