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1 Introduction

Information geometry is of recent origin started around 1985 and it is the result of applying
non-euclidean geometry(Riemannian and Affine) to the probability theory in general and
statistical inference and estimation in particular. This is very effective in applications
to Neural networks and in Machine learning thru the gradient-descent method by the
uniqueness of the Fisher metric.

Metrics and distances (or semidistances like divergences) between probability distribu-
tions play an important role in problems of statistical inference and estimation and also
in practical applications to study affinities (or dissimilarities) among a given set of popu-
lations. A statistical model is specified by a family of probability distributions, normally
described by a set of continuous parameters called a parameter space. The parameter space
possesses some geometrical properties which are induced by the local information contents
and structures of the distributions. Starting from the Fisher’s pioneering work, in 1925 the
study of these geometrical properties has received much attention in statistical literature.
Then Rao [27] introduced a Riemannian metric in terms of the Fisher information matrix
over the parameter space of a parametric family of probability distributions in 1945.

Since then many statistians have attempted to construct a geometrical theory in prob-
ability spaces. It was only in 1975, Efron [18] was able to introduce a new affine connection
into the geometry of the parameter spaces and thereby elucidating the role of curvature
in statistical problems. Significant contributions to Efron’s work were added by Reeds
[29] and Dawid [18]. In fact Dawid even suggested a geometrical foundation for Efron’s
approach as well as pointing out the possibility of introducing other affine connections into
the geometry of parameter spaces (see Amari [1,3], Burbea-Rao [12,13,14].

Some work in this direction was also done by Cencov [16] and also Atkinson-Mitchell
[4], independent of Cencov’s work computed the Rao distance for a number of parametric
families of important probability distributions of statistics. In this article we systematically
study the geometry of statistical manifolds. The material is arranged as follows.

§2 gives a general setting for statistical models; in §3 statistical model as a smooth man-
ifold and Fisher metric are introduced and illustrated with an example; §4 studies weighted
Fisher metric and its associated geometry; in §5 Amari’s family of α-affine connections were
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studied and illustrated with two examples; §6 investigates dual connections and dual flat-
ness and their topological implications; §7 studies generalization of α-structures via) the di-
vergence approach and skewness tensor approach and the existence of dual potential scheme
on dually flat spaces is brought out; and also various equivalent ways of defining a statistical
structure are given; in §8 and 9 the geometry of Amari (α-geometry) interpreted as geom-
etry of special embeddings (α-embeddings) was further generalised as (F,G)-geometry on
a statistical model and in §10 the special place of Amari’s α-geometry among all possible
(F,G)-geometries was established and also the invariant and non-inveriant properties of
general (F,G)-geometries given. The presentation is elementary with clarity of concepts
(through geometric computations are indicated sketchily) illustrated by many examples.

2 General Setting

Let µ be a σ -finite additive measure defined on a σ-algebra of the subsets of a measurable
space χ. Then M =M(χ;µ) stands for the space of all µ-measurable functions onn χ and
let L = L(χ;µ) denote the space of all p ∈ M so that ∥p∥ ≡

∫
χ |p(x)|dµ(x) =

∫
χ |p|dµ <∞.

Let M+ = M+(χ;µ) denote the set of all p ∈ M such that p(x) ∈ R+ = [0,∞) for all
µ-almost all x ∈ χ and define L+ = L+(X;µ) as L+ = M+ ∩ L and we let P = P(χ;µ)
denote the set of all p ∈ L+ with ∥p∥µ = 1. Clearly P is a convex subset of L+. In most
applciations χ = Rn, µ = Lebesgue measure on Rn. So any probability measure on χ can
be represented in terms of density function with respect to Lebesgue measure µ.
Definition 1: A probability distribution on χ is a function p : χ→ R such that p(x) ≥ 0
∀x ∈ χ and

∫
χ p(x)dx = 1 (cont. case) (

∑
x∈χ p(x) = 1, χ is a discrete finite or countable

set and µ is counting measure).
Let θ = (θ1, θ2, · · · , θn) be a set of real continuous parameters belonging to a parameter

space, OH a manifold embedded in Rn and let FOH = {p(·, θ) ∈ L+ : θ ∈OH} be a parametric
family of positive distributions } and POH = {p(·, θ) ∈ P : θ ∈OH} be a parametric family of
probability distributions on χ and POH is a convex subfamily of FOH.

We denote by S = POH = {pθ = p(x, θ) : θ ∈ OH ⊂ Rn} and call S a n-dimensional
statistical model or parametric model. We put some regularity conditions on S.

1. OH is an open subset of Rn and the map: θ ∈OH → p(·, θ) ∈ R is of class C∞, and the
map: θ → p(x, θ), x ∈ χ is injective.

2. Let l(x, θ) = log p(x, θ) and ∂i =
∂
∂θi

. For every fixed θ, the n functions {∂il(x, θ}ni=1
of x on χ are linearly independent and these functions are called scores.

3. The order of integration and differentiation may be freely interchanged on χ.

4. The moments of scores exist upto necessary orders.

5. The support of the function pθ : χ→ R, does not vary with θ where supp(pθ) = {x ∈
χ|p(x, θ) > 0}. So se can redefine χ to be supp(pθ) so that p(x, θ) > 0 holds forall
θ ∈ OH and all x ∈ χ. Thus the statistical model S is a subset of P(χ) = {p : χ →
R|p(x)>0, ∀x ∈ χ,

∫
χ p(x)dx = 1}
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3 Statistical Model S as smooth manifold, Fisher matrix on S

Definition 2: For a statistical model S = {pθ : θ ∈ OH open ⊂ Rn}, the mapping φ :
S → Rn defined by φ(pθ) = θ allows us to consider φ = (θi) as a coordinate system for S
and hence S becomes a smooth n-dimensional manifold called statistical manifold with a
global coordiante system (θi). Note that any C∞-diffeomorphism ψ of Rn to itself induces
a reparametrization of S by θ → ρ = ψ(θ).
Example 3: Normal distribution N(µ, σ) : Take χ = R, n = 2, θ = (µ, σ) = (θ1, θ2) and
OH = {(µ, σ) ∈ R2| −∞ < µ <∞ and 0 < σ <∞}

and N(µ, σ) =

{
p(x, θ) = 1√

2π σ
exp

(
−(x− µ)2

2σ2

)
θ=(µ,σ)∈OH

}
This is a 2-dimensional statistical manifold which can be identified with the upper half

plane H+ = {(µ, σ) ∈ R2|µ∈R
σ∈R+} which has negative curvature with respect to Poincaré

metric.
Definition 4: Let lθ = log pθ. Regard lθ : χ → R sending x → lθ(x) = log p(x, θ). We
define the Fisher information matrix (gij(θ))n×n of the manifold S at state θ by

gij(θ) = Eθ[∂il(θ)∂jl(θ)] ==

∫
χ
∂il(θ)∂jl(θ)p(x, θ)dx (3.1)

Note here Eθ is the expectation w.r.t pθ of [ ].
Here we assume that the above integral exists for all θ ∈OH. Note that G(θ) = (gij(θ))

is a symmetric n× n matrix.

For any c = [c1, c2, · · · , cn]t ∈ Rn, ctG(θ)c =
∫
χ

{
n∑
i=1

ci∂il(x, θ)

}2

dx and so G(θ) is positive

definite since {∂il(θ)}ni=1 are linearly independent. So the Fisher matrixG(θ) is a symmetric
positive definite matrix and hence defines an inner product on the tangent space of the
statistical manifold S denoted by <,>θ called the Fisher metric on S and this <,> gives
a Riemannian metric (called Rao’s metric) on the statistical manifold S, making (S, g) a
Riemannian manifold.
Example 5 (continued) : S = N(µ, σ) =

{
p(x, θ) = 1√

2πσ
exp

(
− (x−µ)2

2σ2

) ∣∣θ = (µ, σ) ∈OH ⊂ R2
}

with parameter θ = (µ, σ). Then l(x, θ) = log p(x, θ) = − (x−µ)2
2σ2 − log(

√
2πσ).

