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Abstract

In May 2000, the Clay Mathematics Institute (CMI) in Cambridge,
MA, put forth seven problems[1], named Millennium Prize problems, and
offered $ 1 million for each problem to one who provides a verified proof.
The problems are open to scientists/ researchers/teachers and public in
general. P versus NP is one of these problems. However, due to its
importance, P versus NP is much more than just a mathematical puzzle,
or more appropriately more than a prize problem. It seeks to determine,
finally, which kinds of problems present day computers can solve and
which not. The aim of this article is to discuss the importance of P
versus NP in academic and social life.
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1 INTRODUCTION

Computability theory is an advanced topic of mathematics and computer science. It not
only analyses the complexity of existing solutions but also encourages the researchers to
develop general algorithms for solving real life problems. The effort is to find the solution
of every problem in reasonable time. Some problems seem very simple to solve while others
quite difficult. The difficulty of a problem is measured in terms of complexity[3, 5]. Broadly,
two types of complexities have been defined: Space complexity and time complexity. Space
complexity is the measure of space taken by the algorithm during the execution. It is not
measured in actual unit but is expressed in a general notation (Big O), which may be the
function of its data size, e.g. O(n), where n may be the number of integers in a sorting
algorithm. Similarly, time complexity is the measure of time taken by the algorithm to
solve a problem. Like space complexity, time complexity is also measured in terms of Big
O. At present, the study of space complexity is becoming irrelevant due to the invention of
modern computers equipped with relatively large space for execution of algorithms. Thus,
we will mainly focus on time complexity.

2 CLASSIFICATION OF PROBLEMS

There are two types of problems: tractable and intractable[6]. Tractable problems are
those, which can be solved easily and thus, have efficient algorithms. Efficient algorithms
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are those, which are fast enough, i.e. have less execution time. In addition, these algo-
rithms take less space. On the other hand, intractable problems are difficult to solve. Even
if the solution of an intractable problem exists, it has very high time complexity. There
are several intractable problems, which need attention of researchers. We further classify
problems into following categories.
1. Polynomial time (P)
2. Nondeterministic polynomial time (NP)
3. NP complete and NP hard.

3 POLYNOMIAL TIME(P) ALGORITHMS

To model the problem it is necessary to give a formal model of a computer. The standard
computer model in computability theory is the Turing machine model, introduced by Alan
Turing in 1936 [7]. The class P is the class of problems solvable by algorithms within a
reasonable time or within a reasonable number of steps. Turing machines can simulate
efficient computer models that can execute in polynomial time. Thus, P is a class that
has problems, which can be simulated on Turing machines with reasonable complexity. In
terms of Big O notation, the time complexity of polynomial time algorithms is :
O(n), O(n2), O(n3), O(n4), O(1), O(n log n).
The time complexity of non polynomial time algorithms is :
O(2n), O(nn), O(n!) etc.
Examples of Polynomial time algorithms are bubble sort, quick sort, hashing etc. All trivial
and fast running algorithms are obviously in class P.

4 NONDETERMINISTIC POLYNOMIAL TIME ALGORITHMS(NP)

The notation NP stands for nondeterministic polynomial time, since originally NP was
defined in terms of nondeterministic machines that have more than one possible moves
from a given configuration. Out of all moves, one may lead to the solution of the problem.
Thus, it may offer choices, and one may have to guess for the correct choice. In contrast,
deterministic machines have definite path to a solution. Obviously deterministic machines
are more efficient, though both the models have same computational power. NP type
problems are difficult to solve but easier to validate, i.e. if solution is given its correctness
can be verified easily in polynomial time. Such problems are not only interesting but are
very important too. Example: Sudoku (figure-1), Three-colorability etc. Solution of this
Sudoku (figure-1), is given in figure-2. Three coloring is a similar problem in graph theory.
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5 NP COMPLETE AND NP HARD

NP-complete problems are the hardest problems in NP. Sudoku and 3-colorability are also
NP complete. It is general belief that if there is a fast (polynomial-time) algorithm for one
NP-complete problem, then there is a fast algorithm for every problem in NP. For example,
a fast algorithm for Sudoku may imply P = NP. NP-complete problems are, basically, in
NP. The set of all decision problems whose solutions can be verified in polynomial time
are in NP. NP may be equivalently defined as the set of decision problems that can be
solved in polynomial time on a non-deterministic Turing machine. A problem p in NP
is NP-complete if every other problem in NP can be transformed (or reduced) into p in
polynomial time. NP-complete problems are studied because the ability to quickly verify
solutions of NP problems seems to correlate with the ability to quickly solve that problem
(P). It is not known whether every problem in NP can be quickly solvedthis is called the
P versus NP problem. However, if any NP-complete problem can be solved quickly, then
every problem in NP can also be solved quickly. Because of this, it is often said that NP-
complete problems are harder or more difficult than NP problems in general. Formally, A
decision problem p is NP-complete if
1. It is in NP, and
2. Every problem in NP is reducible to p in polynomial time.
A decision problem x is NP-hard when for any problem y in NP, there is a polynomial-
time reduction from y to x. It does not restrict the class NP-hard to decision problems,
for instance, it also includes search problems, or optimization problems. An example of
an NP-hard problem is the optimization problem of finding the least-cost cyclic route
through all nodes of a weighted graph. This is commonly known as the traveling salesman
problem. There are decision problems that are NP-hard but not NP-complete, for example
the halting problem of Turing machine(HTM). This is the problem which asks - given a
program and its input, will it run forever? It is easy to prove that the HTM is NP-hard but
not NP-complete. For example, the Boolean satisfiability problem may be reduced to the
HTM by transforming it to the description of a Turing machine that tries all truth-value
assignments, and when it finds one which satisfies the formula, it halts, and otherwise it goes
into an infinite loop. It is not difficult to see that the HTM is not in NP, since all problems
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in NP are decidable in a finite number of operations, while the HTM, is undecidable. There
are also NP-hard problems that are neither NP-complete nor undecidable. For instance,
the language of True quantified Boolean formulas is decidable in polynomial space, but not
non-deterministic polynomial time.

