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Abstract

In classical analysis, the relationship between continuity and Rie-
mann integrability of a function is an intimate one: a continuous function
f : [a, b]→ R is always Riemann integrable whereas a Riemann integrable
function is continuous almost everywhere (a.e). In the setting of func-
tions taking values in infinite dimensional abstract spaces that include
quasi Banach spaces, one encounters certain curious phenomena involv-
ing the breakdown of the above stated phenomena, besides the failure of
the fundamental theorem of calculus and the non-existence of primitives
for continuous functions! While these properties can surely be salvaged
within the class of Banach spaces, it turns out that certain important
properties involving vector integration that include Riemann integration
no longer hold in an infinite dimensional setting. This will be seen to
be the case, for example, in situations when it is required to integrate
functions which are continuous with respect to certain well known linear
topologies on X (resp. on X∗) weaker than the norm topology. As we
shall see in Section 3(a), such a requirement imposes rather severe re-
strictions on the space in question. The present paper is devoted to a
discussion of these issues which will be examined in the setting of Banach
and Fréchet spaces on the one hand and of quasi Banach spaces on the
other.
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1 Riemann integrability in Banach spaces

Let us recall that a (bounded) function f : [a, b] → X defined on a closed and bounded
interval and taking values in a Banach space X is said to be Riemann integrable if the
following condition (∗) holds:

(∗) ∃x ∈ X such that ∀ ε > 0 ∃ δ = δ(ε) > 0 such that for each (tagged) partition
P = {si, [t(i−1), ti], 1 ≤ i ≤ j} of [a, b] where a = t0 < t1 < · · · < tj = b and si ∈
[t(i−1), ti], 1 ≤ i ≤ j, with

(1.1) ‖P‖ = max
1≤j≤n

(tj − tj−1) < δ,

we have ‖S(f, P, ξ)− x‖ ≤ ε,
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where ξ = {si; 1 ≤ i ≤ j} and S(f, P, ξ) is the Riemann sum of f corresponding to the
partition P :

S(f, P, ξ) =
∑j

i=1 f(si)(ti − ti−1).
The (unique) vector x, to be denoted by

b∫
a
f(t)dt

shall be called the Riemann-integral of f over [a, b].
(The partition P satisfying (1.1) shall be referred to as a δ-fine partition).

The same definition holds for X-valued functions where X is a quasi Banach space in
which case the norm shall be replaced by the corresponding quasi norm on X. A slight mod-
ification of this definition shall provide an appropriate analogue of Riemann integrability
in Fréchet spaces which we shall pursue in Section 3(c).

In this section, we shall study the abstract analogues of the following results which are
well known from classical analysis:
(a). Given a continuous function f : [a, b]→ R, it holds that

(i) f is Riemann integrable.
(ii) f has a primitive: ∃ F : [a, b]→ R such that F is differentiable on [a, b] and

F ′(t) = f(t) on [a, b].
(b). (Fundamental Theorem of Calculus): Given that f : [a, b] → R is differentiable and
that f ′ is Riemann integrable, we have

f(x) =
x∫
a
f ′(t)dt, ∀x ∈ [a, b].

(c). Let f : [a, b] → R be a bounded function. Then f is Riemann integrable, if and only
if it is continuous almost everywhere.

In the case of Banach space valued functions f : [a, b]→ X, it turns out that the same
method of proof as employed in the case of real valued functions can be slightly modified
to yield the following Banach space analogues of these results:
(d). Let X be a Banach space and f : [a, b]→ X a continuous function. Then

(i) f is Riemann integrable.
(ii) f has a primitive: ∃ F : [a, b]→ X such that F is differentiable on [a, b] and

F ′(t) = f(t) on [a, b].
In fact, we can choose F to be given by

F (x) =
x∫
a
f(t)dt, x ∈ [a, b].

(e). (Fundamental Theorem of Calculus): If f is differentiable on [a, b], then f ′ is always
Henstock integrable and

f(x) =
x∫
a
f ′(t)dt, ∀x ∈ [a, b].

Here, Henstock integrability is meant exactly in the sense of Riemann integrability -as
defined above- except that δ appearing in the definition of Riemann integrability has to be
replaced by a positive function on R (called a gauge), the rest remaining the same, with
(1.1) now being replaced by

ti − ti−1 ≤ δ(si), i = 1, 2, · · · , n.
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Remark 1.1. (i) Choosing the gauge δ to be a constant function, it is clear from the
definition that Riemann integration theory is subsumed within the more general framework
of Henstock integration theory and, therefore, (e) yields (FTC) for Riemann integrable
functions, provided it is assumed that f ′ is Riemann integrable.
(ii) It is remarkable that the simple idea of replacing δ by a positive function leads to a
powerful integration theory in which all the convergence theorems of Lebesgue integration
theory hold and more importantly, the fundamental theorem of calculus (FTC) holds in
its utmost generality without assuming the integrability of the derivative, as seen in (e)
above. In this sense, Henstock integration theory scores over Lebesgue integration in view
of the simplicity of the (FTC) in this new setting.

(f). If f is continuous a.e., then it is Riemann integrable. However, as we shall see
below, converse is not true!

The assertion in (f) above motivates the following definition.

Definition 1.1 ([7]). A Banach space X is said to have Riemann-Lebesgue (RL)- property
if each (bounded) Riemann integrable function f : [a, b]→ X is continuous a.e on [a, b].

Example 1.1. (a) (Lebesgue): R has (RL)-property.
Consequence: Finite dimensional Banach spaces have the (RL)-property.

(b) (G.C.da Rocha [17]): `1 has (RL)-property.
(c) (G.C.da Rocha [17]):Tsirelson space has (RL)-property.

