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Abstract

In this paper, we determine region of variability for log f(z0)
z0

, where
z0 is a non zero fixed complex number in the unit disk U and f
varies over a class of strongly starlike functions determined by the

subordination codition zf
′
(z)

f(z) ≺
√

1 + z (z ∈ U) .
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1 Introduction

Let H[a, n] denotes the class of functions of the form

f(z) = a+ anz
n + an+1z

n+1 + ...,

which are analytic in the open unit disk U = {z : |z| < 1} in the complex plane C. Let A
denotes a subclass of H[0, 1] whose members are of the form

(1.1) f(z) = z +
∞∑
n=1

an+1z
n+1 (z ∈ U).

Here we think of H as topological vector space endowed with the topology of uniform
convergence over compact subsets of U.

We say that an analytic function f(z) is subordinate to another analytic function g(z)
and write f ≺ g, if and only if there exists a Schwarz class function w analytic in U such
that w(0) = 0 and |w(z)| < 1, ∀ z ∈ U with f(z) = g(w(z)). In particular if g(z) is
univalent in U. We have the following equivalence

f ≺ g ⇔ f(0) = g(0) and f(U) ⊆ g(U).
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Let us denote

(1.2) qf (z) = z
f ′(z)

f(z)

and let SS∗(β) denotes a class of strongly starlike functions of order β, defined by

SS∗(β) = { f ∈ A : | arg qf (z)| ≤ βπ
2
, 0 < β ≤ 1}.

The class of strongly starlike functions SS∗(1) becomes the well known class S∗of starlike
functions.

In this paper, we consider the class LS∗ defined by

LS∗ = {f ∈ A : |q2f − 1| < 1}

which is associated with the right half of the lemniscate of Bernoulli [2]. Observe that
L = {w ∈ C : Rew > 0, |w2 − 1| < 1} is the interior of the right half of the lemniscate of
Bernoulli: γ : (x2 + y2)2 − 2(x2 − y2) = 0. It is easy to see that f ∈ LS∗ if and only if

(1.3) qf (z) ≺ q0(z) =
√

1 + z, q0(0) = 1.

Moreover
L ⊂ {w : | arg w| < π

4
}.

Thus, we have following inclusion relation

LS∗ ⊂ SS∗(1

2
) ⊂ S∗.

We determine the region of variability V (z0, λ) for the function log f(z0)
z0

, where z0 is a non

zero fixed complex number in the unit disk U and f ∈ LS∗. In recent years, the region
of variability V (z0, λ) for functions belonging to various classes of A is studied by several
authors (see in [1, 3, 4, 5, 6] ).

2 Main Results

Let
B0 = {w ∈ H, w(0) = 0, w

′
(0) 6= 0 and |w(z)| < 1 for z ∈ U}.

From (1.1) and from the definition of qf (z), we have qf (0) = 1 and from (1.3)

(2.1) q2f (z) = 1 + wf (z)

for some wf (z) ∈ B0 and conversely.
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2.1 The region V (z0, λ)

For some λ ∈ U with w′f (0) = λ and z0 ∈ U, z0 6= 0, we have

(2.2) V (z0, λ) = {log
f(z0)

z0
: f ∈ LS∗},

where V (z0, λ) is region of variability as f varies over LS∗, logarithm of f(z0)
z0

is single
valued.

Lemma 2.1. Let f be an analytic function in U with

f(z) = zk +
∞∑
n=1

an+kz
n+k.

If

Re

(
1 + z

f ′′(z)

f ′(z)

)
> 0 (z ∈ U) ,

then f ∈ (S∗)k.

2.2 Basic Properties of V (z0, λ)

Proposition 2.1. We have
1) V (z0, λ) is compact.
2) V (z0, λ) is convex.
3) for |λ| = 1

V (z0, λ) = 2(
√

1 + λz0 − 1) + 2 log
2

(
√

1 + λz0 + 1)

4) for|λ| < 1 and z0 ∈ U\{0}, V (z0, λ) has 2(
√

1 + λz0−1)+2 log 2
(
√
1+λz0+1)

as interior

point.