Let ∂1 =
∂
∂µ , ∂2 =

∂
∂σ . Then ∂1l =

(x−µ)
σ2 . ∂2l = − (x−µ)2

σ3 − 1
σ .

Hence the Fisher information matrix

G(θ) = (gij(θ))2×2 is given by G(θ) =

(
1
σ2 0
0 2

σ2

)
using formula (3.1).
6. Remarks: 1) The Fisher metric allows us to study “nearness” of two probability distri-
butions [20] and the geodesic distance between two points of S using differential geometric
techniques.
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2) Note that the Fisher metric <,>θ is indeed a metric on the parameter space OH ⊂ Rn
and the Fisher metric gij = Eθ[∂il∂jl]
measures the expectation of the 2nd order cummulants of the variations of the log-likelihood
function log p(x, θ).

3)gij = Eθ[∂il∂jl] = −Eθ[∂i∂jl] using∫
χ
p(x)∂ildx =

∫
χ
∂ipdx = ∂i

∫
χ
p(x)dx = 0.

That is Eθ(∂il) = 0, i = 1, 2, · · · , n.
Similarly hijk(θ) = Eθ[∂il, ∂jl∂kl] tensor defines a richer structure on S (details later).

4) Such Fisher metric g =<,> is unique having the two properties
(a) (gij) is invariant under reparametrization of the sample space χ.
(b) gij is covariant under reparametrization of the parameter space OH [16,17].

5) Using the Fisher metric g, the Christoffel symbol of first kind is given by

Γij =
1

2
[∂igjk + ∂jgki − ∂kgij}

by standard Riemannian geometries [24].
Thus (S, g) is a Riemmanian manifold. We give later on more geometric structure on the
statistical manifold S.

Remarks 7: Properties of the Fisher Metric g on S.
(i) Suppose our probability distributions are defined in terms of a random variable x taking
values in X ⊆ Rn. Then

gij(θ) =

∫
χ

1

pθ(x)
∂ipθ(x)∂jpθ(x)dx (by(3.1))

We can re-express this in terms of another random variable y taking values in Y ⊆ Rn, if
we suppose that y = f(x) : X → Y is an invertible mapping. We clearly have

p̃θ(y) =

∫
χ
pθ(x)δ(y − f(x))dx (3.2)

If f is invertible then using the relation

δ(y − f(x)) =
1

|∂f∂x |
δ(f−1(y)− x)

we can find that

p̃θ(y) =

∫
χ
pθ(x)

1

|∂f∂x |
δ(f−1(y)− x)

=

[
1

|∂f/∂x|
pθ(x)

]
x=f−1(y)

(3.3)
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Since |∂f∂x | does not depend on θ we see that

∫
Y

1

p̃θ(y)
∂ip̃θ(y)∂j p̃θ(y)dy =

∫
Y
dy

 1
1

| ∂f
∂x

|
pθ(x)

∂ipθ(x)

|∂f∂x |
∂jpθ(x)

|∂f∂x |


x=f−1(y)

=

∫
X

dx

pθ(x)
∂ipθ(x)∂jpθ(x) = gij(θ) by (3.1) using

∫
Y
dy =

∫
X
dx| df

∂x
|

Thus we proved. Propsition 8: (a) The Fisher metric (gij(θ)) is invariant under trans-
formation of the random variable.
(b) It is also covariant under reparametrization: proof of (b) Suppose (θ̃i) is a new set
of coordinates on OH ⊂ Rn and (θi) is the original set of coordinates on OH ⊂ Rn. They

are related by the invertible relationship θ̃ = θ̃(θ). Defining p̃θ̃(x) ≡ pθ(θ̃)(x), we are

then able to compute g̃ij(θ̃) ≡
∫
χ dx

1
p̃θ̃(x)

∂
∂θ̃i
p̃θ̃(x)

∂
∂θ̃j

p̃θ̃(x) in terms of gij(θ). For, since

∂
∂θ̃i
p̃θ̃ =

∂θj

∂θ̃i
∂
∂θj

pθ(θ̃), we may directly conclude that

g̃ij(θ̃) =

[
∂θk

∂θ̃i
∂θl

∂θ̃j
gkl(θ)

]
θ=θ(θ̃)

(3.4)

which is precisely the covariance of Fisher metric under reparametrization of the parameter
space.
Example 9: On the space of normal distributions N(µ, σ2) the Fisher metric is a special
one.

N(µ, σ2) ={p(x, θ) = 1√
2πσ

exp

(
−(x− 0µ)2

2σ2

)
, x ∈ R,

θ ∈OH =R× R+ and θ = (µ, σ2) ∈OH, µ ∈ R, σ ∈ R+

The Fisher metric is

ds2 =
1

σ2

[(
dµ√
2

)2

+ (dσ)2

]
and its curvature is the Gauss curvature κ = −1

2 .
We complexify the situation. Letting µ∗ = µ√

2
and introducing the complex variable

z = µ∗ + iσ we can identify OH ⊂ R2 with the upper half plane H+ = {z ∈ � : Imz > 0}
of � and the Fisher metric is then.

ds2 =
2

σ2

[(
dµ√
2

)2

+ dσ2

]
=

2

σ2
[
(dµ∗)2 + dσ2

]
=

2

σ2
dzdz̄ which is the standard Poincaré metric on H+
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Hence the geodesic curves in the parameter space are the “semicircles” z = a+ reiφ, r > 0,
0 < φ < π, a ∈ R constant with limiting case (as r → +∞) as half lines (vertical) Rez =
constant, z ∈OH.
Remark 10: The corresponding multinormal distribution family on R2n ≈ �n {p(x; µ̂,Σ) :
x ∈ R2n, OH = R2n × p(2n,R)} has Fisher metric with rich information geometry which
needs further investigation (cf. [30])[9]).
Here µ̂ is mean vector in R2n, Σ is a positive definite symmetric 2n × 2n real matrix and
p(2n,R) is the set of all such Σs

4 Weighted Fisher metric and associated geometry

4.1. The Reimannian geometric aspects of the R manifold (S, g):
Let p = p(x, θ) ∈ S. The dp = dp(·, θ) =

∑n
i=1(∂ip)dθi.

Define the metric element ds2(θ) = Eθ[d log p]
2

=

∫
χ
p(θ)d(log p)2dµ =

∫
χ
p(θ)

(
n∑
i=1

∂i log pdθi

) n∑
j=1

∂j log pdθj

 dµ

=

n∑
i,j=1

gij(θ)dθidθj where gij(θ) =

∫
χ

1

p
∂ip(θ)∂jp(θ)dµ (3.5)

which is in the standard form
Since gij(θ) gives (i, j = 1ton) a covariant symmetric tensor of order 2 forall θ ∈OH ⊂

Rn, ds2(θ) is invariant under the admissible transformations of the parameters. Using the

line element ds =
√
ds2(θ) one can find the distance between two points θ(1), θ(2) ∈ OH

along a curve γ given by θ(t) in OH as

(3.6) S(θ(1), θ(2)) =

∣∣∣∣∫ t2

t1

ds(θ)

dt
dt

∣∣∣∣ =
∣∣∣∣∣∣∣
∫ t2

t1


n∑

i,j=1

gi,j(θ)θ̇iθ̇j


1/2

dt

∣∣∣∣∣∣∣
where θ(1) = θ(t1) and θ

2 = θ(t2) and θ̇i =
dθi
dt .

Such curve γ joining θ(1) and θ(2) in OH such that S(θ(1), θ(2)) is the shortest is called an
information geodesic curve, and such distance is called the information geodesic distance
or the Rao distance between pθ(1) , pθ(2) distributions for the Fisher metric.

