Region of Variability for a Class of Strongly Starlike Analytic Functions

Poonam Sharma ${ }^{1}$ \& Rajesh Kumar Maurya ${ }^{2}$
${ }^{1}$ Department of Mathematics $\&$ Astronomy, Lucknow University, Lucknow, Uttar Pradesh
${ }^{2}$ Department of Mathematics, Govt. Post Graduate College Gopeshwar, (Chamoli) Uttarakhand

poonambaba@gmail.com § rajeshkrmaurya@gmail.com

Abstract

In this paper, we determine region of variability for $\log \frac{f\left(z_{0}\right)}{z_{0}}$, where z_{0} is a non zero fixed complex number in the unit disk \mathbb{U} and f varies over a class of strongly starlike functions determined by the subordination codition $\frac{z f^{\prime}(z)}{f(z)} \prec \sqrt{1+z}(z \in \mathbb{U})$.

Subject class [2010]:Primary 30C45; Secondary 30C50
Keywords: Subordination, Strongly starlike, Region of Variability, Lemniscate of Bernoulli, Schwarz class functions.

1 Introduction

Let $\mathcal{H}[a, n]$ denotes the class of functions of the form

$$
f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots
$$

which are analytic in the open unit disk $\mathbb{U}=\{z:|z|<1\}$ in the complex plane \mathbb{C}. Let \mathcal{A} denotes a subclass of $\mathcal{H}[0,1]$ whose members are of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=1}^{\infty} a_{n+1} z^{n+1} \quad(z \in \mathbb{U}) . \tag{1.1}
\end{equation*}
$$

Here we think of \mathcal{H} as topological vector space endowed with the topology of uniform convergence over compact subsets of \mathbb{U}.

We say that an analytic function $f(z)$ is subordinate to another analytic function $g(z)$ and write $f \prec g$, if and only if there exists a Schwarz class function w analytic in \mathbb{U} such that $w(0)=0$ and $|w(z)|<1, \forall z \in \mathbb{U}$ with $f(z)=g(w(z))$. In particular if $g(z)$ is univalent in \mathbb{U}. We have the following equivalence

$$
f \prec g \Leftrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subseteq g(\mathbb{U}) .
$$

Let us denote

$$
\begin{equation*}
q_{f}(z)=z \frac{f^{\prime}(z)}{f(z)} \tag{1.2}
\end{equation*}
$$

and let $S S^{*}(\beta)$ denotes a class of strongly starlike functions of order β, defined by

$$
S S^{*}(\beta)=\left\{f \in \mathcal{A}:\left|\arg q_{f}(z)\right| \leq \beta \frac{\pi}{2}, 0<\beta \leq 1\right\}
$$

The class of strongly starlike functions $S S^{*}(1)$ becomes the well known class S^{*} of starlike functions.

In this paper, we consider the class $\mathcal{L S ^ { * }}$ defined by

$$
\mathcal{L S}^{*}=\left\{f \in \mathcal{A}:\left|q_{f}^{2}-1\right|<1\right\}
$$

which is associated with the right half of the lemniscate of Bernoulli [2]. Observe that $\mathcal{L}=\left\{w \in \mathbb{C}:\right.$ Rew $\left.>0,\left|w^{2}-1\right|<1\right\}$ is the interior of the right half of the lemniscate of Bernoulli: $\gamma:\left(x^{2}+y^{2}\right)^{2}-2\left(x^{2}-y^{2}\right)=0$. It is easy to see that $f \in \mathcal{L S}$ * if and only if

$$
\begin{equation*}
q_{f}(z) \prec q_{0}(z)=\sqrt{1+z}, q_{0}(0)=1 . \tag{1.3}
\end{equation*}
$$