Before proceeding further, let us pause to see how the proof of (b) works. We shall
slightly modify the proof as given in [17] (see also [7]) to prove the more general statement
that `1(X)- the space of X-valued absolutely summable sequences - has (RL)-property
whenever X has it. Thus, let f : [0, 1] → `1(X) be Riemann integrable and assume, on
the contrary, that f is discontinuous on a set H of positive measure. For a given t ∈ [a, b],
denote by ω(f, t) the oscillation of f at t:

ω(f, t) = lim
ε→0

ω(f, [t− ε, t+ ε])

where ω(f, [a, b]) is defined by ω(f, [0, 1]) = sup{‖f(x) − f(y)‖ : x, y ∈ [0, 1]}. Thus, f
is continuous at t if and only if ω(f, t) = 0 and so, there exist α > 0, β > 0 such that
µ(H) = α and H = {t ∈ [0, 1];ω(f, t) ≥ β}, where µ denotes the Lebesgue measure. To get
a contradiction, it suffices to show that for each δ > 0, there exist tagged partition (P1, ξ1)
and (P2, ξ2) of [0, 1] such that ‖P1‖ < δ, ‖P2‖ < δ with

‖S(f, P1, ξ1)− S(f, P1, ξ1)‖ > αβ/4. (∗∗)

For each n ≥ 1, denote by e∗n the nth co-ordinate functional on `1(X) : e∗n({xi}) = xn
and let Gn be the set of all discontinuities of e∗n ◦ f. Assuming that µ(Gn) 6= 0 for some
n ≥ 1 and combining this with the (RL)-property of X gives that e∗n ◦ f and hence f is
not Riemann integrable, contradicting the given hypothesis. This gives µ(Gn) = 0 for each
n ≥ 1 and, therefore, the set G =

⋃∞
n=1Gn has measure zero at each point of which e∗n ◦ f

is continuous for each n ≥ 1.
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Fix δ > 0 and choose N such that 1/N < δ. Let D = {k/N ; k = 0, N)} and denote
by P1 and P2 the partitions of [0, 1] determined by the points of D. To specify the tags
ξ1 and ξ2 of these partitions, we let P be the collection of all intervals [ai, bi] from (either
of) these partitions such that µ(H

⋂
(ai, bi)) > 0. If p is the number of elements in P, it

follows that p ≥ Nα. For each i = 1, ...p, fix ui ∈ (H \ G)
⋂

[ai, bi], arbitrarily. (This is
possible because G has measure zero). We shall construct sets {vi; 1 ≤ i ≤ p} ⊂ [ai, bi] and

{0 = n0 ≤ n1 ≤ · · · ≤ np} ⊂ N satisfying the following properties- with z(i) defined to be

the element of `1(X) given by: z(i) = f(ui)− f(vi), 1 ≤ i ≤ p.
(a)

∥∥z(i)∥∥ ≥ β/2 (b)
∑∞

j=ni

∥∥∥z(i)j ∥∥∥ < ε2−i (c)
∑ni−1

j=1

∥∥∥z(i)j ∥∥∥ < ε2−i.

Claim:
∥∥∥∑p

j=1 z
(i)
∥∥∥ ≥ (pβ2 − 4ε

)
.

For each 1 ≤ i ≤ p, consider y(i) ∈ `i(X) given by

y
(i)
j =

{
z
(i)
j , ni−1 < j ≤ ni

0, otherwise
(1.2)

We note that for each 1 ≤ i ≤ p, we have

‖z(i) − y(i)‖ =
ni−1∑
j=1
‖z(i)j ‖+

∞∑
j=n(i)

‖z(i)j ‖ < 2ε2−i

and therefore ‖y(i)‖ ≥ ‖z(i)‖−‖z(i)−y(i)‖ > β/2−2ε2−i. Combining these estimates yields∥∥∥∥ p∑
i=1

z(i)
∥∥∥∥ ≥ ∥∥∥∥ p∑

i=1
y(i)
∥∥∥∥− ∥∥∥∥ p∑

i=1
z(i) − y(i)

∥∥∥∥ ≥ p∑
i=1

∥∥y(i)∥∥− p∑
i=1

∥∥z(i) − y(i)∥∥
≥

p∑
i=1

(β/2− 2ε2−i)−
p∑
i=1

2ε2−1 ≥ pβ

2
− 4ε

which is the desired inequality. Using this, it is easy to verify (∗∗). Indeed, taking ξ1 and
ξ2 to be the points ui and vi respectively in the intervals [ai, bi], and arbitrarily otherwise
but the same set of points in in the remaining intervals of P, we have

‖(S(f, P, ξ1)− S(f, P, ξ2))‖ =

∥∥∥∥ p∑
i=1

1

N
z(i)
∥∥∥∥ ≥ 1

N

(
pβ

2
− 4ε

)
≥ αβ

4
.

Finally, the sets {vi; 1 ≤ i ≤ p} ⊂ [ai, bi] and {0 = n0 ≤ n1 ≤ · · ·np} ⊂ N having the
afore-mentioned properties are constructed as follows. Since ω(f, u2) ≥ β, we can choose
v1 ∈ (a1, b1) such that ‖f(u1) − f(v1)‖ ≥ β/2. Also, there exists an integer n1 > n0 such

that
∑∞

j=n1
‖z(1)j ‖ < ε/2. Again since ω(f, u2) ≥ β, the continuity of e∗i ◦ f at u2 for each

1 ≤ i ≤ n1 yields v2 ∈ (a2, b2) and n2 > n1 such that
n1∑
i=1
‖e∗i ◦ f(u2)− e∗i ◦ f(v2)‖ < ε/4 and

∑∞
j=n2

‖z(2)j ‖ < ε/4.

Note that e∗i ◦ f(u2− v2) = z
(2)
i and we get (a), (b) and (c) for i = 1, 2. Applying the same

procedure to ui for i = 3, · · · , p completes the construction. This completes the proof.
It turns out that `1 crops up as an ubiquitous object in situations involving Riemann

integration in Banach spaces. The first signs of this phenomenon are already evident in
(b) above and together with the example in (c), the two can be subsumed within the class
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of the so called asymptotic `1 Banach spaces defined below. However, some background
material is needed to understand this definition.