The geodesic curve θ = θ(t) in OH from θ(1) to θ(2) may be determined from the Euler-
Lagrange equations (a system of n nonlinear equations of second order)

n∑
i=1

gij θ̈i +

n∑
i,j=1

Γijkθ̇iθ̇j = 0 (k = 1, 2, · · · , n) (3.7)

with boundary conditions

θi(tj) = θ
(j)
i (i = 1, 2, · · · , n, j = 1, 2) (3.8)
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and Γijk are the Christoffel symbols of first kind of the metric ds2 given by

Γijk =
1

2
[∂igjk + ∂jgki − ∂kgij ]

and then the geodesic distance or information distance or Rao distance explicitly calculated.
As observed by Rao, this distance gives a measure of dissimilarity between two distributions
in a statistical model. For various models (discrete and continuous) Rao’s distances were
determined in the literature ([28],[4],[13],[14]).
4.2. Weighted Fisher Metric
Definition 11: Let f be a positive function on R+ of class (at least) C2 (Burbea takes
cont. f), S = {p(x, θ)|θ ∈OH ⊂ Rn, x ∈ χ} be parametrized family of distributions. Define
the metric element (weighted by f)

ds2f (θ) ≡
∫
χ

f(p)

p
[dp]2dµ (4.1)

=
n∑

i,j=1

g
(f)
ij (θ)dθidθj (4.2) with

g
(f)
ij (θ) =

∫
χ

f(p)

p
(∂ip)(∂jp)dµ (4.3)

Then the weighted Fisher information n × n matrix G(θ) = (g
(f)
ij (θ)) is positive definite

for every θ and hence ds2f gives a Riemannian metric on the parameter space OH called

f -weighted Fisher metric on OH.
In the language of expectations this metric can be written as

(4.4) ds2f (θ) = Eθ[(f ◦ p)(d log p)2] with

(4.5) g
(f)
ij (θ) = Eθ[(f ◦ p)(∂i log p)(∂j log p)]

We can give a geometric meaning for the metric element ds2f (θ) in terms of (weighted)
average of Fisher information between two states as follows:
Remark 12: (a) In information theory the quantity log p(·, θ) for p(·, θ) ∈ S is known
as the amount of “self-information” associated with the state θ ∈OH. The self-information
at a nearby state say θ + δθ ∈ OH is then log(·, θ + δθ). Then the difference log p(·, θ +
δθ)− log(·, θ) is approximated by the first order differential d log p =

∑n
i=1(∂i log p)dθi, and

hence ds2f (θ) measures the weighted average of the square of this first order difference with

the weight f [p(·, θ)]. For this reason, the metric ds2f and the matrix [g
(f)
ij (θ)] are called the

f -information metric and the f -information matrix on the parameter space OH.
The above usual Riemannian geometry of §3 can be calculated for ds2f (θ) and the f -geodesic
distance between two distributions can be computed.
4.3. Further Interpretations of ds2f (θ):

(b) Regard ds2f (θ) as a functional of p(·, θ) ∈ S. This functional is convex in p(·, θ) ∈ S iff

the function F (x) = x
f(x) is concave on R+.
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In particular, since f is a C2-function on R+, F (x) = x
f(x) is concave on R+ ⇔ FF ′′ ≥

2(F ′)2 on R+.
Example 13: Take f(x) = xα−1. Then we get the “α-order information metric” ds2α(θ) =

Eθ[p
α−1(d log p)2] and the corresponding “α-order information matrix” G(θ) = [g

(α)
ij (θ)]

with g
(α)
ij (θ) = Eθ[p

α−1(∂i log p)(∂j log p)].

Then ds2α(θ) is convex in p(·, θ) iff 1 ≤ α ≤ 2.
For α = 1, we get ds2 = the Fisher metric, [gij ] =the Fisher matrix and geodesic distance
is the usual Rao distance. For the explicit computations of Rao distances for several well
known families of distributions of statistics refer to Rao-Burbea [12],[13],[14].
(c) The burbea metric ds2f (θ) arises as the second order differential of certain entropy
or divergence functional along the direction of the tangent space of the parameter space
OH ⊂ Rn at θ ∈OH.
For example, let F (·, ·) be a C2-function on R+ × R+ and consider the “F -divergence”
defined by

DF (p, q) ≡
∫
χ
F [p(x), q(x)]dµ(x) (p, q,∈ S)

Assume (i) F (x, ·) is strictly convex on R+ for ∀x ∈ R+ (ii) F (x, x) = 0 ∀x ∈ R+ (iii)
∂yF (x, y)|y=x is constant for every x ∈ R+.

Then for p(·, θ(1)) and p(·, θ(2)) ∈ S = POH we write

DF (θ
(1), θ(2)) ≡ DF [p(·, θ(1)), p(·, θ(2))] (θ(1), θ(2) ∈OH)

Then, for p(·, θ) ∈ S = POH and θ ∈OH

DF (θ, θ) = 0, dDF (θ, θ) =

∫
χ
∂yF (p, y)|y=p(dp)dµ = 0

and d2DF (θ, θ) = ds2f (θ)

where f(x) = x∂2yF (x, y)|y=x(x ∈ R+)
Hence it follows that to the second order infinitesimal displacements DF (θ.θ + δθ) =
1
2ds

2
f (θ).

So the Burkea metric ds2f is realized as a second order differential of a divergence on S.

§5. Amari’s α-family of affine connections on (S, g)
Let S = {pθ|θ ∈ OH ⊂ Rn} be a statistical model and g is the Fisher metric. Let

Γijk = 1
2{∂igjk + ∂+jgik − ∂kgij} define the Levi-Civita connection ∇(0) on S which is

unique affine (linear) connection such that its covariant derivative on the metric g vanishes.
Definition 14: On G(S, g) define 3-covariant totally symmetric tensor T (called Skewness
tensor) by Tijk = Eθ[∂il∂jl∂kl] (5.1)

Let α ∈ R. Define the affine α-connection∇(α) on (S, g) by giving its connection coefficients
as

Γαijk = Γijk −
α

2
Tijk (5.2)
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(equivalently in the language of expectations)

Γαijk = Eθ[(∂i∂j log p)∂k log p)] +
1− α

2
Tijk (5.3)

Thus on (S, g) we have a one parameter family of affine connections (∇α)α∈R. Note that

∇(0) is the metric connection the only one in the family. Each connection ∇(α) induces a
parallellism on OH.
Remarks 15: (1) The 1-connection (α = 1) is given by Efron and studied its geometry
[18] and the α = −1 connection by Dawid [18].
We give two examples here and summation convention used in them.
Example 16: Consider an exponential family S = POH of distributions given by (5.4)
p(x, θ) = exp{T (x) + Ti(x)θi − ψ(θ)} (x ∈ χ) with

(5.5) eψ(θ) =

∫
χ
eTi(x)θi · eT (x)dµ(x) (θ ∈OH ⊂ Rn)

parameterized by the natural parameters θ = (θ1, θ2, · · · θn) ∈OH.
Hence ψ is a C2-function onOH ⊂ Rn and T, T1, T2, · · ·Tn are smooth functions (measurable
enough in general) on χ. Then ∂il = ∂i log p = Ti(x)− ∂iψ(θ) ∂i∂jl = −∂i∂jψ.
Hence the Fisher metric gij = ∂i∂jψ (5.6) and (5.7) Eθ[(∂i∂jl)∂kl[= 0 and Γαijk = 1−α

2 Tijk
(5.8) (from 5.3).
We note from (5.8) Γαijk ≡ 0 for α = 1 and hence this manifold (S, g) is 1-flat or the expo-

nential family constitutes an uncurved space with respect to the (α = 1) Efron connection
or exponential connection.
Example 17: Consider the parametric family S = POH ≡ POH(q1, q2, · · · , qn+1) of distri-
butions p(·, θ) given by a mixture of n + 1 prescribed linearly independent probability
distributions on χ as

(5.9) p(x, θ) = qi(x)θi + qn+1(x)θn+1 (x ∈ χ)

where θn+1 = 1− (θ1 + θ2 + · · ·+ θn) and θ ∈OH
with OH = {θ = (θ1, θ2, · · · θn) ∈ Rn+: θn+1 > 0}. Then ∂il = ∂l log p = p−1(qi − qn+1),
∂i∂jl = −(∂il)(∂jl) and