Moreover

$$
\mathcal{L} \subset\left\{w:|\arg w|<\frac{\pi}{4}\right\} .
$$

Thus, we have following inclusion relation

$$
\mathcal{L S}^{*} \subset S S^{*}\left(\frac{1}{2}\right) \subset S^{*}
$$

We determine the region of variability $V\left(z_{0}, \lambda\right)$ for the function $\log \frac{f\left(z_{0}\right)}{z_{0}}$, where z_{0} is a non zero fixed complex number in the unit disk \mathbb{U} and $f \in \mathcal{L} \mathcal{S}^{*}$. In recent years, the region of variability $V\left(z_{0}, \lambda\right)$ for functions belonging to various classes of \mathcal{A} is studied be several authors (see in $[1,3,4,5,6]$).

2 Main Results

Let

$$
B_{0}=\left\{w \in \mathcal{H}, w(0)=0, w^{\prime}(0) \neq 0 \text { and }|w(z)|<1 \text { for } z \in \mathbb{U}\right\} .
$$

From (1.1) and from the definition of $q_{f}(z)$, we have $q_{f}(0)=1$ and from (1.3)

$$
\begin{equation*}
q_{f}^{2}(z)=1+w_{f}(z) \tag{2.1}
\end{equation*}
$$

for some $w_{f}(z) \in B_{0}$ and conversely.

2.1 The region $V\left(z_{0}, \lambda\right)$

For some $\lambda \in \overline{\mathbb{U}}$ with $w_{f}^{\prime}(0)=\lambda$ and $z_{0} \in \mathbb{U}, z_{0} \neq 0$, we have

$$
\begin{equation*}
V\left(z_{0}, \lambda\right)=\left\{\log \frac{f\left(z_{0}\right)}{z_{0}}: f \in \mathcal{L} \mathcal{S}^{*}\right\} \tag{2.2}
\end{equation*}
$$

where $V\left(z_{0}, \lambda\right)$ is region of variability as f varies over $\mathcal{L S}{ }^{*}$, logarithm of $\frac{f\left(z_{0}\right)}{z_{0}}$ is single valued.

Lemma 2.1. Let f be an analytic function in \mathbb{U} with

$$
f(z)=z^{k}+\sum_{n=1}^{\infty} a_{n+k} z^{n+k} .
$$

If

$$
\operatorname{Re}\left(1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0 \quad(z \in \mathbb{U}),
$$

then $f \in\left(S^{*}\right)^{k}$.

2.2 Basic Properties of $V\left(z_{0}, \lambda\right)$

Proposition 2.1. We have

1) $V\left(z_{0}, \lambda\right)$ is compact.
2) $V\left(z_{0}, \lambda\right)$ is convex.
3) for $|\lambda|=1$

$$
V\left(z_{0}, \lambda\right)=2\left(\sqrt{1+\lambda z_{0}}-1\right)+2 \log \frac{2}{\left(\sqrt{1+\lambda z_{0}}+1\right)}
$$

4) for $|\lambda|<1$ and $z_{0} \in \mathbb{U} \backslash\{0\}$, $V\left(z_{0}, \lambda\right)$ has $2\left(\sqrt{1+\lambda z_{0}}-1\right)+2 \log \frac{2}{\left(\sqrt{1+\lambda z_{0}}+1\right)}$ as interior point.

Proof. 1) Since $\mathcal{L S}{ }^{*}$ is compact subset of \mathcal{A}, any bounded sequence of functions in $\mathcal{L S}^{*}$ converges in it, hence corresponding sequence in $V\left(z_{0}, \lambda\right)$ also converges in $V\left(z_{0}, \lambda\right)$, it follows that $V\left(z_{0}, \lambda\right)$ is also compact.
2) If $f_{1}, f_{2} \in \mathcal{L S}{ }^{*}$ and $0 \leq t \leq 1$, then the function

$$
\begin{aligned}
\frac{f_{t}\left(z_{0}\right)}{z_{0}} & =\exp \left\{(1-t) \log \frac{f_{1}\left(z_{0}\right)}{z_{0}}+t \log \frac{f_{2}\left(z_{0}\right)}{z_{0}}\right\} \\
& =f_{1}^{1-t}\left(z_{0}\right) f_{2}^{t}\left(z_{0}\right)
\end{aligned}
$$

and

$$
z \frac{f_{t}^{\prime}(z)}{f_{t}(z)}=(1-t) z \frac{f_{1}^{\prime}(z)}{f_{1}(z)}+t z \frac{f_{2}^{\prime}(z)}{f_{2}(z)}
$$