Given a sequence {en}∞n=1 in X, a (non-zero) vector of the form x =
∑n

i=m aiei,
{ai}ni=m ⊂ R, shall be called a (block) vector with respect to the given sequence {en}∞n=1.
The support of x, denoted supp(x), is defined to be the set of all integers i for which ai 6= 0.
Given two blocks x and y, we shall write x < y if max(supp x) < min(supp y) and that
blocks x1, · · · , xn will be called successive if x1 < ... < xn. If {en}∞n=1 is assumed to be a
basic sequence, we shall say that a basic sequence {un}∞n=1 of X is a spreading model of
{en}∞n=1 if there exist positive numbers εn ↓ o such that for all {ai}∞i=1 ⊂ [−1, 1], we have∣∣∣∣∥∥∥∥ n∑

i=1
aieki

∥∥∥∥− ∥∥∥∥ n∑
i=1

aiui

∥∥∥∥∣∣∣∣ < εn, ∀n ≥ 1, whenever n ≤ k1 < · · · < kn.

Definition 1.2. A Banach space X is said to be an asymptotic `1 space with respect to a
(normalised) basic sequence {en}∞n=1 if there exists C > 1 such that for each n ∈ N, there
exists a function Fn : N0 → N with Fn(k) ≥ k for all k so that

C−1
n∑
i=1
|ai| ≤

∥∥∥∥ n∑
i=1

aixi

∥∥∥∥
for all {ai}ni=1 ⊂ R and for all normalised successive blocks {xi}ni=1 with respect to {en}∞n=1
satisfying

Fn(0) ≤ min supp x1 and Fn(max supp xi) < min supp(xi+1), i = 1, 2, · · · , n− 1.

With this background, we are now in a position to state the following theorem of K.
M. Naralenkov [3] which reveals the role of `1 in situations involving (RL)-property and at
the same time, unifies the examples of Examples 1.1.

Theorem 1.1 ([13]). (a): Let X be a Banach space having (RL)-property. Then each
spreading model in X is equivalent to the unit vector basis of `1.

(b): Let X be an asymptotic `1 space with respect to a normalised basic sequence. Then
X has the (RL) property.

Besides of course the space `1 and the Tsirelson space T covered under Part (b) of the
above theorem, other classes of Banach spaces falling under this category include the `1-
direct sum (

∑∞
n=1En)1 of finite dimensional spaces En as also the modified Tsirelson spaces

Tθ(0 < θ < 1). Note that the original Tsirelson space T corresponds to θ = 1/2 : T = T1/2.
On the other hand, there are a whole lot of Banach spaces amongst the classical Banach
spaces failing the (RL)-property. In fact, each of the spaces listed below fails the (RL)-
property (See [7]):

(i) c0, c, `∞, C[a, b], L1[a, b], L∞[a, b].
(ii) X∗ if X contains a copy of `1.
(iii) Hilbert spaces. More generally,
(iv) Infinite dimensional Banach spaces which are uniformly convex.
Thus we see that except for `1, no other space from amongst the classical Banach spaces

listed above figures in the list of spaces satisfying the (RL)-property. This motivates the
case for weakening the definition of (RL)-property so as to include many more spaces
within a larger class of Banach spaces defined by this weaker version of Riemann-Lebesgue
property.
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Definition 1.3 ([22]). A Banach space X is said to have Weak Riemann-Lebesgue (WRL)
- property if f : [a, b] → X is weakly continuous a.e on [a, b] whenever it is Riemann
integrable.

It can be shown that every Banach space with a separable dual has (WRL)-property
([22]). However, C[0, 1] does not have the (WRL)-property as was shown by R.Gordon [7].
The fact that separability of the dual is not a necessary condition for (WRL)-property was
proved by C. Wang and K. Wan as the following result shows.

Theorem 1.2 ([22]). For a given measurable space (Ω,
∑

) which is totally finite, complete
and countably generated, the space L1(Ω,

∑
) has (WLP).

As a far reaching generalisation of this result applied to the special case of Ω = [0, 1]
equipped with the Lebesgue measure, we have the following theorem of J. M. Calabuig et
al :

Theorem 1.3 ([5]). Let X be a Banach space having Radon-Nikodym property and let X∗

be separable. Then the space L1([0, 1], X) of Bochner integrable functions has (WLP).

Corollary 1.1 ([5]). Let X be a separable reflexive Banach space. Then L1([0, 1], X) has
(WLP).

2 Certain Exotic integration phenomena in Quasi Banach spaces

Let X be a quasi Banach space, i.e., X is a vector space equipped with a quasi norm which
is an R+- valued function on X satisfying the properties of a norm, except that the triangle
inequality comes with a constant greater than 1:

‖x+ y‖ ≤ k(‖x‖+ ‖y‖), for all x, y ∈ X.
Amongst the familiar examples are the spaces `p and Lp[a, b], for 0 < p < 1. The (linear)
topology induced by a quasi norm is always non-locally convex, unless k = 1. Let us record
below some exotic phenomena involving Riemann integration in quasi Banach spaces which
are in sharp contrast to the analogous situation in the presence of local convexity. The
contrast is especially striking in respect of the problem of primitives and of the fundamental
theorem of calculus which, unlike in the case of Banach spaces as seen in Section 1, break
down in the quasi Banach space setting as will be seen presently.

On the other hand, while three of the four fundamental theorems of functional analysis
continue to hold good also in the quasi Banach space setting, it is chiefly the failure of
Hahn Banach theorem in non-locally convex spaces that some of the familiar results from
classical analysis extending even to the class of Banach space are no longer valid in the
absence of local convexity. In fact, it turns out that in most of the cases, the validity
of these results characterises local convexity of the space in question-the equivalence of
Hahn Banach theorem with local convexity provides one such example. Let us also remark
that the property of being quasinormed is essentially an infinite dimensional phenomenon
since all Hausdorff linear topologies on a finite dimensional space are equivalent. To give a
foretaste of what life would be like without local convexity, we provide below a sample of
results which may be compared and contrasted with their corresponding counterparts in the
familiar framework of Banach spaces. Most of these results have been proved in a series of
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important papers [1], [2] and [3], besides many more by F. Albiac and his collaborators. In
the statements that follow, X is assumed to be a (non-locally convex) infinite dimensional
quasi Banach space.