Eθ[(∂i∂jl)∂kl] = −Tijk (5.10) and

Γαijk = −
(
1 + α

2

)
Tijk (5.11)

Hence, since Γαijk(θ) ≡ 0 for α = −1, this mixture family of distributions constitutes an

uncurved space (or -1-flat space) with respect to -1-connection called Dawid connection or
mixture connection [18].
Remarks 18: (1) Each of these affine connections ∇α on (S, g) or on OH gives rise to the
corresponding geometry including curvature Rαijkl.
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(2) For the exponential family above POH the α-curvature and metric curvature are related
by

Rαijkl = (1− α2)Rijkl (5.12)

and so the ±1-connections render the parameter space OH “flat”.
For the geometry of important families of statistical distributions and for curvature com-
putations and interrelation see Burbea [14].
(3) The skewness tensor T = (Tijk) given by (5.1) gives rich statistical structure on (S, g)
or OH. The expectation meaning of (5.1) is that it measures the expectation of the third
order cummulants of the variation of the log-likelihood function on χ. We discuss this
tensor later.
(4) Thus the statistical manifold (S, g) or OH has a 1-parameter family of affine connection
{∇α}.

5 Dual Connections and dual flatness

Let (S, g =<>) be a Statistical manifold.
Definition 19: Let ∇ = (Γijk) and ∇∗ = (Γ∗

ijk) be two affine connections on S. We say
they are dual to each other w.r.t. g if

Xk∂k⟨Y, Z⟩ = ⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩ (6.1)

holds for ∀ vector fields X,Y, Z on S.
Note that in local coordinate vector fields X = ∂i, Y = ∂j , Z = ∂k (6.1) becomes

∂igjk = Γijk + Γikj (6.2)

Remarks 21: The α-connection and −α-connection on (S, g) are dual.
Proof: We know

Γ
(α)
ijk + Γ

(−α)
ikj = Γ

(0)
ijk + αTijk + Γ

(0)
ikj − αTikj

Since T is completely symmetric we set

Γαijk + Γ
(−α)
ikj = ∂igjk

and hence by (6.2), Γ(α) and Γ(−α) are dual w.r.t. the Fisher metric on (S, g).
Corollary 22: The Efron and Dawid connections are dual w.r.t. Fisher metric.

Remarks 23: α-flatness implies −α-flatness. Infact, more generally, we have R
(α)
ijkl =

−R(−α)
ijlk

Definition 24: By a dual structure on a manifold M we mean a triple (g,∇,∇∗) consist-
ing of a Riemannaian metric g and a pair of affine connections which are dual w.r.t. g.
Parametric statistical models {POH, g, ∇(α), ∇(−α)} are having dual structure.

A statistical manifold is defined abstractly as a Riemannian manifold M endowed with
a dual structure i.e. a quadruple (M, g,∇,∇∗).

Any parametric statistical model with Fisher metric g and dual connection ∇(α),∇(−α) is
a statistical manifold.
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Definition 25: A manifold is flat w.r.t. an affine connection ∇ if there exists a local
coordinate system such that Γijk = 0.
Then the torsion T and the curvature R of flat ∇ above vanish; conversely, if ∇ is an affine
connection with vanishing curvature and torsion on a manifold M then M is “ locally”
flat.
Definition 26: A statistical manifold (M, g,∇,∇∗) is dually flat if both the dual affine
connections are flat i.e. T = T ∗ = 0 and R = R∗ = 0.
Remarks 27: (1) When a manifold is flat w.r.t. an affine connection ∇ then it is also flat
w.r.t. its dual connection ∇∗.
(2) If (S, g,∇,∇∗) is a dually flat manifold then in any local coordinate system the metric
coefficients gij are constant. (use ∂k∂ij = Γijk + Γ∗

ikj).
Definition 28: On a dually flat manifold there exist two special coordinate systems
namely the affine flat coordinates for each of the connections. These coordinate systems
are related to one another by a duality relation of their own. They are called the dual
coordinate systems.
More precisely, two coordinate system (θα) and (θ̃ν̃) are said to be dual to one another when
their coordinate basis vectors satisfy: < êµ, ẽ

ν̃ >= δν̃µ where êµ and ẽν̃ are the coordinate

basis vectors for the θ or θ̃ systems respectively.
Remark 29: In general manifolds there is no guarantee that a pair of dual coordinate
systems exists. Thus dually flat structure is special feature for a statistical manifold.
6.1. Relation of the metrics for the dual coordinate systems (θ), (θ̃)

Write θ = θ(θ̃) and θ̃ = θ̃(θ). Then the coordinate basis vectors are related by êµ =
∂θ̃ν̃ ẽ

ν̃

∂θµ , ẽµ̃ = ∂θν

∂θ̃µ̃
êν . Using these relations we may write the metrics as

(6.3) gµν ≡⟨êµ, êν⟩ =
∂θ̃ν̃
∂θµ

⟨ẽν̃ , êν⟩

=
∂θ̃ν̃
∂θµ

δν̃ν

and

(6.4) g̃µ̃ν̃ ≡⟨ẽµ̃, ẽν̃⟩

=
∂θµ

∂θ̃µ̃
⟨êµ, ẽν̃⟩ =

∂θµ

∂θ̃ν̃
δµ̃µ

Noting that the Jacobians [Jµν̃ ] ≡
[
∂θ̃
∂θµ

]
and [J µ̃ν ] ≡

[
∂ν̃
∂θ̃µ̃

]
are each matrix inverse of the

other, we find that [g̃ν̃µ̃] and [gµν ] are also inverses of each other. Since the matrix inverse
of [gµν ] is known to be the contravariant form of the metric, [gµν ], we find that

g̃µ̃ν̃ = δµ̃µδ
ν̃
νg

µν (relation for 2-tensors.) (6.5)

More generally for any tensor T expressed in θ-coordinates as Tµ1,µ2···µmν1ν2···νn may be reexpressed

in θ̃-coordinates as

T µ̃1µ̃2···µ̃mν̃1ν̃2···ν̃n = δµ̃1µ1δ
µ̃x
µ2 · · · δ

µ̃m
µmδ

ν1
ν̃1
δν2ν̃2 · · · δ

νn
ν̃n
Tµ1·µmν1···νn . (6.6)
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6.2: The functional form of θ = θ(θ̃) and θ̃ = θ̃(θ) can be determined from the following:

Theorem 30: When (θi) and (θ̃i) are dual coordinate systems there exist potential func-

tions OH(θ) and ÕH(θ̃) such that

θi = ∂̃iÕH(θ̃) and θ̃i = ∂iOH(θ) (6.7)

Then it follows that gij = ∂i∂jOH(θ)
and
g̃ij = ∂̃i∂̃jÕH(θ̃) (6.8)

and also OH(θ) + ÕH(θ̃) = θiθ̃i (6.9)
Conversely, when a potential function OH(θ) exists such that gij = ∂i∂jOH(θ),(6.7) yields

a coordinate system (θ̃i) which will be dual to (θi) and (6.9) yields to derive the other

potential function ÕH(θ̃).

Proof: Symmetry of the metric gij = ∂iθ̃j(θ) show that ∂iθ̃j − ∂j θ̃i = 0 from which we

conclude that, at least locally, θ̃(θ) is the derivative of some function i.e., there exist a

functionOH(θ) such that θ̃i = ∂iOH. (6.8) follows directly from inserting (6.7) into (6.3) and
(6.4). Finally (6.9) is a general fact about Legendre transform.