Since we have

$$
z \frac{f_{1}^{\prime}(z)}{f_{1}(z)} \prec \sqrt{1+z} \quad \text { and } \quad z \frac{f_{2}^{\prime}(z)}{f_{2}(z)} \prec \sqrt{1+z}
$$

which implies that

$$
\begin{aligned}
z \frac{f_{t}^{\prime}(z)}{f_{t}(z)} & \prec(1-t) \sqrt{1+z}+t \sqrt{1+z} \\
& =\sqrt{1+z} .
\end{aligned}
$$

Hence,

$$
f_{t} \in \mathcal{L S}^{*}
$$

Also because of the representation of f_{t}, we easily see that the set $V\left(z_{0}, \lambda\right)$ is convex.
3) If $|\lambda|=1=\left|w_{f}^{\prime}(0)\right|$, then it follows from classical Schwarz lemma that

$$
w_{f}(z)=\lambda z
$$

and we have from (2.1) that

$$
q_{f}^{2}(z)=1+\lambda z \Rightarrow z \frac{f^{\prime}(z)}{f(z)}=\sqrt{1+\lambda z}
$$

consequently

$$
\log \frac{f\left(z_{0}\right)}{z_{0}}=2\left(\sqrt{1+\lambda z_{0}}-1\right)+2 \log \frac{2}{\left(\sqrt{1+\lambda z_{0}}+1\right)} .
$$

4) For $|\lambda|<1$ and $a \in \overline{\mathbb{U}}$, we define

$$
\begin{equation*}
\delta(z, \lambda)=\frac{z+\lambda}{1+\bar{\lambda} z} \tag{2.3}
\end{equation*}
$$

and the function $H_{a, \lambda}(z)$ by

$$
\begin{equation*}
\log \frac{H_{a, \lambda}(z)}{z}=\left\{\int_{0}^{z} \frac{\sqrt{1+\delta(a \varepsilon, \lambda) \varepsilon}-1}{\varepsilon} \mathrm{~d} \varepsilon\right\} . \tag{2.4}
\end{equation*}
$$

First we claim that $H_{a, \lambda}(z) \in \mathcal{L S}^{*}$, for this we may easily get by simple computation that

$$
z \frac{H_{a, \lambda}^{\prime}(z)}{H_{a, \lambda}(z)}=\sqrt{1+\delta(a z, \lambda) z}
$$

as $\delta(a z, \lambda)$ lies in the unit disk \mathbb{U} and hence, $H_{a, \lambda}(z) \in \mathcal{L S}^{*}$ and the claim follows. Also we observe that

$$
w_{H_{a, \lambda}}(z)=\delta(a z, \lambda) z .
$$

Next we claim that the mapping $\mathbb{U} \ni a \rightarrow \log \frac{H_{a, \lambda}\left(z_{0}\right)}{z_{0}}$ is a non-constant analytic function of a for each fixed $z_{0} \in \mathbb{U} /\{0\}$ and $\lambda \in \mathbb{U}$, to do this we put

$$
\begin{aligned}
h\left(z_{0}\right) & =\left.\frac{4}{1-\lambda \bar{\lambda}} \frac{\partial}{\partial a}\left\{\log H_{a, \lambda}\left(z_{0}\right)\right\}\right|_{a=0} \\
& =\int_{0}^{z_{0}} \frac{2 \varepsilon}{\sqrt{1+\lambda \varepsilon}} \mathrm{d} \varepsilon \\
& =z_{0}^{2}-\frac{1}{3} \lambda z_{0}^{3}+\ldots
\end{aligned}
$$

so that

$$
\operatorname{Re}\left(z_{0} \frac{h^{\prime \prime}\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}\right)=\frac{1}{2} \operatorname{Re}\left(1+\frac{1}{1+\lambda z_{0}}\right)>0 .
$$

