Weighted representations of transformation groups induced by weighted composition operators

R.K. Singh,

Department of Mathematics and Astronomy, University of Lucknow, Lucknow

email: rajkishor@hotmail.com;

P. Singh

Hewlett-Pachard, 14231 Tandem Blvd., Austin-TX-78728, USA

email: pramod.singh@hp.com

V. K. Pandey

Department of Mathematics and Astronomy, University of Lucknow, Lucknow

email: vikashpandeylko@rediffmail.com

Abstract

In this article we have presented a special class of the weighted composition operators induced by action π and co-cycles on G giving rise to a representation of group G, and apply them for some special groups to have applications in study of flows on topological space X and semigroups of operators.

Subject class [2010]:Primary 47B33, ; Secondary 22E05, 22E60.
Keywords: Weighted composition operators, , Multiplier representations, Lie groups,
Tranformation groups.

1 Introduction and Preliminaries:

Let (X, G, π) be a transformation group, where X is a locally compact topological space, G is a topological group and π is an action of G on X i.e $\pi: X \times G \to X$ is a continuous map such that $\pi(x, e) = x$ and $\pi(x, gh) = \pi(\pi(x, g), h)$, for all $x \in X$ and $g, h \in G$, where e is the identity element of G. Let E be a Banach space and let $C_b(X, E)$ denote the Banach space of all bounded E-valued continuous functions on X under sup-norm and pointwise linear operations. If $\varphi: X \to X$ is a continuous map, then the mapping $f \to f \circ \varphi$ is a bounded (linear) operator on $C_b(X, E)$ and we denote it by C_{φ} , which is called the composition operator induced by φ . In case φ is a homeomorphism, C_{φ} is an isometric isomorphism. If X is a compact space, then every onto isometry is a weighted multiplier of C_{φ} . This is well known Banach-Stone theorem. If $\theta: X \to \mathbb{C}$ (or B(E)) is a continuous map, then $f \to \theta \cdot f$ is a linear transformation on $C_b(X, E)$, where B(E) is Banach algebra of all bounded linear operators on E. In case θ is bounded, $f \to \theta \cdot f$ is a linear operator on $C_b(X, E)$ and we

denote it by M_{θ} , which is known as the multiplication operator induced by the map θ . The operator $M_{\theta}C_{\varphi}$ is known as the weighted composition operator on $C_b(X, E)$ induced by θ and φ . Thus $(M_{\theta}C_{\varphi})(x) = \theta(x) \cdot f(\varphi(x))$, for $x \in X$ and $f \in C_b(X, E)$. We denote the operator $M_{\theta}C_{\varphi}$ by W_{φ}^{θ} . These operators have been the subject matter of study for more than four decades and have many applications in representation theory, wavelet theory, dynamical systems and semi-group of operators. For details we refer to [2, 4, 9]. In this article we have presented a special class of the weighted composition operators induced by action π and co-cycles on G giving rise to a representation of group G, and apply them for some special groups to have applications in study of flows on X and semigroups of operators.

1.1 Composition operators induced by a transformation group

Let (X, G, π) be a transformation group. Let $g \in G$. Then define $\pi_g : X \to X$ by $\pi_g(x) = \pi(x, g)$. Since

$$\pi_g \circ \pi_{g^{-1}}(x) = \pi_g(\pi_{g^{-1}}(x))
= \pi_g(\pi(x, g^{-1}))
= \pi(\pi(x, g^{-1}), g))
= \pi(x, g^{-1}g)
= \pi(x, e)
= x,$$