The other direction is easy: when gij = ∂i∂jOH(θ), we see that (θ̃i) ≡ (∂iOH(θ)) is dual to
(θ) from the fact that

ẽν =

[∂θ̃
∂θ

]−1
ji

êi =
(
[gµν ]

−1
)ij
êµ

where < êj , êi >= δνµ, proving the duality. On a dually flat manifold there exists a pair of
dual coordinate systems as in the following:
Theorem 31: When a manifold M is flat with respect to a dual pair of torsion-free
connection ∇ and ∇∗, there exists a pair of dual coordinate systems (θi) and (θ̃i) such that

(θi) is ∇-affine and (θ̃i) is ∇∗-affine.
Proof: ∇-flatness allows us to introduce a coordinate system (θi) in which Γijk = 0.
According to (6.2) this means over Γ∗

ijk = −∂igjk in θ-coordinates. Since we assume that
∇∗ is torsion-free, we have Γ∗

ijk = Γ∗
jik and hence ∂igjk = ∂jgik combining this with the

fact that gij = gji we may conclude that (again, at least locally) a potential function OH

exists such that gij = ∂i∂jOH. This allow us to introduce a coordinate system (θ̃i) dual to

(θi) defined by θ̃j = ∂jOH(θ).

In order to show that (θ̃i) is a ∇∗-affine coordinate system as claimed, we note that for

any i : ∂i < êj , ẽ
k >= ∂iδ

k
j = 0, since (θ̃i) is dual to (θi).

On the other hand, (6.1) shows that

∂i < êj , ẽ
k >= < ∇∂i êj , ẽ

k > + < êj ,∇∗
∂i
ẽk >

=gkl < ∇êi êj êl > +gjlgim < ẽl,∇∗
ẽk , ẽ

m >

=gklΓijl + gjlgim(Γ
∗)mkl
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where (Γ∗)mkl is the connection coefficients corresponding to ∇∗.
Since both the left hand side and the first term in the right are zero, we conclude that
(Γ∗)mkl = 0 proving dual (θ̃i) is a ∇∗ affine coordinate system.
Remark 32: (1) The dual flat structure constitutes a fundamental mathematical concept
of information geometry.
(2) Abstractly a dually flat manifold is a smooth Riemannian manifold (M, g) equipped
with a pair of flat torsion-free affine connections ∇ and ∇∗ which are dual to each other
in the sense that forall vectors holds X,Y, Z on M .

Xg(Y, Z) = g(∇XY,Z) + g(Y,∇∗
XZ).

There are global topological obstructions for the existence of dually flat structure on a
statistical manifold M .
Theorem A: (Ay [8].) Let (M, g,∇,∇∗) be a dually flat manifold. If M is compact then
necessarily the first fundametnal group π1(M) of M has infinite order.
Consequently compact Riemannian manifolds with trivial or finite fundamental group never
admit dually flat structures.
(3) In a compact manifold M with a complete affine connection ∇ it is false that any two
points of M could be joined by a ∇-geodesic. However, dually flat manifolds enjoy this
“geodesic property” namely.
Theorem B: Let (M, g,∇,∇∗) be a dually flat manifold. If one of the two connections on
M is complete say ∇ then any two points inM can be joined by a ∇-geodesic. Further the
topological classification of such dually flat manifolds can be obtained from a corresponding
structure theorem due to Hicks [21] as in
Theorem C: Let (M, g,∇,∇∗) be a dually flat manifold of dimension m. Assume say
∇ is complete. Then there exists a connection-preserving diffeomorphsm Φ : (M,∇) →
(Rm/Γ,∇Γ) where Γ ∼= π1(M) is a sub group of the group Rm ∝ GL(m,R) of affine motions
of Rm which acts freely and properly discontinuously in Rm, and where ∇Γ denotes the
connection on Rm/Γ induced from the canonical flat affine connection on Rm.
As a consequence, such dually flat manifolds M have their universal covering space M̃
diffeomorphitic to Rm and its first fundamental group π1(M) is isomorphic to a subgroup
of the group of affine motions of Rm and hence higher homotopy groups πi(M), 2 ≤ i ≤ m
necessarily vanish.

6 Generalizations of Amari’s α-structures

Statistical manifolds are geometrical abstractions of statistical models (parametric or not).
One way of defining statistical manifolds are Riemannian manifolds endowed with a pair
of torsion-free dual connections (Lauritzen [22]).

Secondly, a divergence or contrast function gives rise to a statistical structure as its
Riemannian metric is given by 2nd order derivatives of the divergence and a pair of dual
connections by its 3rd order derivatives.

Thirdly, a statistical structure can be realized by starting with a skewness tensor C on
a Riemannian manifold.
7.1 Divergence approach:
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Firstly note that on a manifold with dual connections we can define the divergence
between two points

D(p, q) =OH(θp) + ÕH(θ̃q)− θipθ̃qi

then D has the properties: a) D(p, q) ≥ 0 and is 0 iff p = q
b) ∂

∂θip
D(p, q)|p=q = ∂

∂θiq
D(p, q)|p=q = 0.

c) ∂
∂θip

∂

∂θjp
D(p, q)|p=q = gij(p)

d) For three points p, q, r given, we have D(p, r) T D(p, q)+D(q, r) according as the angle

φ between the tangent vectors at q of the ∇-geodesic joining p and q and the ∇∗-geodesic

joinging q and r at point q is T π/2.

Conversely starting with a divergence D we have seen earlier how its 2nd derivatives
defines a Riemannian metric g as gij(θ) = ∂θi∂θ′jD(θ, θ′)|θ=θ′ In fact, more geometry can
be gotten from D.
Definition 33: Let S be an n-dimensional statistical model with global coordinate system
θ = (θi)ni=1. Define a divergence functionD(·, ·) : S×S → R is a smooth function satisfying:
a) D(p, q) ≥ 0 for ∀ p, q ∈ S and equality iff p = q.
b) ∂iD(p, q)|p=q = 0 and ∂′iD(p, q)|p=q = 0.
c) ∂i∂

′
jD(p, q)|p=q is negative definite.

where ∂i =
∂
∂θi

and ∂′i =
∂
∂θ′i

.

Such D defines a unique Riemannian metric gD and the affine connections ∇D and ∇∗D

(Eguchi [20])

gDij (θ) =< θi, θj >
D
θ = −∂i∂′jD(p, q)|p=q (7.1)

and
(7.2) ΓDij,k(θ) =< ∇D

∂i
∂j , ∂k >

D
θ = −∂i∂j∂′kD(p, q)|p=q

and its dual divergenceD∗ byD∗(p, q) = D(q, p) and then gD
∗
= gD and ΓD

∗
ijk = −∂i′∂j′∂kD(p, q)|p=q

is the dual affine connection defined by D. ∇D and ∇D∗
are dual w.r.t gD.

Hence a divergence function D induces a dualistic structure (gD,∇D,∇D∗
) uniquely on a

statistical model.
Conversely, Matumoto [23] proved that every torsion-free dualistic structure is induced

from a globally defined divergence though not a unique one.
7.2 Skewness Tensor approach:

A divergence D gives rise to a Riemannian metric gD and a pair of dual connections
∇(D),∇(D∗) and also generates the skewness tensor C defined by

C(D)(X,Y, Z) =g(∇(D∗)
X Y −∇(D)

X Y, Z)

(7.4) =(X(ξ1)Y(ξ1)Z(ξ2) −X(ξ2)Y(ξ2)Z(ξ1))D(ξ1, ξ2)|ξ1=ξ2
(here p = pξ1 , q = qξ2), X,Y, Z vector fields on S.
In local coordinates this becomes

(7.5) C
(D)
ijk =Γ

(D∗)
ij,k − Γ

(D)
ij,k = ∂ξi1

∂
ξj1
∂ξk2

D(ξ1, ξ)|ξ1=ξ2
− ∂ξi2

∂
ξj2
∂ξk1

D(ξ1, ξ2)|ξ1=ξ2 .
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Then C is a 3-covariant completely symmetric tensor called the Skewness tensor arisen
from Divergence D.