Theorem 2.1 (Mazur-Orlicz [12]). Continuity of a function f : [a, b]→ X does not imply
Riemann integrability of f. In fact, there always exists a continuous function f : [a, b]→ X
which fails to be Riemann integrable on [a, b] (which can even be chosen to be Riemann
integrable on [a, b− ε] for each ε > 0 ).

Theorem 2.2 (Albiac and Ansorena [1]). For X such that X∗ is separating, there exists
a continuous function f : [a, b] → X failing to have a primitive. (In particular, this holds
forX = lp, 0 < p < 1.)

An important ingredient in the proof of the above assertion is the following proposition
which also shows that the mean value theorem does not hold for differentiable functions
taking values in a quasi Banach space (with a separating dual). In fact, it can also be used
to give an alternate proof of Theorem 2.1 (See also [16, Theorem 3.5.1]).

Theorem 2.3 (Albiac and Ansorena [1]). There always exists a continuously differentiable
function f on [0, 1) into X which does not admit a continuous extension to [0, 1] but f ′

does!

Thus, to produce a function f with the indicated properties as asserted in Theorem 2.2,
let f be the function as guaranteed by Theorem 2.3, so that we can assume that f ′ is defined
and continuous on [0, 1]. Let g = f ′ on [0, 1] and assume that there exists a differentiable
function G : [0, 1] → X such that G′(t) = g(t) for all t ∈ [0, 1]. Then (f − G)′(t) = 0 for
all t ∈ [0, 1). By Theorem 2.5 quoted below, there exists c ∈ R such that f(t) = G(t) + c
for all t ∈ [0, 1), yielding that f can be extended to a continuous function on [0, 1], thus
contradicting the conclusion of Theorem 2.3.

Theorem 2.4 ([8]). For X having a trivial dual, there exists a non-constant differentiable
function f : [a, b]→ X such that f ′(t) = 0 for all t ∈ [a, b].

A special case of the above theorem is provided by the following simple example (due
to Rolewicz) of a function f : [a, b]→ X for X = Lp[a, b] (0 < p < 1).
Indeed, let f be defined by f(t) = χ[0,t]. We observe that

‖f(t+ h)− f(t)‖ = |h|1/p and so ‖f ′(t)‖ =
∥∥∥f(t+h)−f(t)h

∥∥∥ = |h|
1
p
−1
.

As h→ 0 and p < 1, the (RHS) goes to zero and so f ′(t) = 0 for all t ∈ [0, 1].
Amongst the positive results valid in the quasi Banach space setting, let us start with

the following theorem due to Albiac and Ansoren [2] which may be compared with Theorem
2.4 above

Theorem 2.5 ([2]). Assume that X has a separating dual and let J be an interval of real
numbers such that f : J → X is differentiable with f ′(t) = 0 for all t ∈ J. Then f is
constant on J.

The following theorem was proved by M, Popov [15].
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Theorem 2.6. Let f : [a, b]→ X be Riemann integrable. Then the function F : [a, b]→ X.
(indefinite integral of f) defined by

F (x) =
x∫
a
f(s)ds

is (uniformly) continuous on [a, b].

Theorem 2.7 (Kalton [9]). For X such that X∗ = (0), continuity of f implies that f has
a primitive. (In particular, this holds for X = Lp[a, b], 0 < p < 1).

Theorem 2.8 (Albiac and Ansorena [3]). Let X be a (quasi) Banach space with a sepa-
rating dual and let f : [a, b]→ X be differentiable on [a, b] so that f ′ is Riemann integrable
on [a, b]. Then

b∫
a
f ′(t)dt = f(b)− f(a).

In particular, such an f admits a primitive. Further, taking X to be a Banach space
yields (FTC) for Riemann integrable functions valued in a Banach space(See Section 1 (c)).

Let us close this section with a sample of proofs of some of these statements. We shall
begin with the proof of Theorem 2.6, which in the setting of Banach space is proved via the
mean value property of Riemann integrals but which fails to hold in quasi Banach spaces.
In the following proof due to Popov [15], we shall simplify the argument by assuming
k = 1. This is possible because estimates involved in the proof can be appropriately scaled
to absorb k, so as to yield k-free estimates in the end.

Thus, to prove the continuity of F on [a, b], fix t1 ∈ [a, b]. For a given > 0, choose
δ1 > 0 and δ2 > 0 such that the following estimates hold:

(2.1) ‖αf(t1)‖ < ε/4, for all |α| < δ1

(2.2)

∥∥∥∥S(f, P, ξ)−
∫ b

a
f(s)ds

∥∥∥∥ < ε

8

for all partitions P with ‖P‖ < δ2. Here, S(f, P, ξ) is the Riemann sum corresponding to
the tagged partition P = {si, [ti−1, ti], 1 ≤ i ≤ j} of [a, b] :

S(f, P, η) =
j∑
i=1

f(si)∆i (∆i = ti − ti−1).

Choose t ∈ [a, b] such that |t− t1| < δ = min(δ1, δ2). Assume that t1 < t (argument for the
reverse inequality is analogous) and choose δ3 > 0 so that

(2.3)

∥∥∥∥S(f, P, ξ)−
∫ t

t1

f(s)ds

∥∥∥∥ < ε

2

for all partitions P (of [t1, t]]) with ‖P‖ < δ3. Let P0 = {si, [ti−1, ti], 1 ≤ i ≤ j} be a

partition of [t1, t] with ‖P0‖ < δ0 = min(δ, δ3) and let ξ denote the set {si}ji=1.