Proof. 1) Since LS∗ is compact subset of A, any bounded sequence of functions in LS∗
converges in it, hence corresponding sequence in V (z0, λ) also converges in V (z0, λ), it
follows that V (z0, λ) is also compact.

2) If f1, f2 ∈ LS∗ and 0 ≤ t ≤ 1, then the function

ft (z0)

z0
= exp{(1− t) log

f1(z0)

z0
+ t log

f2(z0)

z0
}

= f1−t1 (z0)f
t
2(z0).

and

z
f ′t(z)

ft(z)
= (1− t)z f

′
1(z)

f1(z)
+ tz

f ′2(z)

f2(z)
.
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Since we have

z
f ′1(z)

f1(z)
≺
√

1 + z and z
f ′2(z)

f2(z)
≺
√

1 + z

which implies that

z
f ′t(z)

ft(z)
≺ (1− t)

√
1 + z + t

√
1 + z

=
√

1 + z.

Hence,
ft ∈ LS∗.

Also because of the representation of ft, we easily see that the set V (z0, λ) is convex.
3) If |λ| = 1 = |w′f (0)|, then it follows from classical Schwarz lemma that

wf (z) = λz

and we have from (2.1) that

q2f (z) = 1 + λz ⇒ z
f ′(z)

f(z)
=
√

1 + λz

consequently

log
f(z0)

z0
= 2(

√
1 + λz0 − 1) + 2 log

2

(
√

1 + λz0 + 1)
.

4) For |λ| < 1 and a ∈ U, we define

(2.3) δ(z, λ) =
z + λ

1 + λz

and the function Ha,λ(z) by

(2.4) log
Ha,λ(z)

z
=

{∫ z

0

√
1 + δ(aε, λ)ε− 1

ε
dε

}
.

First we claim that Ha,λ(z) ∈ LS∗, for this we may easily get by simple computation that

z
H ′a,λ(z)

Ha,λ(z)
=
√

1 + δ(az, λ)z

as δ(az, λ) lies in the unit disk U and hence, Ha,λ(z) ∈ LS∗and the claim follows. Also we
observe that

wHa,λ(z) = δ(az, λ)z.
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Next we claim that the mapping U 3 a → log
Ha,λ(z0)

z0
is a non-constant analytic function

of a for each fixed z0 ∈ U/{0} and λ ∈ U, to do this we put

h(z0) =
4

1− λλ
∂

∂a
{logHa,λ(z0)}|a=0

=

∫ z0

0

2ε√
1 + λε

dε

= z20 −
1

3
λz30 + ...,

so that

Re

(
z0
h

′′
(z0)

h′(z0)

)
=

1

2
Re

(
1 +

1

1 + λz0

)
> 0 .

By Lemma 2.1 there exists a function h0 ∈ S∗ with h(z) = h20(z) the univalence of h0
together with the condition h0(0) = 0, implies that h(z0) 6= 0 for z0 ∈ U\{0}. Consequently,
the mapping

U 3 a→ log
Ha,λ(z0)

z0

is a non-constant analytic function of a therefore it is an open mapping, thus V (z0, λ) is
an open set and

log
Ha,λ(z0)

z0
= 2(

√
1 + λz0 − 1) + 2 log

2

(
√

1 + λz0 + 1)
(λ ∈ U),

is an interior of {
log

Ha,λ(z0)

z0
: a ∈ U

}
⊂ V (z0, λ).

We remark that, since V (z0, λ) is a compact convex subset of C and has non empty interior,
the boundary ∂V (z0, λ) is a Jordan curve and V (z0, λ) is union of ∂V (z0, λ) and its inner
domain.