Let DS be a contrast function on manifold S. Let p, q ∈ S with coordinates ξ1, ξ2,
respectively. Denote ∆ξi = ξi2 − ξi1. Then the third order approximation of DS(p, q) about
p is given by

(7.6) DS(p, q) =DS(p, p) + ∂ξi2
D(ξ1, ξ2)|ξ1=ξ2=ξ∆ξi

+
1

2
Dξi2

∂
ξj2
D(ξ1, ξ2)|ξ1=ξ2=ξ∆ξi∆ξj

+
1

6
∂ξi2
∂
ξj2
∂ξk2

D(ξ1, ξ2)|ξ1=ξ2=ξ∆ξi∆ξj∆ξk + o(||∆ξ||2)

where o(∥∆ξ∥2) is a term which converges to zero faster than ∥∆ξ∥2 as p → q. The first
two terms are zero by definition of contrast function and so.

(7.7) DS(p, q) =
1

2
gij(ξ1)∆ξ

i∆ξj +
1

6
hijk(ξ1)∆ξ

i∆ξj∆ξk + o(∥∆∥2)

where gij is the induced Riemannian metric. Then

(7.8) hijk = Γ∗
ij,k + Γjk,i + Γ∗

ik,j = ∂jgik + Γ∗
ik,j = ∂kgij + Γ∗

ij,k

Also we have hijk = ∂igkj + Γ∗
jk,i and hence hijk is totally symmetric in i, j, k i.e. hijk =

hikj = hkji = hjik. Note that if DS induces a dually flat statistical structure with Γ =
Γ∗ = 0 then hijk = 0.
Conversely given (g,∇,∇∗) a dualistic structure define a divergence by

(7.9) D(p, q) =
1

2
gij(p)∆ξ

i∆ξj +
1

6
hijk(p)∆ξ

i∆ξj∆ξk

where ∆ξi = ξi(q)− ξi(p) andhijk = ∂gkj + Γ∗
jk,i

which is only locally defined (not globally) or alternatively, defined by
(7.10) D(p, q) = 1

2gij(p)∆ξ
i∆ξj− 1

2h
∗
ijk(p)∆ξ

i∆ξj∆ξkwithh∗ijk = ∂igjk+Γ∗
jk,i locally. Note

that there exists a global divergenceDS for given (g,∇,∇∗) dual structure (Matumoto [23]).
7.3 Special Skewness tensor Let S be a statistical manifold. Assume that on S there
exists a local coordinate system w.r.t which the contrast function DS is induced locally by
a convex function φ by

(7.11) D(ξo, ξ) =φ(ξ)− φ(ξo)−
∑
j

∂jφ(ξ)(ξ
j − ξjo)

=φ(ξ)− φ(ξo)− < ∂φ(ξo), ξ − ξo >

where φ :OH ⊂ Rk → R is a strictly convex function. Such a divergence is called Bregman
type divergence. Then the metric induced by this divergence is given by

(7.12) gij(ξ) = ∂ξi∂ξjφ(ξ)
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which is the Hessian of φ and the components of the induced dual connections ∇(D) and
∇(D∗)

(7.13) Γ
(D)
ijk = 0 and Γ

(D∗)
ijk = ∂ξi∂ξj∂ξkφ(ξ) (7.14)

and their Riemann curvature tensors are R = R∗ = 0 i.e the connections are dually flat.
Then the skewness tensor C defined by this divergence DS is given by the third order
derivative as

C
(D)
ijk = ∂ξi∂ξj∂ξkφ(ξ) (7.12)

Such special divergences induce on S what is called a Hessian geometry.
Remakrs 34: Such schematic divergence as in (7.11) occurs on dually flat statistical
manifolds (S, g,∇,∇∗). Then there exist affine coordinates θ and η of the connections ∇
and ∇∗ respectively and also there exist potential function ψ(θ) and φ(η) corresponding
to θ and η respectively. The dual coordinate η is the Legendre transform of the convex
function ψ(θ) given by

ηi = ∂iψ(θ) (7.15)

In terms of θcoordinates.

gij(θ) = ∂i∂jψ(θ) ; Γijk(θ) = 0 (7.16)

and
Γ∗
ijk = ∂j∂j∂kψ(θ) (7.17)

where ∂i =
∂
∂θi

.
The dual potential function φ(η) is given by

ϕ(η) = max
θ

{θ · η − ψ(θ} (7.18)

and we have
θi = ∂iφ(η) (7.19)

In dual coordinates η we have

g̃ij(η) = ∂i∂jφ(η) , Γ̃∗
ijk(η) = 0

and
Γ̃ijk(η) = ∂i∂j∂kφ(η) (7.20)

Remark 35: Unlike dualistic manifolds S, the dually flat ones possess a canonical diver-
gence defined in

D(p, q) = ψ(p) + φ(q)−
∑

θi(p)ηi(q) (7.21)

and this one is unique.
Another equivalent way of defining a statistical structure:
Definition 36: A statistical structure on a manifold is triple (M, g,C) where C is a 3-
covariant totally symmetric tensor on the Riemannian manifold (M, g) and C is called the
skewness tensor.
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7.4 Derivation of the usual (M, g,∇,∇∗) statistical manifold from (M, g,C).

Let ∇(0) be the metric connection of g on M . given in the Koszul formula

(7.22) 2g(∇(0)
X Y, Z) =X(g(Y,Z)) + Y (g(Z,X))− Z(g(X,Y ))

+ g([X,Y ], Z)− g([Y,Z], X)− g([X,Z], Y )

In local coordinates the connection components are then

(7.23) Γlij =
1

2
gkl(∂xigkj + ∂xjgik − ∂xkgij)

which are the usual Christoffel symbols.
Then the geometric objects ∇ and ∇∗ are defined by

g(∇XY,Z) = g(∇(0)
X Y,Z)− 1

2C(X,Y, Z)

and g(∇∗
XY,Z) = g(∇(0)

X Y,Z) + 1
2C(X,Y, Z)

}
(7.24)

are torsion-free dual connections and ∇,∇∗ and C are related by

(7.5) g(∇∗
X , Y, Z) = g(∇XY, Z) + C(X,Y, Z)

Also Amari’s α-connection ∇(α) is given by

(7.26) g(∇(α)
X Y,Z) = g(∇(0)

X Y,Z) +
α

2
C(X,Y, Z)

and also
(7.27) ∇g = C, ∇∗g = −C and ∇(α)g − αC

7 α-geometry and its generalization

Let S = {pθ/θ ∈OHopen ⊂ Rn} be a n-dimensional statistical model on sample space χ.
Let (θi)ni=1 be global coordinate system on S. Then the tangent space Tθ(S) to S at θ (i.e.
at pθ) is given by

Tθ(S) =

{
n∑
i=1

αi∂i|αi ∈ R

}
(8.1)

with ∂l =
∂
∂θi

. Then l = log : S → R sending p ∈ S to l(p) = log p(x, θ) ∈ R, x ∈ χ,

θ ∈ OH ⊂ Rn is an embedding map. Equivalently l = log p(x, θ) : R+ → R is monotone
function.
More generally for each α ∈ R, define lα : R+ → R by

u→ lα(u) =
2

1− α
u

1−α
2 , α ̸= 1 ;= log u for α = 1 (8.2)
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Note that this lα is of class C2 and its derivative is nonzero on (0,∞) and interpreting lα
on S by

lα(p) =
2

1− α
p

1−α
2 (α ̸= 1)

= log p(α = 1) (8.3)

gives an embedding of S into the infinite dimensional vector space Rχ = {X : χ → R
“nice” function called Random variable} of random variables on χ, for each α in R. Thus
we have a α-parameter family {lα}α∈R of embeddings of S into Rχ. Each lα = lα(p(x, θ))

is called the α-representation of the density function p(x, θ). For α = 0, lo(p) = (p)1/2;
For α = 1, l1(p) = log p and for α = −1, l−1(p) = p are special representations. We write
simply lα(x, θ) for lα(p(x, θ)).
We know the set of scores {∂il(x, θ)}ni=1 is linearly independent by assumption and also
{∂ilα(x, θ)}ni=1 is a linearly independent set for each α ∈ R.
Define an n-dimensional vector space spanned by the scores (or generalized scores) as in

T 1
θ (S) = {A(x)|A(x) =

n∑
i=1

Ai∂l(x, θ)}

(or more generally,

Tαθ (S) = {Aα(x)|Aα(x) =
n∑
i=1

Ai∂ilα(x, θ)|Ai ∈ R}

which are called the 1-representation (respectively α-representation) of the tangent space
Tθ(S). Infact the map: ∂i → ∂il or ∂ilα(i = 1, 2 · n) gives a natural isomorphism between
Tθ(S) and T

1
θ (S) (or T

α
θ (S)).

