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Abstract

The problem dealt in this paper was motivated by a beautiful re-
sult due to Sharma and Szabados [5], where they have given the exis-
tence of a few interpolation processes, on a mixed set of nodes. Here we
have considered the problem of existence, uniqueness, explicit represen-
tation and convergence of an almost (0, 2)- interpolation on the zeros
of xπn(x) = x(1 − x2)P ′

n−1(x), Pn−1(x) denotes the (n − 1)th Legendre
polynomial.
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1 Introduction

Let (n+ 1) points in the interval [−1, 1] be such that

−1 = xn,n < xn−1,n < · · · < x1,n = 1,(1.1)

where {xi,n}ni=1 and x0,n are the zeros of xπn(x) = x(1 − x2)P ′
n−1(x), Pn−1(x) denotes

the (n − 1)th Legendre polynomial with Pn−1(1) = 1. Further for arbitrarily given real
numbers:

{αi,n}ni=0and{βi,n}ni=1(1.2)

we seek to find a polynomial Sn(x) of minimal possible degree satisfying the conditions:

Sn(xi,n) = αi,n; i = 0, 1, 2, · · · , n(1.3)

S′′
n(xi,n) = βi,n; i = 1, 2, · · · , n(1.4)

then we call Sn(x) as an Almost (0,2) interpolation polynomial.
The problem of (0, 2) interpolation on the zeros of πn(x) = (1−x2)P ′

n−1(x) was initiated
by J. Balázs and P. Turán [1]. Since then led to number of extensions and generalizations
most of which are listed in the book on Birkhoff Interpolation [2] by Lorentz et. al.
The problem dealt in this paper was motivated by a beautiful result due to Sharma and
Szabados [5], where they have given the existence of a few interpolation processes, on a
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mixed set of nodes. They have shown that the problem of (0, 2) interpolation on the zeros
of πn(x) is regular when n is even. If n is odd the problem is not regular. In this paper,
we consider n to be even and consider an additional node x = 0 making the problem
analogous to that discussed in [5] for n odd. We shall discuss the existence, uniqueness
and explicit representation of the interpolatory polynomial Sn(x) when n is even (but the
number of nodes is odd). Quantitative estimate of the interpolatory polynomial has also
been obtained.

In section 2, we give preliminaries. Existence, uniqueness and the explicit representation
of the interpolatory polynomials have been dealt with in Section 3. Sections 4 and 5 are
devoted to the estimation of the fundamental polynomials and proof of the convergence
problem respectively.

2 Preliminaries

The differential equation satisfied by Pn−1(x) [6] is

(1− x2)P ′′
n−1(x)− 2xP ′

n−1(x) + n(n− 1)Pn−1(x) = 0(2.1)

and that by πn−1(x) is

(1− x2π′′
n(x) + n(n− 1)πn−1(x) = 0(2.2)

which obviously gives

π′′
n(xj) = 0 , j = 2, 3, · · · , n− 1.(2.3)

For k = 1, 2, · · · , n, we have

ℓk(x) =
πn(x)

(x− xk)π′
n(xk)

(2.4)

and for k = 1, 2, · · · , n

Lk(x) =
xπn(x)

xk(x− xk)π′
n(xk)

.(2.5)

Also, for −1 ≤ x ≤ 1 [6], we have

∣∣∣(1− x2)1/4Pn−1(x)
∣∣∣ ≤ √

2

π(n− 1)
,(2.6)

∣∣∣(1− x2)3/4P ′
n−1(x)

∣∣∣ ≤ √
2n,(2.7)

∣∣P ′
m(x)

∣∣ ≤ m(m+ 1)

2
(2.8)
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and

|πn(x)| ≤
√

2n

π
.(2.9)

Let 0 < θ2 < θ4 · · · < θ2n < π be the zeros Pn−1(cosθ), then [6] we have

2(k − 3

4
)

π

n− 1
< θ2k , 0 < θ2k <

π

2
(2.10)

and ∣∣1− x2k
∣∣ > k2

4(n− 1)2
.(2.11)

Also by [1]

|Pn−1(xk)| >
√

1

8kπ
.(2.12)

and

ℓ2j (x) ≤
n∑

k=1

ℓ2k(x) ≤ 1.(2.13)