the map π_g belongs to H(X,X), the group of all homeomorphisms of X. Since

$$\pi_{gh}(x) = \pi(x, gh)$$

$$= \pi(\pi(x, g), h)$$

$$= \pi_h(\pi_g(x)),$$

we have $\pi_{gh} = \pi_h \circ \pi_g$. The mapping π_g gives rise to the composition operator C_{π_g} on $C_b(X,E)$ given by $C_{\pi_g}f = f \circ \pi_g$. The composition operator C_{π_g} is denoted by C_g . Let $\psi: G \to H(X,X)$ be the map defined as $\psi(g) = \pi_g$ and let $\psi': G \to B(C_b(X,E))$ be the map defined as $\psi'(g) = C_g$. It is clear that $\psi(gh) = \pi_{gh} = \pi_h \circ \pi_g$. Thus ψ is an anti-homomorphism and $\psi(G)$ is a non-abelian subgroup of H(X,X) with $\pi_g^{-1} = \pi_{g^{-1}}$. $Ker\psi$ is closed in G if X is a Hausdorff space and G acts effectively iff $Ker\psi = \{e\}$. Since $\psi'(gh) = C_{gh} = C_g C_h, \psi'$ is a homomorphism from G to group $\{C_g: g \in G\}$ of all composition operators induced by elements of G. By G_G , we denote the group of all composition operators on $G_b(X,E)$ induced by elements of G. We shall record some results in the following theorem.

Theorem 1.1. Let (X,G,π) be a transformation group and E be a Banach space. Then

1. $C_b(X, E)$ is a Banach space and if E is a Banach algebra, then $C_b(X, E)$ is also a Banach algebra.

- 2. For every $g \in G$, C_g is a bounded linear operator on $C_b(X, E)$ with $||C_g|| = 1$.
- 3. For $g \in G$, C_g is an isometric isomorphism on $C_b(X, E)$ with $C_g^{-1} = C_{g^{-1}}$ and the set $C_G = \{C_g : g \in G\}$ is a group under operation of operator multiplication.
- 4. The mapping $\psi': G \to C_G$ defined as $\psi'(g) = C_g$ is a homomorphism and ψ' is a representation of G in terms of composition operators induced by elements of G.
- 5. The mapping $\psi'': G \to H(X,X)$ defined by $\psi''(g) = \pi_{g^{-1}}$ is a homomorphism.

Outline of the proof:

- 1. For proof we refer to [9].
- 2. Since $||C_g f|| = \sup ||f(\pi_g(x))|| = ||f||$. We have $\frac{||C_g f||}{||f||} = 1$, for every $f \in C_b(X, E)$. Hence $||C_g|| = 1$.
- 3. Also $C_g^{-1} = C_{g^{-1}}$ since $C_{g^{-1}}C_g f = C_{g^{-1}}(f \circ \pi_g) = f \circ \pi_g \circ \pi_{g^{-1}} = f \circ \pi_e = f$.
- 4. $[\psi'(e)f](x) = (C_e f)(x) = (f \circ \pi_e)(x) = f(\pi(x,e)) = f(x)$, for every $x \in X$ Thus $\psi'(e) = 1$.

Let $g, h \in G$ and let $f \in C_b(X, E)$. Then $\psi'(gh)f = C_{gh}f = f \circ \pi_{gh} = f \circ (\pi_h \circ \pi_g) = \psi'(g)\psi'(h)(f)$, for all $f \in C_b(X, E)$.

Thus $\psi'(gh) = \psi'(g)\psi'(h)$. This shows that ψ' is a homomorphism and hence a representation of G.

5.