Note that under this isomorphism the α-representation of a tangent vector A =
∑
Ai∂i ∈

Tθ(S) is the random variable A(X) =
∑
Ai∂il(x, θ) ∈ T 1

θ (S) for α = 1 (respectively
Aα(x) =

∑n
i=1A

i∂ilα(x, θ) ∈ Tαθ (S). The passage among them is given by the formulae

(8.4) ∂ilα = p
1−α
2 ∂il

and

(8.5) ∂i∂jlα = p
1−α
2 {∂i∂jl +

1− α

2
∂il∂jl}

Remark 37: Note that for each A(x) ∈ T 1
θ (S), Eθ[A(x)] = 0 since Eθ[∂il(x, θ)] = 0, i =

1, 2, · · · , n. Infact, this give a characterization of T 1
θ (S) as T

1
θ (S) = {X : random variable

on χ s.t. Eθ(X) = 0}. This expectation w.r.t.p(x, θ) defined by Eθ(f) =
∫
χ f(x)p(x, θ)dx

defines an inner product on Tθ(S) (or on T 1
θ (S), T

α
θ (S) or even on vector space Rχ) in a

natural way: Let A,B ∈ Tθ(S) with corresponding r.v.s A(x), B(x) ∈ T 1
θ (S) (respectively

Aα(x), Bα(x) ∈ Tαθ ). Then the inner product g =<,> is defined by

g(A,B)(θ) =< A,B >θ= Eθ[A(x)B(x)] =

∫
χ
A(x)B(x)p(x, θ)dx
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(8.6) (respectivelyg(Aα, Bα) = < Aα, Bα >θ= Eθ[Aα(x)Bα(x)]

=

∫
χ
Aα(x)Bα(x){p(x, θ)}αdx (α-expectation)

In particular on basis tangent vectors ∂i and ∂j

gij(θ) =< ∂i, ∂j >θ= Eθ[∂il(x, θ)∂jl(x, θ)] (8.7)

respectively gαij(θ) =< ∂1, ∂j)
α
θ =

∫
χ
∂ilα∂jlαp

αdx (8.8)

Remarks 38: (1) Note that gij in (8.7) is the Fisher metric given earlier.
(2) using formulae (8.5), gαij(θ) =

∫
χ ∂ilα∂jl−αdx =

∫
χ ∂il∂jlpdx = gij(θ) for all α.

(3) Hence each member of Amari’s α-embedding {lα}α∈R induces the Fisher metric only
on S.
(4) As before the n3 Christoffel functions Γ1

ijk defined by

Γ1
ijk(θ) = Eθ[∂i∂jl(x, θ)∂kl(x, θ)] (8.9)

giving the unique affine connection ∇1 on S called the Efron (or exponential) or 1- con-
nection by

Γ1
ijk(θ) =< ∇1

∂i
∂j , ∂k >θ (8.10)

(5) Using the α-representation of the density function define the n3 functions Γαijk for each
α ∈ R by

Γαijk(θ) =

∫
∂i∂jlα(x, θ)∂kl−α(x, θ)p

αdx

(8.11) =

∫ {
∂i∂jl(x, θ) +

(
1− α

2

)
∂il∂jl

}
∂klpdx

these functions uniquely determine an affine connection ∇α on S, called the Amari’s α-
connection as

Γαijk(θ) =< ∇α
∂i
∂j , ∂k > (8.12)

thus we get a one-parameter family {∇α}α∈R of affine connections on the statistical man-
ifold S.
Note that for α = 0, ∇(0) is the Levi-civita connection and for α = −1 it is Dawid’s or
mixture connection, α = 1 it is Efron connection or exponential connection. The differen-
tial geometric study of (S, g;∇α) is called the α-geometry of S.
(6) Amari conjectured that among all possible embeddings of S, the α-family is the only
one which is invariant under (i) reparametrizations (ii) smooth 1-1 transformation of ran-
dom variables [Amari-Nagaoka [3]. (8.13)
We answer this in next sections.
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8 General F -geometry on a statistical manifold S:

We have noted for studying the geometry of families of important distributions of statistics
Burbea and Rao introduced a weighted Fisher metric ds2f where f is a positive C2-function

(atleast cont.). Using a general embedding F (instead of Amari’s lα) and taking a weight
function G, a smooth positive function, we define a general (F,G)-geometry on a statistical
manifold S.

Let F : R+ → R be a function of class atleast C2 and that F ′(u) ̸= 0 for each u ∈ (0,∞).
Then F gives an embedding of S into Rχ taking p(x, θ) into F (p(x, θ)). Denote F (p(x, θ))
simply by F (x, θ). Then

∂iF (x, θ) = p(x, θ)F ′(p)∂il(x, θ) (9.1)

Note that for every θ, the n functions {∂iF (x, θ)}ni=1 are linearly independent functions of
x since {∂il}ni=1 are linearly independent functions of x.

Let TF (pθ)(F (S)) be the n-dimensional vector space spanned by {∂iF}ni=1. Thus

TF (pθ)(F (S)) = {AF (x) ∈ Rχ|AF (x) =
n∑
i=1

Ai∂iF (x, θ) : A
i ∈ R} (9.2)

denoted simply by TFθ (S) which is naturally isomorphic with the tangent space Tθ(S) of

S at pθ by the map ∂i → ∂iF (x, θ). The vector space TFθ (S) given by (9.2) is called the
F -representation of the tangent space Tθ(S). Thus the F -representation of a tangent vector

A =
∑

Ai∂i ∈ Tθ(S) is the r.v. AF (x) =
n∑
i=1

Ai∂iF ∈ TFθ (S) (9.3)

Definition 39: Let G : (0,∞) → R be a positive smooth function (weight function) and
let F be an embedding function. Then (following Burbea) the (F,G)-expectation of a r.v.f
w.r.t the distribution p(x, θ) is defined as

EF,Gθ (f) =

∫
χ
f(x)

1

p(F ′(p))2
G(p)dx (9.4)

Using this, define an inner product on the vector space Rχ of r-variables on χ by

< f, g >F,Gθ = EF,G
θ [f(x)g(x)] (9.5)

which induces a Riemannian metric on S given by

< A.B >F,Gθ = EF,Gθ [AF (x)BF (x)] with A,B ∈ Tθ(S) using (9.3) (9.6)

In terms of basis vectors we have

(9.7) < ∂i, ∂j >
F,G
θ =

∫
χ
∂iF∂jF

G(p)

p(F ′(p))2
ds

=

∫
χ
∂il∂jlG(p)pdx using(9.1)
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which is independent of the embedding F (just like the case of α-embedding above).
We call this metric as the G-metric on S with weight function G (similar to f -weighted
Fisher metric of Burbea-Rao discussed earlier), denote it by gG =<,>G and its components
by gGij(θ) =< ∂i, ∂j >

G
θ =

∫
χ ∂il∂jlG(p)pdx and the matrix (gGij(θ)) is called the G-matrix.

This is the most possible generalization of Fisher information metric and matrix.

Definition 40: Let πF,G|pθ : Rχ → TFθ (S) be the projection map.