Claim: ‖
∑j

i=1 f(si)∆i‖ < ε/2 + ‖(t− t1)f(t1)‖.
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Using P0, we define tagged partitions P1 and P2 of [a, b] as follows:

P1 is obtained from P0 by adding to{ti}ji=0 appropriately chosen points of [a, b] \ [t1, t] so
that P1 satisfies ‖P1‖ < δ0 ≤ δ, whereas P2 is obtained from P1 by ignoring the points
t1, · · · , tj−1. Since |t − t1| < δ, we see that ‖P2‖ < δ. To get tagged partitions, we choose
the set ξ1 of tags for P1 as follows: For the intervals [ti−1, ti], we retain the points si as
before and choose the left end points of the remaining intervals. In the case of P2, the set
ξ2 of tags is chosen to consist of the left end points of the intervals from P2. With this
choice of tags, we have

(2.4) S(f, P1, ξ1)− S(f, P2, ξ2) =

j∑
i=1

f(si)∆i − f(t1)(t− t1).

On the other hand, since ‖P1‖ < δ and ‖P2‖ < δ, by (2.2) we have

‖S(f, P1, ξ1)− S(f, P2, ξ2)‖ ≤
∥∥∥∥S(f, P1, ξ1)−

∫ b

a
f(s)ds

∥∥∥∥+

∥∥∥∥S(f, P1, ξ1)−
∫ b

a
f(s)ds

∥∥∥∥
≤ ε

8
+
ε

8
=
ε

4
.(2.5)

Using (2.1), (2.4) and (2.5), we have∥∥∥∥∥ j∑
i=1

f(si)∆i

∥∥∥∥∥ ≤
∥∥∥∥∥ j∑
i=1

f(si)∆i − f(t1)(t− t1)

∥∥∥∥∥+ ‖f(t1)(t− t1)‖ < ε
4 + ε

4 = ε
2

Finally, combining the above estimate with (2.3), we get

‖F (t)− F (t1)‖ =

∥∥∥∥∥ t∫
t1

f(s)ds

∥∥∥∥∥ ≤
∥∥∥∥∥ t∫
t1

f(s)ds−
j∑
i=1

f(si)∆i

∥∥∥∥∥+

∥∥∥∥∥ j∑
i=1

f(si)∆i

∥∥∥∥∥ < ε
2 + ε

2 = ε.

This completes the proof.
Let us now proceed to Theorems 2.5 and 2.8 which have been singled out in view of

the similarity of argument underlying their proofs. In fact, we show Theorem 2.5 holds
for an arbitrary interval I in place of [a, b]. Thus, let us assume that f(t) 6= f(s) for some
t, s ∈ I and let f(t) 6= 0. Let Y be the closed subspace of X generated by {f(r) : r ∈ I}.
Thus Y 6= (0) and, by the given hypothesis, there exists a non-zero x∗ ∈ X∗ such that
x∗(f(t)) 6= x∗(f(s)). Since f is differentiable, we see that x∗ ◦ f is differentiable on I with
derivative at each r ∈ I given by

(x∗ ◦ f)′(r) = lim
h→0

x∗ ◦ f(r + h)− x∗ ◦ f(r)

h
= x∗

(
lim
h→0

f(r + h)− f(r)

h

)
= x∗(f ′(r)) = 0.

Finally, by the fundamental theorem of calculus applied to (x∗ ◦ f)′ on [s, t], we get

x∗ ◦ f(t) = x∗ ◦ f(s) +
t∫
s
x∗ ◦ f ′(r)dr = x∗ ◦ f(s),

a contradiction.
A similar argument applies to prove Theorem 2.8. Indeed, as noted above, for each

x∗ ∈ X∗, the composite map x∗◦f : [a, b]→ R is differentiable with derivative (x∗◦f)′(t) =
x∗ ◦ f ′(t), t ∈ [a, b]. Invoking (FTC) for real-valued functions(See Section 1(b)), we have
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x∗

(
b∫
a
f ′(t)dt

)
=

b∫
a
x∗ ◦ f ′(t)dt =

∫ b
a (x∗ ◦ f)′(t)dt = (x∗ ◦ f)(b)− (x∗ ◦ f)(a)

= x∗(f(b)− f(a)).
Finally, using that X∗ separates points of X completes the proof.

3 Integration with respect to weaker forms of continuity:

We have seen in Sections 1 and 2 that whereas in the quasi Banach space setting continuity
is too mild a condition to imply Riemann integrability, for Banach space-valued functions
continuity seems to be sufficiently strong to yield Riemann integrability. The question
whether continuity relative to weaker topologies on the range space would still ensure
Riemann integrability was addressed for the first time by Alexiewicz and Orlicz [4] who
produced an example of a c0-valued weakly continuous function on [0, 1] which fails to be
Riemann integrable(See also [7]). However, a complete characterisation of Banach spaces
for which weakly continuous functions are always Riemann integrable was given by V. M.
Kadets [10].

Theorem 3.1. For a Banach space X, a function f : [a, b] → X being weakly continuous
implies f is Riemann-integrable if and only if X is a Schur space (i.e., weakly convergent
sequences in X are norm convergent).

A further strengthening of the above result was obtained by C. Wang and Z. Yang [21]
in the form of the following theorem. We shall need the following definition.

Definition 3.1. [21] Given a locally convex topology τ (not necessarily compatible) on
Banach spaces, we shall say that a Banach space X has the τ - Schur property (or X is a
τ -Schur space) if τ -convergence of a sequence in X implies its norm convergence.

Thus Schur property corresponds to τ -Schur property by choosing τ to be the weak
topology on X.

Theorem 3.2 ([21]). For a Banach space X and a locally convex topology τ defined on it,
the following statements are equivalent:

(i) Each function f : [a, b]→ X which is τ - weakly continuous is Riemann-integrable.
(ii) X is a τ - Schur space.

Regarding Riemann integrability of function taking values inside the dual of a Banach
space when equipped with weak∗-topology, Kadets [10] notes that weak∗-continuity is too
strong a condition to yield Riemann integrability in an infinite dimensional Banach space.