3 Existence, Uniqueness and Explicit Representation of the Interpolatory
Polynomials

We shall prove the following:

Theorem 3.1. Let n be even and the (n+1) points in [-1, 1] be given by (1.1), then to the
prescribed numbers (1.2), there exists a unique polynomial Sn(x) of degree ≤ 2n satisfying
the conditions (1.3)- (1.4). In particular, if Sn(xi) = 0 for i = 0, 1, · · · , n and S′′

n(xi) = 0
for i = 1, · · · , n then Sn(x) ≡ 0. But if n is odd, there is in general no polynomial of degree
≤ 2n, which satisfies the conditions (1.3)- (1.4). If there exists such a polynomial, then
they are infinitely many.

Proof. Let Q(x) be another polynomial of degree ≤ 2n satisfying the conditions (1.3) -
(1.4) viz.

Q(xi,n) = αi,n; i = 0, 2, · · · , n
Q′′(xi,n) = βi,n; i = 1, 2, · · · , n

then we have

Sn(xi,n)−Q(xi) = 0; i = 0, 2, · · · , n(3.1)

S′′
n(xi,n)−Q′′(xi,n) = 0; i = 1, 2, · · · , n(3.2)
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which implies

Sn(x)−Q(x) = xπn(x)qn−1(x)(3.3)

where qn−1(x) is a polynomial of degree ≤ n− 1. On applying (3.2) we get

{xqn−1(x)}′x=xi
= 0; i = 2, 3, · · · , n− 1,

which implies

{xqn−1(x)}′ = (c1x+ c2)P
′
n−1(x),

where c1 and c2 are constants. Thus,

xqn−1(x) =

∫ x

−1
(c1x+ c2)P

′
n−1(x)dx+ c3.(3.4)

Putting this value in (3.3) and applying the conditions (3.1)-(3.1) we get c1 = c2 = c3 = 0
leading to qn−1(x) = 0. Hence Sn(x) ≡ Q(x), which proves that for n even Sn(x) exists
uniquely.

For n odd, c1 and c2 remain undetermined and c3 = 0, leading to infinitely many
polynomials.

The uniquely determined polynomial Sn(x) satisfying the conditions (1.3) and (1.4), is
given by

Sn(x) =

n∑
i=0

αiAi(x) +

n∑
i=1

βiBi(x)(3.5)

where {Ai(x)}ni=0 and {Bi(x)}ni=1 are the fundamental polynomials each of degree ≤ 2n,
which are uniquely determined by the following conditions:
For i = 0, 2, · · · , n

(3.6)

{
Ai(xj) = δij , j = 0, 1, · · · , n
A′′

i (xj) = 0, j = 1, 2, · · · , n

and for i = 1, 2, · · · , n

(3.7)

{
Bi(xj) = 0, j = 0, 1, 2, · · · , n
B′′

i (xj) = δij , j = 1, 2, · · · , n

The explicit representation of the fundamental polynomials are given in the following:
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Theorem 3.2. For n even, the fundamental polynomials B1(x), Bn(x)satisfying the con-
ditions (3.7), can be represented as

B1(x) = πn(x)

[∫ x

−1
(c4x+ c5)P

′
n−1(x)dx+ c6

]
(3.8)

where

c4 = − 1

n2(n− 1)2

[
3−

∫ 0

−1
P ′
n−1(x)dx

]−1

,(3.9)

c6 = 2c4

∫ 0

−1
P ′
n−1(x)dx,(3.10)

c5 = c4 −
1

2
c6(3.11)

and

Bn(x) = πn(x)

[∫ x

1
(c7x+ c8)P

′
n−1(x)dx+ c8

]
,(3.12)

where

c7 = − 1

n2(n− 1)2

[
3 +

∫ 1

0
P ′
n−1(x)dx

]−1

c9 = −2c7

∫ 1

0
P ′
n−1(x)dx

c8 = −c7 −
1

2
c9.