The affine connection induced by this map on S called the (F,G)-connection∇F,G is defined
as

∇F,G
∂i

∂j = πF,G|pθ

(
∂2F

∂θi∂θj

)
=
∑
n

∑
m

gG(m,n)⟨ ∂2F

∂θi∂θj
,
∂F

∂θm
⟩F,Gθ ∂n (9.8)

where [gG(m,n)(θ)] is the inverse of the G-matrix [gGmn(θ)].
Note that the (F,G)-connections are symmetric i.e. torsion-free.
Then we can express this (F,G)-connection interms of score function as
(a)

∇F,G
∂i

∂j =
∑
n

∑
m

gG(m,n)Eθ

[{
∂i∂jl +

(
1 +

pF ′′(p)

F ′(p)

)
∂il∂jl

}
∂mlG(p)

]
∂n (9.9)

and (b)

ΓF,Gijk (θ) =

∫
χ

{
∂i∂jl +

(
1 +

pF ′′(p)

F ′(p)

)
∂il∂jl

}
∂klG(p)p dx (9.10)

(connection coefficients) by direct computation.
Theorem 41: Let F and H be two embedding of S into Rχ via such functions from
R+ → R. Let G be a positive smooth weight function on (0,∞). Then the (F,G)-
connection ∇F,G and the (H,G)-connection ∇H,G are dual w.r.t G-metric if an only if the
functions F and G satisfy the relation

H ′(p) =
G(p)

p

1

F ′(p)
(9.11)

For details see [32].
Remarks 42: (1) we call such H if it exists, a G-dual embedding of F . In general for
embedding F such dual H won’t exist. Zhang [34] showed for strict convexity of such F ,
such dual H exists.
(2) The components of the dual connection ∇H,G if it exists are given by

ΓH,Gijk (θ) =

∫ {
∂i∂jl +

(
1 +

pH ′′(p)

H ′(p)

)
∂il∂jl

}
∂klG(p)pdx (9.12)

=

∫ {
∂i∂jl +

(
pG′(p)

G(p)
− pF ′′(p)

F ′(p)

)
∂il∂jlG(p)p

}
dx

This is a straight forward computation and using (9.11).
(3) The Amari α-geometry is a spacial case of our (F,G)-geometry on S. For, taking
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F (p) = lα(p) and G(p) = 1 constant function, we get ΓF,Gijk (θ) = Γαijk(θ) and ΓH,Gijk (θ) =

Γ−α
ijk (θ) and g

G
ij(θ) =

∫
∂il∂jlpdx = gij(θ).

(4) The Levi-civita connection ∇G of the G-metric is an (F,G)-connection ∇F,G with F
given by

F ′(p) =

√
G(p)

p
(9.13)

and for G(p) = 1, ∇G reduces to Amari’s 0-connection ∇(0) with embedding function
F (p) =

√
p which is an integrated version of (9.13).

Example 43: Take F (x) = x lnx− x, G(x) = ln(x). Then the G-dual embedding H of F

is given by H ′(x) = G(x)
xF ′(x) =

lnx
x lnx = 1

x and hence H(x) = lnx.

Then the G-metric is given by

gGij(θ) =

∫
∂il∂jl ln p pdx ;

and its H dual is

ΓH,Gijk =

∫
∂i∂jl∂kl ln p pdx.

=Eθ[∂i∂jl∂klG(p)]

which agrees with Burbea’s formula for the f -geometry.

9 Invariance of (F,G)-geometry

For the stastical manifold S = {p(x, θ)|θ ∈OH ⊂ Rn} the intrinsic goemetrical properties of
S should be independent of the label θ of each point p. There are two kinds of invariance of
the geometric structures namely (a) covariance under reparametrizations of the parameter
space of S. (b) invariance under smooth 1-1 transformations of the random variable. Now
we answer the Amari’s questions in (8.13). We show that the α-geometry on S is the only
invariant geometry among all the possible (F,G)-geometries.
Definition 44: Let (θi) and ηj) be two coordinate systems on S which are related by an
invertible transformation η = η(θ). Let the coordinate expressions for the metric g w.r.t
(θi) and (ηj) be gij =< ∂i, ∂j > and g̃ij =< ∂i, ∂j > where ∂i =

∂
∂θi

and ∂j = ∂
∂ηj

. Let the

components of the connection∇ w.r.t (θi) and (ηj) be given by Γijk, Γ̃ijk respectively. Then
the covariance under the reparametrization of the metric and the connection is defined as

g̃ij =
∑
m

∑
n

∂θm

∂ηi

∂θn

∂ηj
gmn (10.1)

and

Γ̃ijk =
∑
m,n,h

∂θm

∂ηi

∂θn

∂ηj

∂θh

∂ηk
Γmnh +

∑
m,h

∂θh

∂ηk

∂2θm

∂ηi∂ηj
gmh (10.2)
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That is, the covariance under reparametrizations actually means the metric and the con-
nection are coordinate independent.
Definition 45: Let S = {p(x, θ)|θ ∈ OH ⊂ Rn} be a statistical manifold defined on
the sample space χ. Let x and y be random variable defined on sample space χ and Y
respectively and φ be a smooth 1−1 transformation of x to y. Assume this transformation
induces a statistical model.
S̃ = {q(y, θ)|θ ∈OH ⊂ Rn} on Y. Let λ : S → S̃ be a diffeomorphism defined as λ(pθ) = qθ.

Let g, g̃ be Riemannian metrics and ∇, ∇̃ be affine connection on S and S̃ respectively.
Then the invariance under smooth 1-1 transformations of the random variable is defined
as follows:

g(X,Y )p = g̃(λ∗(X), λ∗(Y ))λ(p) (10.3)

and
λ∗(∇XY ) = ∇̃λ∗(X)λ∗(Y ), ∀ X,Y ∈ Tθ(S) (10.4)

where λ∗ is the differential of map λ defined by

λ∗(X)λ(p) = (dλ)p(X)

Note that the Fisher information metric g and the α-connections are invariant under smooth
1-1 transformations of the random variable and also covariant under reparametrization
(refer prop. 8(a) and (b) of §2).
More generally for (F,G)-geometries we have.
Theorem 46: The G-metric gG is covariant under reparametrization.
proof: direct computation using above definition 44.
Theorem 47: The (F,G)-connection ∇F,G is covariant under reparametrization.
Proof: analogous computation to α-connection of Amari [3].
Theorem 48: The (F,G)-geometric structure, the G-metric and the (F,G)-connection
are not invariant under smooth 1-1 transformation of r.v in general.
Corollary 49: The only (F,G)-geometry which is invariant under smooth 1-1 transfor-
mations of the r.v. is the Amari’s α-geometry.
Proof: Using Euler’s homogenous function theorem, we get F ′ is a positive homogeneous
function in p of degree k. Hence F ′(λp) = λkF ′(p)∀λ > 0. Without loss of generality

take F ′(p) = pk. Hence F (p) = pk+1

k+1 , k ̸= −1 and F (p) = log p for k = −1. Take

k = −(1+α2 ), α ∈ R. Then F (p) = 2
1−α p

1−α
2 , α ̸= 1, and = log p for α = 1, which is

Amari’s α-embedding function lα(p), Taking G(p) = k1 = 1 and pF
′′(p)
F ′(p) = k. We get that

the (F,G)-geometric structure is simply the α-geometry.
Remarks 50: (1) The fact that (F,G)-geometry on S is non-invariant under smooth
1-1 transformation of r.v.: is very natural as there will be information loss under such
transformation unless the statistics is a good one which gives substance to the concept
“sufficient statistic”.
(2) The (F,G)-geometries play an important role in asymptotic estimation and inference
[5].
(3) Among these the original Fisher metric g on S enjoys a special place. Infact, it is a deep
result that the Fisher metric on S is unique w.r.t the two properties (a) gij is invariant
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under reparametrization of the sample space χ (b) gij is covariant under reparametrization
of the parameter space OH
following the works of Cencov [16] and Corcuera and Giummolé [17].
Remarks 51: (1) The geometry of exponential families, deformed q-exponential families
and χ-deformed families has rich applications to statistical physics [2,10,19,33].
(2) The geometries of statistical manifolds can be studied at a more general level namely the
geometry of parametrized measure models and non-parametric measure models [6],[15],[25],[26],[11]
and in [3].
(3) We will discuss in a sequel the geometry of Statistical manifold arising from various
divergences, the relations among them and also to generate new canonical divergences in
information geometry [31],[7].
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