Theorem 3.3 ([10]). For a Banach space X, each weak∗-continuous function f : [a, b] →
X∗ is Riemann-integrable if and only if X is finite dimensional.

In other words, the property involving Riemann integrability of weak∗-continuous func-
tions is a finite dimensional property in the following sense: Let us call this property
(RW∗).
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Definition 3.2 ([19]). A property (P) of Banach spaces is said to be a finite dimensional
(FD)- property if it holds in each finite dimensional Banach space but fails in each infinite
dimensional Banach space.

Example 3.1. (i) Heine-Borel Property ( BX is compact).
(ii) X∗ = X (algebraic dual of X).
(iii) Completeness of the weak-topology on X.

In view of the role played by (FD)-properties in the context of Riemann integrability, it
will be useful to spend some time on the theme of finite dimensionality in an infinite di-
mensional context (See [19] for a detailed treatment of this phenomenon). To this end, let
us note that an important (FD)-property is provided by considering the so-called Hilbert-
Schmidt property of a Banach space. Here, by a Hilbert Schmidt space we mean a Banach
space X with the property that a bounded linear map acting between Hilbert spaces and
factoring over X is a Hilbert-Schmidt map. Some well known examples of Banach spaces
with this property are: c0, `∞, `1, C(K), L∞(Ω). As will be seen presently, the following
(FD)-property will turn out to be of special importance in view of its ’universal’ character
in the sense to be made precise shortly.
(iv) A Banach space which is simultaneously Hilbert and Hilbert Schmidt is finite dimen-
sional (and conversely).

We shall now briefly describe certain useful properties of (FD)-properties and then
proceed to investigate the (FD)-property encountered in Theorem 3.3 in the light of these
properties.

Three important features of (FD)-properties:
There are three important features involving (FD)-properties but which manifest them-

selves only in an infinite dimensional context. These three features involving a given finite
dimensional property (P) derive from:

(a) Size of the set of objects failing (P).
(b) Decomposition/Factorisation property of (P).
(c) Fréchet space analogue of (P).

(a) Size of the set
Given an (FD)- property (P), it turns out that for a given infinite- dimensional Banach

space X, the set of objects in X failing (P) is usually ’very big’: it could be
topologically big(dense)
algebraically big(contains an infinite-dimensional space)
big in the sense of category(non-meagre),
big in the sense of functional analysis (contains an infinite-dimensional closed subspace).

The following results proved by the author on the size of the set of objects failing the
indicated (FD)-property show that these sets are indeed large.

Example 3.2. (i)([19]) M(X)\Mbv(X) together with the zero element contains an infinite
dimensional space. This set is even known to be non-meagre.

(ii)([14]) M([0, 1], X) \B([0, 1], X) together with the zero element contains an infinite-
dimensional space.
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Here, M(X) and Mbv(X) stand respectively for the space of countably additive X-
valued measures (respectively of bounded variation) whereas M and B denote, respectively,
the classes of McShane and Bochner integrable functions on [0, 1] taking values in X. It
may be noted that equality of sets displayed in each of these examples is an (FD)-property.

In respect of the (FD)-property (RW∗), in [18] we had posed the problem regarding
the size of the set determined by the failure of this property in an infinite dimensional
Banach space. A positive answer to this question has been provided in a recent work
by G M Cervantes (Murcia, Spain) which has been posted on the arXiv (Oct.29, 2015).
Curiously the proof makes use of the ’fat’ Cantor set as will be seen to be the case, in what
follows, while dealing with the third feature of an (FD)-property involving the Fréchet
space analogue of the property (RW∗).
Theorem (G M Cervantes): Given an infinite dimensional Banach space X, the set of
w∗-continuous functions f : [a, b] → X∗ which are not Riemann integrable together with
the (identically) zero function contains a closed infinite dimensional space.
(b)Decomposition of an (FD)-property

The (FD)-property given in Example 3.1 (iv) above comes across as a universal (FD)-
property in the following sense: Given an (FD)-property (P), it turns out that we can write
(P) as a ’sum’ of properties (Q) and (R): (P) = (Q) ∧(R) in the sense that a Banach space
X verifies

(Q) iff X is Hilbertian and
(R) iff X is Hilbert-Schmidt.
In other words, an (FD)-property lends itself to a ’decomposition’ (factorisation) as a

’sum’ of properties (Q) and (R) which are characteristic of Hilbertisability and Hilbert-
Schmidt property, respectively.

Example 3.3. Let Π2 denote the ideal of 2-summing maps and let Πd
2 be the ideal of

bounded linear maps acting between Banach spaces having a 2-summing adjoint. It turns
out that the equality Π2(X,Y ) = Πd

2(X,Y ) for all Banach spaces Y is an (FD)-property.
A decomposition of this (FD)-property that suggests itself is the natural one involving the
decomposition of the above equality into inclusion of each set appearing above inside the
other:

(a) Π2(X,Y ) ⊂ Πd
2(X,Y ), for all Y.

(b) Πd
2(X,Y ) ⊂ Π2(X,Y ), for all Y.

What is indeed remarkable is that for a Banach space X, (Q) holds if and only if X is
Hilbertian whereas (R) is valid precisely when X is a Hilbert Schmidt space (See [19] for
details). Moreover, it suffices to choose Y = `2 as a test space in (Q).

Regarding the (FD)-property (RW∗) under discussion, a possible decomposition of this
property would entail the identification of a locally convex topology τ on the dual of a
Banach space X stronger than the weak∗ topology such that

(Q) Each f : [a, b]→ X∗ continuous w r t the topology τ is Riemann integrable if and
only if X is a Hilbert space.
(R) Each weak∗-continuous map f : [a, b] → X∗ is τ - continuous if and only if X is a
Hilbert Schmidt space.

The above discussion suggests the following problem:
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Problem 3.1. Describe the existence of a locally convex topology τ on the dual of a Ba-
nach space X such the conditions (Q) and (R) as specified above in the last paragraph are
satisfied.