Theorem 2.1. For λ ∈ U and z0 ∈ U\{0}, the boundary ∂V (z0, λ) is the Jordan curve
given by

(−π, π] 3 θ → log
Heiθ,λ(z0)

z0
=

∫ z0

0

√
1 + δ(eiθε, λ)ε− 1

ε
dε.

If

log
f(z0)

z0
= log

Heiθ,λ(z0)

z0

for some f ∈ LS∗ and θ ∈ (−π, π], then f(z) = Heiθ,λ(z), where Heiθ,λ(z) is given by
(2.4).
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3 Region of Variability

Proposition 3.1. For f ∈ LS∗ we have

(3.1)

∣∣∣∣q2f (z)− 1 + λz − (z + λ)zzλ

1− zzλλ

∣∣∣∣ ≤ |zz||1− λλ|1− zzλλ
(λ ∈ U)

for each z ∈ U\{0}. Equality in (3.1) holds if and only if f(z) = Heiθ,λ(z) for some
θ ∈ (−π, π], where Heiθ,λ(z) is given by (2.4).

Proof. Let f ∈ LS∗. Then from (2.1) there exists a function wf ∈ B0 such that

q2f (z) = 1 + wf (z),

where qf (z) is as defined by (1.2). It follows from the Schwarz lemma that∣∣∣∣∣
wf (z)
z − λ

1− λwf (z)z

∣∣∣∣∣ ≤ |z| (z ∈ U)

or, ∣∣∣∣∣wf (z)− λz
z − λwf (z)

∣∣∣∣∣ ≤ |z| (z ∈ U)

which from (2.1) is equivalent to ∣∣∣∣∣∣q
2
f (z)− 1− λz
z+λ
λ
− q2f (z)

∣∣∣∣∣∣ ≤ |λz|
which implies that

(3.2)

∣∣∣∣q2f (z)− A−B|E|2

1− |E|2

∣∣∣∣ ≤ |E||B −A|1− |E|2

where

(3.3) A = 1 + λz, B =
z + λ

λ
, E = λz.

So we have

(3.4)
A−B|E|2

1− |E|2
=

1 + λz − (z + λ)zzλ

1− zzλλ
,
|E||B −A|

1− |E|2
=
zz|1− λλ|
1− zzλλ

,

which proves the inequality (3.1). Now from the inequality (3.1) and the last two equations
in (3.4), we check for the equality

(3.5)

∣∣∣∣q2f (z)− 1 + λz − (z + λ)zzλ

1− zzλλ

∣∣∣∣ =
|zz||1− λλ|
1− zzλλ

,
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where

q2f (z) = 1 + δ(az, λ)z

= 1 +
az + λ

1 + λaz
z

from (2.3). Thus, we have

(3.6)

∣∣∣∣(1 +

(
az + λ

1 + λaz

)
z

)
− 1 + λz − (z + λ)zzλ

1− zzλλ

∣∣∣∣ =
|zz||1− λλ|

1− zzλλ
.

On solving (3.6) for a, we get

|a| =
∣∣∣∣1− λz1− zλ

∣∣∣∣ = 1⇒ a = eiθ,

hence equality occurs for any z ∈ U in (3.1) when f = Heiθ,λ for some θ ∈ (−π, π].
Conversely if equality occurs for some z ∈ U\{0} in (3.1), then equality must hold in (3.2),
thus from the well known Schwarz lemma ∃ θ ∈ (−π, π] such that

wf (z) = zδ(eiθz, λ)

for ∀ z ∈ U this implies f = Heiθ,λ.

Corollary 3.1. Let V (z0, λ) be given by (2.2). Let γ : z(t), 0 ≤ t ≤ 1 be a C1- curve in U
with z(0) = 0, z(1) = z0. Then

V (z0, λ) ⊂ {w ∈ C : |w| ≤ R(λ, γ)},

where

R(λ, γ) =

∣∣∣∣∣∣
∫ 1

0

√1 + λz − (z + λ)zzλ+ zz(1− λλ)eiθ

1− zzλλ
− 1

 z′(t)

z(t)
dt

∣∣∣∣∣∣
∀ θ ∈ (−π, π].