Theorem 3.3. The fundamental polynomials A0(x) satisfying the conditions (3.6) can be
represented as

A0(x) =
πn(x)

πn(0)
+ c11B1(x) + c12Bn(x)(3.13)

where

c11 = −n

2

[∫ 0

−1
Pn−1(x)dx

]−1

.

and

c12 =
n

2

[∫ 1

0
Pn−1(x)dx

]−1

.
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Theorem 3.4. For n even, the fundamental polynomials {Bi(x)}n−1
i=2 satisfying the condi-

tions (3.7), can be represented as

Bi(x) =
πn(x)

2π′
n(xi)

∫ x

−1
ℓi(x)dx+ c1iB1(x) + c2iA0(x)(3.14)

where

c1i = − π′′
n(1)

2π′
n(xi)

∫ 1

−1
ℓi(x)dx(3.15)

and

c2i = − πn(0)

2π′
n(xi)

∫ 0

−1
ℓi(x)dx.(3.16)

Theorem 3.5. The fundamental polynomials {Ai(x)}n−1
i=2 satisfying the conditions (3.6),

can be represented as

Ai(x) = L2
i (x)−

2

x2i
Bi(x) + c3iB1(x) + c4iA0(x)(3.17)

− πn(x)

xiπ′
n(xi)

∫ x

−1

xL′
i(x)− Li(x)

x− xi
dx,

where

c3i = −n2(n− 1)2

2xiπ′
n(xi)

∫ 1

−1

xL′
i(x)− Li(x)

x− xi
dx(3.18)

and

c4i = − πn(0)

xiπ′
n(xi)

∫ 0

−1

xL′
i(x)− Li(x)

x− xi
dx.(3.19)

Theorem 3.6. The fundamental polynomials Ap(x), p = 1, n with x1 = 1, xn = −1, satis-
fying the conditions (3.6), can be represented as,

Ap(x) = x

[
x+ 3xp

4
ℓ2p(x)−

1− x2

4
ℓp(x)ℓ

′
p(x)

]
+c13pBp(x) + c14pA0(x)−

πn(x)

4π′
n(xp)

2

[
(x+ xp)

2P ′
n−1(x)(3.20)

−2(x+ xp)Pn−1(x) + 2

∫ x

−xp

Pn−1(x)dx
]
,
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where

c13,1 = − 3

16
n(n− 1)(n2 − n+ 10)− 1

8
(n+ 1)(n− 2)(n2 − n+ 1),

c13,n =
11

8
n(n− 1) +

3

16
n2(n− 1)2 +

1

8
(n+ 1)(n− 2)(n2 − n− 1)

and

c14p = − πn(0)

4n2(n− 1)2

[
P ′
n−1(0) + 2

∫ 0

xp

Pn−1(x)dx
]
.

The polynomial Sn(x), for n even satisfies the following quantitative estimate:

Theorem 3.7. Let f ∈ C2[−1, 1], then

Sn(f, x) =

n∑
i=0

f(xi)Ai(x) +

n∑
i=1

f ′′(xi)Bi(x)(3.21)

satisfies the relation:

|f(x)− Sn(f, x)| = O(1)

[
δ2n(x)ω

(
f ′′, δn(x)

)
(3.22)

+
1

n2

n/2∑
k=2

√
kω

(
f ′′, δn(xk)

)
+

1

n3/2

n/2∑
k=2

1

x2k
ω
(
f ′′, δn(xk)

) ]
,

where O(1) is independent of n and x.

We will prove only our main Theorem 3.7 as the proof of other Theorems is quite similar
to that of theorems in [4]. In order to prove the theorem, we shall need the estimates of
the fundamental polynomials.

4 estimation of the fundamental polynomials

We may need the following result proved in [1]:

Lemma 4.1. For k = 2, 3, · · · , n− 2(n > 2)∣∣∣∣∫ x

−1
ℓk(x)dx

∣∣∣∣ ≤
{

8
|π′

n(xk)| +
2(1−x2

k)

(xk−x)|π′
n(xk)| , x ̸= 1

16kπ
n(n−1) , x = 1.