By Lemma 2.1 there exists a function $h_{0} \in S^{*}$ with $h(z)=h_{0}^{2}(z)$ the univalence of h_{0} together with the condition $h_{0}(0)=0$, implies that $h\left(z_{0}\right) \neq 0$ for $z_{0} \in \mathbb{U} \backslash\{0\}$. Consequently, the mapping

$$
\mathbb{U} \ni a \rightarrow \log \frac{H_{a, \lambda}\left(z_{0}\right)}{z_{0}}
$$

is a non-constant analytic function of a therefore it is an open mapping, thus $V\left(z_{0}, \lambda\right)$ is an open set and

$$
\log \frac{H_{a, \lambda}\left(z_{0}\right)}{z_{0}}=2\left(\sqrt{1+\lambda z_{0}}-1\right)+2 \log \frac{2}{\left(\sqrt{1+\lambda z_{0}}+1\right)} \quad(\lambda \in \mathbb{U})
$$

is an interior of

$$
\left\{\log \frac{H_{a, \lambda}\left(z_{0}\right)}{z_{0}}: a \in \mathbb{U}\right\} \subset V\left(z_{0}, \lambda\right)
$$

We remark that, since $V\left(z_{0}, \lambda\right)$ is a compact convex subset of \mathbb{C} and has non empty interior, the boundary $\partial V\left(z_{0}, \lambda\right)$ is a Jordan curve and $V\left(z_{0}, \lambda\right)$ is union of $\partial V\left(z_{0}, \lambda\right)$ and its inner domain.

Theorem 2.1. For $\lambda \in \mathbb{U}$ and $z_{0} \in \mathbb{U} \backslash\{0\}$, the boundary $\partial V\left(z_{0}, \lambda\right)$ is the Jordan curve given by

$$
(-\pi, \pi] \ni \theta \rightarrow \log \frac{H_{e^{i \theta}, \lambda}\left(z_{0}\right)}{z_{0}}=\int_{0}^{z_{0}} \frac{\sqrt{1+\delta\left(e^{i \theta} \varepsilon, \lambda\right) \varepsilon}-1}{\varepsilon} d \varepsilon .
$$

If

$$
\log \frac{f\left(z_{0}\right)}{z_{0}}=\log \frac{H_{e^{i \theta}, \lambda}\left(z_{0}\right)}{z_{0}}
$$

for some $f \in \mathcal{L S}^{*}$ and $\theta \in(-\pi, \pi]$, then $f(z)=H_{e^{i \theta}, \lambda}(z)$, where $H_{e^{i \theta}, \lambda}(z)$ is given by (2.4).

3 Region of Variability

Proposition 3.1. For $f \in \mathcal{L} \mathcal{S}^{*}$ we have

$$
\begin{equation*}
\left|q_{f}^{2}(z)-\frac{1+\lambda z-(z+\bar{\lambda}) z \bar{z} \lambda}{1-z \bar{z} \lambda \bar{\lambda}}\right| \leq \frac{|z \bar{z}||1-\lambda \bar{\lambda}|}{1-z \bar{z} \lambda \bar{\lambda}} \quad(\lambda \in \mathbb{U}) \tag{3.1}
\end{equation*}
$$