Proof. For f ∈ LS∗ we have equality (3.5) in Proposition 3.1 for the extremal function,
hence, for any θ ∈ (−π, π],

q2f (z) =
1 + λz − (z + λ)zzλ+ zz(1− λλ)eiθ

1− zzλλ

which implies that

qf (z) =

√
1 + λz − (z + λ)zzλ+ zz(1− λλ)eiθ

1− zzλλ
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or,

zf ′(z)

f(z)
=

√
1 + λz − (z + λ)zzλ+ zz(1− λλ)eiθ

1− zzλλ
.

Hence, ∫ 1

0

(
f ′(z)

f(z)
− 1

z(t)

)
z′(t)dt

=

∫ 1

0

√1 + λz − (z + λ)zzλ+ zz(1− λλ)eiθ

1− zzλλ
− 1

 z′(t)
z(t)

dt

which implies that

log
f(z0)

z0
= : w

=

∫ 1

0

√1 + λz − (z + λ)zzλ+ zz(1− λλ)eiθ

1− zzλλ
− 1

 z′(t)
z(t)

dt

which implies
V (z0, λ) ⊂ {w ∈ C : |w| ≤ R(λ, γ)}.

Proposition 3.2. Let z0 ∈ U\{0}. Then for θ ∈ (−π, π] log
H
eiθ,λ

(z0)

z0
∈ ∂V (z0,λ). Fur-

thermore if log f(z0)
z0

= log
H
eiθ,λ

(z0)

z0
for some f ∈ LS∗ and θ ∈ (−π, π], then f = Heiθ,λ.

Proof. From (2.4)

log
Ha,λ(z)

z
=

∫ z

0

√
1 + δ(aε, λ)ε− 1

ε
dε (λ ∈ U)

we easily obtain that

(3.7)
H ′a,λ(z)

Ha,λ(z)
− 1

z
=

√
1 + δ(az, λ)z − 1

z

which implies that

z2

(
H ′a,λ(z)

Ha,λ(z)

)2

= 1 + δ(az, λ)z.

Hence, on using (3.3), we get

(3.8) q2Ha,λ(z)−A = zδ(az, λ)− λz
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and

(3.9) B − q2f (z) =
z

λ
− zδ(az, λ)

which on substituting a = eiθ, from (3.3), (3.7), (3.8) and (3.9), we have∣∣∣∣q2Ha,λ(z)− A−B|E|2

1− |E|2

∣∣∣∣ =

∣∣∣∣ |z|2(1− λλ)(eiθ + λz)

(1− zzλλ)(1 + λzeiθ)

∣∣∣∣
=
|E||B −A|

1− |E|2

∣∣∣∣ eiθ + λz

1 + λzeiθ

∣∣∣∣(3.10)

since
∣∣∣ eiθ+λz
1+λzeiθ

∣∣∣ ≤ 1 (λ ∈ U), from (3.10) and (3.1) we have

q2Ha,λ(z) =
|E||B −A|

1− |E|2

∣∣∣∣ eiθ + λz

1 + λzeiθ

∣∣∣∣ eiφ +
1 + λz − (z + λ)zzλ

1− |E|2
, φ ∈ R

which implies that

qHa,λ(z) =

(
|E||B −A|

1− |E|2

∣∣∣∣ eiθ + λz

1 + λzeiθ

∣∣∣∣ eiφ +
1 + λz − (z + λ)zzλ

1− |E|2

) 1
2

.

Hence,

(3.11) z
H ′a,λ(z)

Ha,λ(z)
=

(
|E||B −A|

1− |E|2

∣∣∣∣ eiθ + λz

1 + λzeiθ

∣∣∣∣ eiφ +
1 + λz − (z + λ)zzλ

1− |E|2

) 1
2

.