(c) Fréchet space setting
When suitably formulated in the setting of Fréchet spaces X, it turns out that in

most of the cases, there exist infinite dimensional Fréchet spaces in which it is possible to
salvage a given (FD)- property. It also turns out that, at least in most cases of interest,
the class of Fréchet spaces in which this holds coincides with the class of nuclear spaces
(in the sense of Grothendieck) or, in some cases, with a class of spaces which are close
relatives of nuclear spaces. The fact that a Banach space can never be nuclear unless it is
finite dimensional shows that the nuclear analogue of an (FD)-property provides a maximal
infinite dimensional setting in which the given (FD)-property can be saved. An important
example to illustrate this situation involves the Fréchet space analogue of the Dvoretzky-
Rogers property which holds exactly when the underlying Fréchet space is nuclear. Let us
recall that the Dvoretzky-Rogers theorem is the statement that the Banach space analogue
of the Riemann rearrangement theorem from classical analysis holds exactly when the
Banach space in question is finite dimensional. The rest of this section is devoted to a brief
sketch of the proof of the Fréchet analogue of Theorem 3.3, i.e., of the property (RW∗).
To this end, we shall begin with the definition of Riemann integrability in Fréchet spaces
which is an obvious generalisation of the definition of Riemann integrability for Banach
space -valued functions.

Definition 3.3. Let X be a Fréchet space and let {pm}∞m=1 be a sequence of seminiorms
generating the (Fréchet)-topology of X. We shall say that a function f : [a, b] → X is
Riemann-integrable if the following holds:
(*) ∃x ∈ X such that ∀ ε > 0 and n ≥ 1, ∃δ = δ(ε, n) > 0 such that for each tagged
partition P = {si, [ti−1, ti], 1 ≤ i ≤ j} of [a, b] with

‖P‖ = max
1≤i≤j

(ti − ti−1) < δ,

we have
pn(S(f, P )− x) < ε,

where, S(f, P ) is the Riemann sum of f corresponding to the tagged partition P =
{si, [ti−1, ti]; 1 ≤ i ≤ j} of [a, b] with a = t0 < t1 < · · · < tj = b and si ∈ [ti−1, ti], 1 ≤ i ≤ j.
Here, the (unique) vector x, to be denoted by

b∫
a
f(t)dt,

shall be called the Riemann-integral of f over [a, b].

The following statement, proved by the author is the Fréchet analogue of Kadets the-
orem stated above.

Theorem 3.4. [18] For a Fréchet space X, each X∗-valued weakly∗-continuous function
is Riemann integrable if and only if X is a Montel space.

(A metrisable locally convex space is said to be a Montel space if closed and bounded
subsets of X are compact).
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Since Banach spaces which are Montel are precisely those which are finite dimensional,
Theorem 3.11 yields Kadets theorem as a very special case.

Ingredients of the proof:
Construction of a ’fat’ Cantor set.
A ’fat’ Cantor set is constructed in a manner analogous to the construction of the con-
ventional Cantor set, except that the middle third subinterval to be knocked out at each
stage of the construction shall be chosen to be of a suitable length α so that the resulting
Cantor set shall have nonzero measure. In the instant case, each of the 2k−1 subintervals

A
(i)
k (i = 1, 2, , 2(k − 1)) to be removed at the kth stage of the construction from each of

the remaining subintervals B
(i)
k (i = 1, 2, , 2(k − 1)) at the (k-1)th stage shall be of length

α = d(A
(i))
k = 1

2k−1

1

3k
, in which case d

(
B

(i)
k

)
= 1

2k

(
1−

∑k
j=1

1
3j

)
and, therefore, d(C) = 1

2 .

Fréchet analogue of Josefson-Nissenzwieg theorem:

It is a well known theorem of Josefson and Nissenweig that from the unit sphere in the dual
of an infinite dimensional Banach space, it is always possible to extract a sequence which
is weak∗-null. A Fréchet analogue of this important theorem and useful for our purpose
was proved by Bonet, Lindsrtom and Valdivia (Two theorems of Josefson-Nissenweig type
for Fréchet spaces, Proc. Amer. Math. Soc. 117 (1993), 363-364):

Theorem: A Fréchet space X is Montel if and only if each weak∗-null sequences in X∗ is
strong∗-null.

Sketch of proof of Theorem 3.4:
Necessity : This is a straightforward consequence of Theorem (b) above combined with the
sequential completeness of X∗ in its weak∗ topology.
Sufficiency : Assume that X is not Fréchet Montel. By (b), there exists a sequence in
X∗ which is weak∗-null but not strong∗-null. Denote this sequence by {x∗n}∞n=1. Write

A
(i)
k = [a

(i)
k , b

(i)
k ] and choose a function φ

(i)
k : [0, 1] → R which is piecewise linear on A

(i)
k

and vanishes off A
(i)
k with ‖φ(i)k ‖ ≤ 1. Put

hk(t) =
2k−1∑
i=1

φ
(i)
k (t), t ∈ [0, 1],

and define

f(t) =
2k−1∑
i=1

hk(t)x
∗
n, t ∈ [0, 1].

Claim 1: f is weak∗-continuous.

Note that each hk is continuous on [0, 1] such that ‖hk‖ ≤ 1. The proof of the claim is
achieved by showing that the series defining f is uniformly convergent in X∗σ. Indeed, fix
ε > 0 and x ∈ X. Choose K0 such that |〈x∗k, x〉| < ε for all k ≥ K0. By the definition of hk,
it follows that

∞∑
n=k+1

hn(t)x∗n = 0 for t ∈
k⋃

n=1

2n−1⋃
n=1

A
(i)
n

and that for each t ∈
⋃∞
n=k+1

⋃2n−1

i=1 A
(i)
k , we can choose k0 > k such that
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∞∑
n=k+1

hn(t)x∗n = hk0(t)x∗k0 .