$$\psi''(gh)f = \pi_{(gh)^{-1}}f$$

$$= \pi_{h^{-1}g^{-1}}f$$

$$= (\pi_{g^{-1}} \circ \pi_{h^{-1}})(f)$$

$$= \pi_{g^{-1}}(\pi_{h^{-1}}f)$$

$$= \pi_{g^{-1}}(\psi''(h)f)$$

$$= \psi''(g)\psi''(h)f, forevery f \in C_b(X, E).$$

Thus $\psi''(gh) = \psi''(g)\psi''(h)$. This shows that ψ'' is a homomorphism. If G is a semi-group with identity, a topology on it such that operation on G is continuous and $\pi: X \times G \to X$ is an action of G on X, then (X, G, π) is called semi-transformation group. If $g \in G$, then certainly C_g is a bounded operator on $C_b(X, E)$ but it may not be invertible. But $g \to C_g$ is a representation of semigroup G. If $G = \mathbb{R}$ with usual topology, then (\mathbb{R}, X, π) is called continuous dynamical system and if $G = \mathbb{R}^+$, then (\mathbb{R}^+, X, π) is known as semi-dynamical system. If $G = \mathbb{Z}$ or Z^+ , then we have discrete dynamical systems. These dynamical systems make contact with several areas of Mathematics and Mathematical physics.[1, 4].

The translation operators on $C_b(\mathbb{R}, E)$ or $C_b(\mathbb{R}^+, E)$ give a representation of the additive group \mathbb{R} .

In general, any topological group G has representation on $C_b(G, E)$ as it acts on itself through operation on G. In particular every Lie-group has a representation on space of analytic functions on G [13]. If $G = \mathbb{Z}$, then it has a representation on Hilbert space $l^2(\mathbb{Z})$ through shift operators.

2 Some weighted composition operators associated with a transformation group

Let (X, G, π) be a transformation group. Let $\nu: X \times G \to \mathbb{C}$ (or B(E)) be a continuous map. For $g \in G$, let the map $\pi_g: X \to X$ be defined as $\pi_g(x) = \pi(x, g)$, for every $x \in X$ and $\nu_g: X \to \mathbb{C}$ (or B(E)) be defined as $\nu_g(x) = \nu(x, g)$ for $x \in X$. For $h, g \in G$, define the map $\nu_h C_g: C_b(X, E) \to C_b(X, E)$ as $\nu_h C_g f = \nu_h f \circ \pi_g$. Then $\nu_h C_g$ is the weighted composition operator on $C_b(X, E)$ induced by the pair (h, g). In case ν_h is a bounded function on X, $\nu_h C_g$ is a continuous operator on $C_b(X, E)$. Define the map $\psi: G \times G \to L(C_b(X, E))$ by $\psi(h, g) = \nu_h C_g$. In case h = e, $\psi(e, g) = C_g$ (composition operator induced by π_g). In the following theorem, we record some properties of weighted composition operators.

Theorem 2.1. Let (X, G, π) be a transformation group and $\nu : X \times G \to \mathbb{C}$ be a continuous map. Then

- 1. $\nu_h C_q$ is bounded iff ν_h is bounded.
- 2. $\nu_h C_q$ is invertible iff $\nu_h(x) \neq 0$ for every $x \in X$.

Outline of the proof: For the proof of (1), (2), we refer to [13].

Consider the map $\hat{T}: G \to L(C_b(X, E))$ defined by $\hat{T}(g) = \nu_g C_g$. This map is not necessarily a homomorphism.

Definition 2.1. By a scalar-valued co-cycle over G, we mean a continuous map $w: X \times G \to \mathbb{C}$ such that $w(x,gh) = w(\pi_h(x),g)w(x,h)$ for $g,h \in G, x \in X$. For $g \in G$, we define $w_g: X \to \mathbb{C}$ by $w_g x = w(x,g)$. It is clear that $w_g \in C(X)$, the vector space of all continuous functions on X. Let $W = \{w_g: g \in G\}$, W is called the family of weights induced by co-cycle w. For $g,h \in G$, define the map W_g^h on $C_b(X,E)$ as $W_g^h f = w_g.f \circ \pi_h$. Clearly it is a linear transformation and if w_g is a bounded function, then W_g^h is a continuous operator on $C_b(X,E)$. Define $S: G \to B(C_b(X,E))$ by $w_g C_g$. Then $\{S(g): g \in G\}$ is a semigroup of weighted composition operators induced by the pair (w,π) .