6 P VERSUS NP

The P versus NP problem is to find whether every problem solved by some nondetermin-
istic algorithm in polynomial time can also be solved by some (deterministic) algorithm in
polynomial time.
Formally, the elements of the class P can be simulated by languages. Let Σ be a finite
alphabet, and let Σ* be the set of finite strings over Σ. Then a language over Σ is a subset
L of Σ*. Each Turing machine M has an associated input alphabet Σ. We say that M ac-
cepts a string w if the computation associated with this string terminates in the accepting
state in finite number of steps. Further, M fails to accept w, either if this computation ends
in the rejecting state, or if the computation fails to terminate. The language accepted by
Turing machine M is defined by L(M) = {w ∈ Σ* | M accepts w}. We denote by tM (x)
the number of steps in the computation of M on input x. If this computation never halts,
then tM (x) = ∞. For n ∈ N we denote by TM(n) the worst case run time of M; that is,
TM(n) = max{tM(w)|w ∈ Σn}, where Σn is the set of all strings over Σ of length n. We
say that M runs in polynomial time if there exists i such that for all n, TM(n) ≤ ni + i.
Now we define the class P of languages by P = {L | L = L(M) for some Turing machine
M that runs in polynomial time}. Look at the question: Does P = NP?
It is easy to see that the answer is independent of the size of the alphabet Σ
(we assume | Σ |≥ 2), since strings over an alphabet of any fixed size can be easily coded by
strings over a binary alphabet. It is trivial to show that P ⊂ NP , since for each language
L over Σ, if L ∈ P then we can define the polynomial-time checking relation R ⊂ Σ* ∪Σ*
by R(w, y) ⇐⇒ w ∈ L for all w, y ∈ Σ*. There are two simple examples,
1. The set of perfect squares is in P, since Newtons method can be used to easily approxi-
mate square roots.
2. The set of composite numbers is in NP, where the associated polynomial time checking
relation R is given by R(a, b) ⇐⇒ 1 < b < a and b | a.

7 IMPORTANCE

The importance of the P vs NP question stems from the successful theories of NP-completeness
and complexity-based cryptography[2], as well as the potentially stunning practical conse-
quences of a constructive proof of P = NP. The theory of NP-completeness has its roots
in computability theory, which originated in the work of Turing, Church, Godel, and oth-
ers in the 1930s. If P=NP, then finding a solution is not much difficult than verifying
it. Theorem proving can be automated. If this is the case, then one may imagine big
relief to mathematicians. The complexity theory in mathematics and computer science
will almost vanish. In biology, finding the minimum energy 3-dimensional configuration of
a protein (NP-hard) will become easier. Further, the statistical methods may be developed



GANITA, Vol. 66, 2016, 87-92 91

for predicting structural classes of proteins based on their amino acids composition. Several
other NP-complete problems have been identified, including Sub-set Sum (given a set of
positive integers presented in decimal notation, and a target T, is there a subset summing
to T?). Many graph problems : given a graph G, does G possess a Hamiltonian cycle?
Does G contain a clique consisting of half of the vertices? Can the vertices of G be colored
with three colors with distinct colors for adjacent vertices. These problems give rise to
many scheduling and routing problems with industrial importance. There are interesting
examples of NP problems not known to be either in P or in NP-complete. One example
is the graph isomorphism problem: Given two undirected graphs, determine whether they
are isomorphic. Computational complexity theory[4] plays an important role in modern
cryptography [2]. The security of the Internet, including most financial transactions, de-
pends on complexity-theory assumptions such as the complexity of integer factoring or of
breaking DES (the Data Encryption Standard). If P = NP, these assumptions may become
false. Although a practical algorithm for solving an NP-complete problem i.e. P = NP
would have shocking consequences for cryptography, it would also have striking practical
consequences of more efficient solutions to many useful NP-hard problems important to
industry. For instance, it would transform mathematics by allowing a computer to find a
formal proof of any theorem that has a proof of reasonable length, since formal proofs can
easily be recognized in polynomial time. Well, such theorems may include all of the CMI
millennium prize problems.

8 CONCLUSION

It has become obvious that finding proof of P versus NP is important.
Clearly, P versus NP is not merely a prize problem but a problem of great importance and
hence researchers must pay more attention for finding its proof.
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