It follows that for all k > K0 and for all t ∈ [0, 1], we have∣∣∣∣〈f(t)−
k∑

n=1
hn(t)x∗n, x〉

∣∣∣∣ =

∣∣∣∣∣〈 ∞∑
n=k+1

hn(t)x∗n, x〉

∣∣∣∣∣ ≤ ∣∣〈hk0(t)x∗k0 , x〉
∣∣ ≤ |〈x∗k, x〉| < ε.

Claim 2: f is not Riemann integrable.
Here we use the fact that the Cantor set C constructed above has measure equal to 1/2
and then produce a bounded subset B of X and for each δ > 0 tagged partitions P1 and
P2 of [0, 1] with ‖P1‖ < δ, ‖P2‖ < δ such that

pB(S(f, P1)− S(f, P2)) > 1/2,
where pB is the strong∗-seminorm on X∗ corresponding to B defined by

pB(f) = sup
x∈B
|f(x)|, f ∈ X∗.

The desired bounded set B is obtained by the assumed hypothesis that the sequence
{x∗n}∞n=1 is not strong∗-null which means that, passing to a subsequence if necessary,
pB(x∗n) > 1 for some bounded subset B ⊂ X. Fix δ > 0 and choose m ≥ 1 such that

2−m < δ. Note that d(B
(i)
m ) < 2−m for m ≥ 1 and for 1 ≤ i ≤ 2m−1. The desired partitions

P1 = {(si, [ti−1, ti]); 1 ≤ i ≤ Nm} and P2 = {(s′i, [ti−1, ti]); 1 ≤ i ≤ Nm} with ‖P1‖ < δ,
‖P2‖ < δ consisting of the same number Nm of intervals are obtained by demanding that

(a) Both partitions contain the sets B
(i)
m for i = 1, · · · , 2m−1.

(b) ti − ti−1 < 2−(m−1) for 1 ≤ i ≤ Nm.

(c) si = s′i if [ti−1, ti] 6= B
(i)
m , i = 1, · · · , 2m−1.

(d) si = cim and s′i = aim, if [ti−1, ti] = B
(i)
m , i = 1, · · · , 2m−1, where cim is chosen to be

the midpoint of A
(i)
m such that φ

(i)
m (c

(i)
m ) = 1.

Now (c) gives f(si) = f(s′i) if [ti−1, ti] 6= B
(i)
m whereas (d) yields

f(si) = hm(si)x
∗
m = φ(i)m (c(i)m )x∗m = x∗m, f(s′i) = 0, if [ti−1, ti] = B(i)

m .

Finally, the above construction gives

pB(S(f, P1)− S(f, P2)) = pB

(
Nm∑
i=1

(f(si)− f(s′i))

)
(ti − ti−1)

= pB

2m−1∑
i=1

(hm(si)x
∗
md(B(i)

m ))


= pB(x∗m)

2m−1∑
i=1

d(B(i)
m ))

= pB(x∗m)2m−1

2−(m−1)

1−
m∑
j=1

1

3j

 > 1

2
.

We conclude with the following problems which appear to be open.
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Problem 3.2. Characterise the class of Banach spaces X such that weakly-continuous
functions f : [a, b]→ X have a primitive F :

F ′(t) = f(t), ∀ t ∈ [a, b],

i.e.,

lim
h→0

∥∥∥∥F (t+ h)− F (t)

h
− f(t)

∥∥∥∥ = 0, ∀t ∈ [a, b].

It is not clear if the class of spaces enjoying this property contains an infinite dimensional
Banach space. However, if the existence of an almost primitive (entailing differentiability of
F a.e.) is demanded instead of a primitive, the obvious examples meeting this requirement
are provided by the class of Banach spaces satisfying the Schur property and the (RL)-
property (`1, for example). This motivates the following problem.

Problem 3.3. Describe the class of Banach spaces X such that each Riemann integrable
function f : [a, b]→ X is differentiable a.e.

Here it may be useful to recall that whereas for Bochner integrable functions the indefi-
nite integral is differentiable almost everywhere, in the case of infinite dimensional Banach
space X, there always exists an X-valued Pettis (even McShane) integrable function whose
indefinite integral is non-differentiable on a set of positive measure (see [11])! The fact
that there exist infinite dimensional Banach spaces having (RL)-property shows that in
the foregoing statement, it is not possible to choose the function to be Riemann integrable.

We conclude our discussion of primitives with the ’a.e.-analogue’ of the fundamental
theorem of calculus by asking if it is possible to recover f from its almost primitive F (as
a definite integral). The answer is provided by the following theorem of C. Volintiro [20]:

Theorem 3.5. Suppose that for a Banach space X and a (Borel) measurable Riemann
integrable function f : [a, b] → X, there exists a continuous almost primitive F of f, i.e.,
a continuous function F : [a, b] → X such that F ′(t) exists and F ′(t) = f(t) outside a
Lebesgue null set B ⊂ [a, b]. Further assume that F (B) has Hausdorff measure equal to
zero. Then

F (x) =

x∫
a

f(t)dt, x ∈ [a, b].

Conclusion:

We have tried to provide a smorgasbord of results pertaining to vector- valued Riemann
integration, with the functions involved taking values in various classes of spaces: Banach
spaces, quasi Banach spaces and Fréchet spaces, with the main aim to draw attention
to the rich interplay of ideas between certain important aspects of vector-valued Riemann
integration theory and the geometry/structure of the spaces in question. However, we have
consciously excluded from our discussion the issues involving ’limit sums’ of non-Riemann
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integrable functions and their relationship with the structure of the underlying Banach
spaces- a theme which has been dwelt upon at length in their beautiful monograph by
M.I.Kadets and V.M.Kadets (Series in Banach spaces, Birkhauser Verlag, 1997). Also we
have made no attempt to discuss a whole lot of other vector-valued integration theories
that are in vogue right now, nor the rich theory underlying the question involving the
description of Banach spaces witnessing coincidence of various integration theories. These
and many other issues are intended to be taken up in a subsequent work that is in progress.
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