On integrating (3.11) along γ : z(t), 0 ≤ t ≤ 1 which is a C1- curve in U with z(0) =
0, z(1) = z0, we obtain

(3.12) log
Heiθ,λ(z0)

z0
= R(λ, γ) (λ ∈ U)

where R(λ, γ) is defined in Corollary 3.1, thus we have log Heiθ,λ(z0) ⊂ V (z0,λ) ⊂ D ,
where D is defined by

D = {w ∈ C : |w| ≤ R(λ, γ)}

which concludes that log
H
eiθ,λ

(z0)

z0
⊂ ∂V (z0,λ). Finally, we prove the uniqueness of the

curve, suppose that

log
f(z0)

z0
= log

Heiθ,λ(z0)

z0
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for f ∈ LS∗ and θ ∈ (−π, π], we introduce

h(t)

=

[
f ′(z)

f(z)
− 1

z

− 1

z(t)


(
|E||B −A|

1− |E|2

∣∣∣∣ eiθ + λz

1 + λzeiθ

∣∣∣∣ eiφ +
1 + λz − (z + λ)zzλ

1− |E|2

) 1
2

− 1


 z′(t)

where γ : z(t) = z , 0 ≤ t ≤ 1 is given in Corollary 3.1, then h(t) is continuous function in
the interval [0, 1] and∫ 1

0
Reh(t)dt

=

∫ 1

0
Re

{(
f ′(z)

f(z)
− 1

z

)

−

 1

z(t)

(
|E||B −A|

1− |E|2

∣∣∣∣ eiθ + λz

1 + λzeiθ

∣∣∣∣ eiφ +
1 + λz − (z + λ)zzλ

1− |E|2

) 1
2

− 1

z(t)

 z′(t)dt

= Re

{
log

f ′(z0)

z0
−R(λ, γ)

}
.(3.13)

Since logarithm function is single valued therefore from (3.11), (3.12) and (3.13), we have

f ′

f
=
H ′
eiθ,λ

Heiθ,λ

on the curve γ, using the identity theorem for analytic function we conclude that last
equality holds in U and hence we have f = Heiθ,λ.

Proof of Theorem 3.1. We need to prove that the closed curve (−π, π] 3 θ → log
H
eiθ,λ

(z0)

z0

is simple. Suppose that log
H
eiθ1 ,λ

(z0)

z0
= log

H
eiθ2 ,λ

(z0)

z0
for some θ1, θ2 ∈ (−π, π] with

θ1 6= θ2, then from Proposition 3.2, we have ,

Heiθ1 ,λ = Heiθ2 ,λ.

Let us define τ(z, λ) = z−λ
1−λz , from the equality wH

eiθ,λ
= zδ(eiθz, λ), we have

eiθ1z = τ

(wH
eiθ1 ,λ

z
, λ

)
= τ

(wH
eiθ2 ,λ

z
, λ

)
= eiθ2z ,

which is contrary to the fact that θ1 6= θ2, thus the curve is simple. Since V (z0,λ) is
a compact convex subset of C and has non empty interior, the boundary ∂V (z0,λ) is a



GANITA, Vol. 67(2), 2017, 129-139 139

simple closed curve. From Proposition 2.1 the curve ∂V (z0,λ) contains the curve (−π, π]

3 θ → log
H
eiθ,λ

(z0)

z0
, since a simple closed curve can not contain any simple closed curve

other than itself. Thus ∂V (z0,λ) is given by (−π, π] 3 θ → log
H
eiθ,λ

(z0)

z0
(λ ∈ U) .

Remark 3.1. For f ∈ S∗class of starlike functions we have log f(z0)
z0

= log 1
(1−z0)2 which

is not bounded when z0 ∈ ∂U, but in case f ∈ LS∗, log f(z0)
z0

is bounded even when z0 ∈ ∂U
.
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