for each $z \in \mathbb{U} \backslash\{0\}$. Equality in (3.1) holds if and only if $f(z)=H_{e^{i \theta}, \lambda}(z)$ for some $\theta \in(-\pi, \pi]$, where $H_{e^{i \theta}, \lambda}(z)$ is given by (2.4).
Proof. Let $f \in \mathcal{L} \mathcal{S}^{*}$. Then from (2.1) there exists a function $w_{f} \in B_{0}$ such that

$$
q_{f}^{2}(z)=1+w_{f}(z)
$$

where $q_{f}(z)$ is as defined by (1.2). It follows from the Schwarz lemma that

$$
\left|\frac{\frac{w_{f}(z)}{z}-\lambda}{1-\bar{\lambda} \frac{w_{f}(z)}{z}}\right| \leq|z| \quad(z \in \mathbb{U})
$$

or,

$$
\left|\frac{w_{f}(z)-\lambda z}{z-\bar{\lambda} w_{f}(z)}\right| \leq|z| \quad(z \in \mathbb{U})
$$

which from (2.1) is equivalent to

$$
\left|\frac{q_{f}^{2}(z)-1-\lambda z}{\frac{z+\bar{\lambda}}{\bar{\lambda}}-q_{f}^{2}(z)}\right| \leq|\bar{\lambda} z|
$$

which implies that

$$
\begin{equation*}
\left|q_{f}^{2}(z)-\frac{A-B|E|^{2}}{1-|E|^{2}}\right| \leq \frac{|E||B-A|}{1-|E|^{2}} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
A=1+\lambda z, B=\frac{z+\bar{\lambda}}{\bar{\lambda}}, E=\bar{\lambda} z \tag{3.3}
\end{equation*}
$$

So we have

$$
\begin{equation*}
\frac{A-B|E|^{2}}{1-|E|^{2}}=\frac{1+\lambda z-(z+\bar{\lambda}) z \bar{z} \lambda}{1-z \bar{z} \lambda \bar{\lambda}}, \quad \frac{|E||B-A|}{1-|E|^{2}}=\frac{z \bar{z}|1-\lambda \bar{\lambda}|}{1-z \bar{z} \lambda \bar{\lambda}} \tag{3.4}
\end{equation*}
$$

which proves the inequality (3.1). Now from the inequality (3.1) and the last two equations in (3.4), we check for the equality

$$
\begin{equation*}
\left|q_{f}^{2}(z)-\frac{1+\lambda z-(z+\bar{\lambda}) z \bar{z} \lambda}{1-z \bar{z} \lambda \bar{\lambda}}\right|=\frac{|z \bar{z}||1-\lambda \bar{\lambda}|}{1-z \bar{z} \lambda \bar{\lambda}} \tag{3.5}
\end{equation*}
$$

where

$$
\begin{aligned}
q_{f}^{2}(z) & =1+\delta(a z, \lambda) z \\
& =1+\frac{a z+\lambda}{1+\bar{\lambda} a z} z
\end{aligned}
$$

from (2.3). Thus, we have

$$
\begin{equation*}
\left|\left(1+\left(\frac{a z+\lambda}{1+\bar{\lambda} a z}\right) z\right)-\frac{1+\lambda z-(z+\bar{\lambda}) z \bar{z} \lambda}{1-z \bar{z} \lambda \bar{\lambda}}\right|=\frac{|z \bar{z}||1-\lambda \bar{\lambda}|}{1-z \bar{z} \lambda \bar{\lambda}} . \tag{3.6}
\end{equation*}
$$