Let $f \in C_b(X,\mathbb{C})$ such that $f(x) \neq 0$, for every $x \in X$. Let $G = \mathbb{R}$. Then define a map

 $w_t: X \to \mathbb{C}$ by $w_t(x) = \frac{f(x)}{f(\pi_t x)}$. Then $w_t(x)$ is a cocycle, since $w_0(x) = \frac{f(x)}{f(\pi_0 x)} = 1$ and

$$w_s(x)w_t(\pi_s(x)) = \frac{f(x)}{f(\pi_s x)} \cdot \frac{f(\pi_s(x))}{f(\pi_t(\pi_s(x)))}$$
$$= \frac{f(x)}{f(\pi_t \circ \pi_s(x))}$$
$$= \frac{f(x)}{f(\pi_{s+t}(x))}$$
$$= w_{s+t}(x).$$

. For more examples we refer to [4, 5]

Definition 2.2. Let (X, G, π) be transformation group. By an operator-valued co-cycle over $G(\text{or }\pi)$, we mean a map $\nu: X \times G \to B(E)$ such that

- 1. ν is strongly continuous i.e continuous with respect to strong topology on B(E).
- 2. $\nu(x, gh) = \nu(x, g)\nu(\pi(x, g), h)$.
- 3. $\nu(x,e) = I$, for every $x \in X$.

In case $G = \mathbb{R}$ with addition and if there exist M > 0 and w > 0 such that $\|\nu(x,t)\| \leq Me^{wt}$ for $t \in \mathbb{R}$, and $x \in X$, then co-cycle ν is called exponentially bounded. If ν is a co-cycle, then define map $\hat{\pi}_g : X \times E \to X \times E$ by $\hat{\pi}_g(x,y) = (\pi_g(x), \nu_g(x)y)$. Then $(X \times E, G, \hat{\pi})$ is a transformation group.

- 1. Let $G = \mathbb{R}$ and $\pi(s,t) = s+t$ be action on \mathbb{R} . Let $\{U(s,t) : s \geq t, s, t \in \mathbb{R}\}$ be strongly continuous exponentially bounded evolution family on E. Define $\nu(s,t) = U(s+t,s)$. Then ν is an operator-valued co-cycle. This cocycle is closely related to Abstract Cauchy Problem [11].
- 2. If $A \in B(E)$ and define $\nu : \mathbb{R} \times \mathbb{R} \to B(E)$ as $\nu(t,s) = e^{tA}$. Then ν is a co-cycle.
- 3. Let $G = \mathbb{R}$ and $X = \mathbb{R}$ and $A : \mathbb{R} \to B(E)$ be a norm-continuous function. Let $\frac{dx}{dt} = A(t)x$ be a differential equation. Suppose the evolution family $\{u(s,t): t,s \in \mathbb{R}\}$ is defined so that $t \to x(t)$ is a solution of differential equation given above. Let $\pi(s,t) = s + t$ be an action on \mathbb{R} . Define $\nu(s,t) = u(s+t,s)$. Then ν is a co-cycle over π and $A(t) = \frac{d}{dt}\nu(t,s)$ at s = 0.
- 4. Let X be a compact metric space and $\pi: X \times G \to X$ be an action (flow). Let $A: X \to B(E)$ be a (norm) continuous function. Consider the differential equation $\frac{dy}{dt} = A(\pi_t(x)y), s \in X$ and $t \in \mathbb{R}$. If $\nu_t(x)$ is the solution operator for above differential equation i.e. $y(t) = \nu_t(x)y(0)$, then the co-cycle $\nu_t(x)$ is norm continuous in x. This co-cycles is smooth with $A(x) = \frac{d}{dt}\nu_t(x)$ at $t = 0, x \in X$.

For more examples of operator-valued co-cycles and their applications in solutions of Abstract Cauchy Problems, we refer to [4, 11].

In the following theorem, we present a representation of transformation group G in terms of the bounded weighted composition operators induced by a co-cycles and action G.