(4.1)

Lemma 4.2. For Bp(x), p = 1, n given in Theorem 3.2, we have

|Bp(x)| ≤
1

n3/2(n− 1)2
.(4.2)
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Proof. We prove the lemma for p = 1 as for p = n the lemma follows on same lines. From
(3.8), we have

|B1(x)| ≤ |πn(x)|
[∣∣∣∣∫ x

−1
(c4x+ c5)P

′
n−1(x)dx

∣∣∣∣+ |c6|
]

(4.3)

Since

3−
∫ 0

−1
Pn−1(x)dx = 3−

P ′
n−1(0)

n(n− 1)
> 3− n1/2

n(n− 1)
> 2(4.4)

therefore, by (3.9), we have

|c4| ≤
4

n2(n− 1)2
.(4.5)

The estimates of c5 and c6 given by (3.11) and (3.10) can be obtained similarly. Thus by
(4.3) the Lemma follows.

Lemma 4.3. For −1 ≤ x ≤ 1 and k = 2, 3, · · · , n− 1, we have

|Bk(x)| ≤
(1− x2k) |ℓk(x)|

√
k

n(n− 1)
+

k3/2

n3/2(n− 1)2
, 2 ≤ k ≤ n

2

and

|Bk(x)| ≤
(1− x2k) |ℓk(x)|

√
n− k

n(n− 1)
+

(n− k)3/2

n3/2(n− 1)2
,

n

2
+ 1 ≤ k ≤ n− 1.

Proof. Obviously it suffices to prove the first assertion. Let x < xk < 1. By (3.14), we
have

|Bk(x)| ≤
∣∣∣∣ πn(x)

2π′
n(xk)

∣∣∣∣ ∣∣∣∣∫ x

−1
ℓk(x)dx

∣∣∣∣+ |c1kB1(x)|+ |c2kA0(x)| .(4.6)

From (3.15) using (2.12) and Lemma 4.1, we have

|c1k| ≤
√
8kπn(n− 1)

∣∣∣∣∫ 1

−1
ℓk(x)dx

∣∣∣∣ ≤ (8kπ)3/2.(4.7)

Also by (3.16), it follows that

|c2k| ≤
√
8kπ

2n3/2(n− 1)2
.(4.8)

Hence the lemma follows at once by (4.6)-(4.8), |r0(x)| = O(1) and Lemmas 4.1 and 4.2.
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Lemma 4.4. For −1 ≤ x ≤ 1 and k = 2, 3, · · · , n− 1, we have

|Ak(x)| ≤
c

x2n

(√
k +

√
n√
k

)
, 1 ≤ k ≤ n

2

and

|Ak(x)| ≤
c

x2n−k

(√
n− k +

√
n√

n− k

)
,

n

2
+ 1 ≤ k ≤ n− 1

Proof. We confine ourselves to the case 2 ≤ k ≤ n
2 and −1 < x < xk. By (3.17), we have

|Ak(x)| ≤ L2
k(x) +

2

x2k
|Bk(x)|+ |c3kB1(x)|+ |c4kA0(x)|

+

∣∣∣∣ πn(x)

xkπ′
n(xk)

∫ x

−1

xL′
k(x)− Lk(x)

x− xk
dx

∣∣∣∣ ,
≤ L2

k(x) +
2

x2k
|Bk(x)|+ I1 + I2 + I3(4.9)

Since ∫ x

−1

xL′
k(x)− Lk(x)

x− xk
dx =

1

xk

∫ x

−1

x2ℓ′k(x)

x− xk
dx =

1

xk

[
(x+ xk)ℓk(x)

+

∫ x

−1
ℓk(x)dx+ x2k

{
ℓk(x)

x− xk
+

∫ x

−1

ℓk(x)

(x− xk)2
dx

}]
.

Thus

I3 ≤
∣∣∣∣ x2πn(x)ℓk(x)

x2k(x− xk)π′
n(xk)

∣∣∣∣+ ∣∣∣∣ πn(x)

x2kπ
′
n(xk)

∣∣∣∣ ∣∣∣∣∫ x

−1
ℓk(x)dx

∣∣∣∣
+2

∣∣∣∣ πn(x)π′
n(xk)

∣∣∣∣ ∣∣∣∣∫ x

−1

ℓk(x)

(x− xk)2
dx

∣∣∣∣
which reduces to

I3 ≤ L2
k(x) + ℓ2k(x) +

∣∣∣∣ πn(x)

x2kπ
′
n(xk)