Theorem 2.2. Let (X, G, π) be a transformation group and let ν be a cocycle over G. Then $\nu_g C_g$ is a weighted composition transformation on $C_b(X, E)$ and the mapping \hat{T} : $G \to B(C_b(X, E))$ given by $\hat{T}(g) = \nu_g C_g$ is a (faithful) weighted representation of G, where $B(C_b(X, E))$ is the algebra of all bounded operators on $C_b(X, E)$.

Outline of the proof: We have already seen that $\nu_h C_g$ is a weighted composition transformation on $C_b(X, E)$. We shall show that the mapping \hat{T} is a representation.

- 1. Since $[\hat{T}(g)f](x) = [\nu_g C_g f](x)$ for every $f \in C_b(X, E), g \in G$ and $x \in U$, we have $[\hat{T}(e)f](x) = \nu_e(x)(C_e f)(x) = \nu(x, e)f(\pi(x, e)) = f(x)$. Hence $\hat{T}(e) = 1$.
- 2. Let g and h be in G. Then for $f \in C_b(X, E)$,

$$\hat{T}(gh)(f) = \nu_{gh}C_{gh}f
= \nu_{g}.\nu_{h} \circ \pi_{g} \cdot f \circ \pi_{h} \circ \pi_{g}
= \nu_{g}.(\nu_{h}.f \circ \pi_{h}) \circ \pi_{g}
= \nu_{g}.(\hat{T}(h)f) \circ \pi_{g}
= \hat{T}(g)\hat{T}(h)f.$$

Thus $\hat{T}(gh) = \hat{T}(g)\hat{T}(h)$. This shows that \hat{T} is a homomorphism and hence a multiplier representation of G induced by co-cycle ν

References

- [1] C. Chicone and Y. Latuskin, Evolution semigroups in dynamical systems and differential equations, Math Survey, Monograph No. 70, Amer. Math. Soc. Providence (1999).
- [2] J. E. Jamison and M. Rajagopalan; Weighted composition operators on C(X, E), J. operator theory, 19(1988), 307-317.
- [3] F. Jafari, T. Tonov and E. Toneva, Automatic differentiability and characterization of co-cycles of holomorphic flows, Proc. Amer. Math.Soc. 133(2005), 3359-3394.
- [4] F.Jafari, Z. Slodkowski and T. Tonev: Semigroups of operations on Hardy spaces and co-cycle of flows, IMA Preprint series 2220, University of Minissota, July 2008.
- [5] F. Jafari, T. Tonev, E. Toneva and K.Yake: Holomorphic flows, co-cycles and coboundaries, Michigan Math. J. 44(1997)239 253.
- [6] W. Miller, Jr: Lie theory and special functions, Academic Press, NewYork, London, 1968.
- [7] Gadadhar Mishra: Differentiation, homogenous operators and matrix valued co-cycles for the mobius groups; The Mathematics Student 81, No 1-4, (2012), pp. 135-143.

- [8] John M. Lee: Introduction to smooth manifolds, Graduate Texts in Mathematics Springer, NewYork, 2013.
- [9] R.K. Singh and J.S. Manhas: Composition operators on function spaces, North-Holland Publishing Co., Amsterdam, London, N.Y. 1993.
- [10] R.K.Singh and W.H. Summers: Composition operators on weighted spaces of continuous functions, J. Austral. Math Soc. Series A 45 (1988), 303-319.
- [11] R.K. Singh, and V.K. Pandey: Weighted composition operators and non-autonomous abstract cauchy problems; Ramanujam Math Soc., Newsletter Vol.19, No.2 (2010).
- [12] R.K.Singh, Vivek Sahai and V.K. Pandey: Weighted substitution operators on $L^p(\mathbb{R})$ and wavelet theory; Ramanujam Math Soc., Newsletter Vol.21 (2011), 6-16.
- [13] R.K. Singh, Vivek Sahai and V. K. Pandey: Weighted composition transformations and Lie group representations, Ganita Vol. 62, 2011, 27-34.