∣∣∣∣ ∣∣∣∣∫ x

−1
ℓk(x)dx

∣∣∣∣(4.10)

≤
√
8π

(n− 1)x2k

[√
8π√
n

+
(1− x2k)√

k
|ℓk(x)|+

√
n

k3/2
|ℓk(x)|

]

Also, since by [1] ∫ x

−1

ℓ′k(x)

x− xk
dx = − 1

(1− x2k)P
2
n−1(xk)
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thus, we have ∫ 1

−1

xL′
k(x)− Lk(x)

x− xk
dx =

∫ x

−1
ℓk(x)dx+ x2k

∫ x

−1

ℓ′k(x)

x− xk
dx

≤ 16kπ

n(n− 1)
+

8πn2

k
.

Thus

I1 = |c3kB1(x)|(4.11)

≤
√
8kπ

|xk|
√
n(n− 1)

[
16kπ

n(n− 1)
+

8πn2

k

]
≤ c

√
n

k

1

|xk|

where c is a constant independent of k and n. For the estimate of I2 we have

I2 = |c4kA0(x)| ≤ c

√
k

|xk|
(4.12)

because |A0(x)| ≤ c and |c4k| ≤ c
√
k

|xk| hence, the Lemma follows by using results (4.10)-

(4.12) in (4.9).

5 Proof of the Main theorem 3.7

In order to prove our main Theorem 3.7, we need the following important result of I.E.
Gopengaus [3]: Let f ∈ Cr[−1, 1], then for n geq4r + 5, there exists a polynomial Qn(x)
of degree at most n such that for all x ∈ [−1, 1] and for k = 0, 1, · · · , r∣∣∣f (k)(x)−Q(k)

n (x)
∣∣∣ ≤ ck (δn(x))

(r−k) ω
(
f (r), δn(x)

)
(5.1)

where δn(x) =
√
1−x2

n and cks are constants independent of f, n and x.

From the uniqueness of Sn(x) in (3.5) it follows that every polynomial Qn(x) of degree
≤ 2n satisfies the relation

Qn(x) =

n∑
k=0

Qn(xk)Ak(x) +

n∑
k=1

Q′′
n(xk)Bk(x)(5.2)

Thus

|Sn(x)− f(x)| ≤ |Sn(x)−Qn(x)|+ |Qn(x)− f(x)|

+
n∑

k=0

|f(xk)−Qn(xk)| |Ak(x)|+
n∑

k=1

∣∣f ′′(xk)−Q′′
n(xk)

∣∣ |Bk(x)|+ |Qn(x)− f(x)|
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Since |f(xk)−Qn(xk)| = 0 for k = 1, n, thus we have

|Sn(x)− f(x)| ≤ |f(x0)−Qn(x0)| |A0(x)|

+

n−1∑
k=2

|f(xk)−Qn(xk)| |Ak(x)|+
n∑

k=1

∣∣f ′′(xk)−Q′′
n(xk)

∣∣ |Bk(x)|

≡ J1 + J2 + J3.(5.3)

From (5.1) for r = 2 and k = 0, we have

J3 ≤ cδ2n(x)ω
(
f ′′, δn(x)

)
.(5.4)

Again by (5.1) for r = 2, k = 2 and Lemma 4.3 we have

J2 ≤ c

n2

n−1∑
k=2

√
k

n(n− 1)

{
(1− x2k) |ℓk(x)|+

k√
n(n− 1)

}
ω
(
f ′′, δn(xk)

)
≤ c

n2

n−2∑
k=2

√
kω

(
f ′′, δn(xk)

)
.(5.5)

Also by (5.1) for r = 2, k = 0 and Lemma 4.4 we have

J1 ≤ c

n2
ω
(
f ′′, 1/n

)
+

c

n2

n/2∑
k=2

(1− x2k)

x2k
ω
(
f ′′, δn(xk)

){√
k +

√
n

k

}

≤ c

n2
ω
(
f ′′, 1/n

)
+

c

n3/2

n/2∑
k=2

1

x2k
ω
(
f ′′, δn(xk)

)
(5.6)

Using equations (5.4)-(5.6) in (5.3), the Theorem follows.
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