On solving (3.6) for a, we get

$$
|a|=\left|\frac{1-\lambda z}{1-\bar{z} \bar{\lambda}}\right|=1 \Rightarrow a=e^{i \theta}
$$

hence equality occurs for any $z \in \mathbb{U}$ in (3.1) when $f=H_{e^{i \theta}, \lambda}$ for some $\theta \in(-\pi, \pi]$. Conversely if equality occurs for some $z \in \mathbb{U} \backslash\{0\}$ in (3.1), then equality must hold in (3.2), thus from the well known Schwarz lemma $\exists \theta \in(-\pi, \pi]$ such that

$$
w_{f}(z)=z \delta\left(e^{i \theta} z, \lambda\right)
$$

for $\forall z \in \mathbb{U}$ this implies $f=H_{e^{i \theta}, \lambda}$.
Corollary 3.1. Let $V\left(z_{0}, \lambda\right)$ be given by (2.2). Let $\gamma: z(t), 0 \leq t \leq 1$ be a C^{1} - curve in \mathbb{U} with $z(0)=0, z(1)=z_{0}$. Then

$$
V\left(z_{0}, \lambda\right) \subset\{w \in \mathbb{C}:|w| \leq R(\lambda, \gamma)\}
$$

where

$$
\begin{aligned}
R(\lambda, \gamma) & =\left|\int_{0}^{1}\left(\sqrt{\frac{1+\lambda z-(z+\bar{\lambda}) z \bar{z} \lambda+z \bar{z}(1-\lambda \bar{\lambda}) e^{i \theta}}{1-z \bar{z} \lambda \bar{\lambda}}}-1\right) \frac{z^{\prime}(t)}{z(t)} d t\right| \\
\forall \theta & \in(-\pi, \pi] .
\end{aligned}
$$

Proof. For $f \in \mathcal{L S}^{*}$ we have equality (3.5) in Proposition 3.1 for the extremal function, hence, for any $\theta \in(-\pi, \pi]$,

$$
q_{f}^{2}(z)=\frac{1+\lambda z-(z+\bar{\lambda}) z \bar{z} \lambda+z \bar{z}(1-\lambda \bar{\lambda}) e^{i \theta}}{1-z \bar{z} \lambda \bar{\lambda}}
$$

which implies that

$$
q_{f}(z)=\sqrt{\frac{1+\lambda z-(z+\bar{\lambda}) z \bar{z} \lambda+z \bar{z}(1-\lambda \bar{\lambda}) e^{i \theta}}{1-z \bar{z} \lambda \bar{\lambda}}}
$$

or,

$$
\frac{z f^{\prime}(z)}{f(z)}=\sqrt{\frac{1+\lambda z-(z+\bar{\lambda}) z \bar{z} \lambda+z \bar{z}(1-\lambda \bar{\lambda}) e^{i \theta}}{1-z \bar{z} \lambda \bar{\lambda}}} .
$$

Hence,

$$
\begin{aligned}
& \int_{0}^{1}\left(\frac{f^{\prime}(z)}{f(z)}-\frac{1}{z(t)}\right) z^{\prime}(t) \mathrm{d} t \\
= & \int_{0}^{1}\left[\sqrt{\frac{1+\lambda z-(z+\bar{\lambda}) z \bar{z} \lambda+z \bar{z}(1-\lambda \bar{\lambda}) e^{i \theta}}{1-z \bar{z} \lambda \bar{\lambda}}}-1\right] \frac{z^{\prime}(t)}{z(t)} \mathrm{d} t
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\log \frac{f\left(z_{0}\right)}{z_{0}} & =: w \\
& =\int_{0}^{1}\left[\sqrt{\frac{1+\lambda z-(z+\bar{\lambda}) z \bar{z} \lambda+z \bar{z}(1-\lambda \bar{\lambda}) e^{i \theta}}{1-z \bar{z} \lambda \bar{\lambda}}}-1\right] \frac{z^{\prime}(t)}{z(t)} d t
\end{aligned}
$$

which implies

$$
V\left(z_{0}, \lambda\right) \subset\{w \in \mathbb{C}:|w| \leq R(\lambda, \gamma)\} .
$$

Proposition 3.2. Let $z_{0} \in \mathbb{U} \backslash\{0\}$. Then for $\theta \in(-\pi, \pi] \log \frac{H_{e^{i \theta}, \lambda}\left(z_{0}\right)}{z_{0}} \in \partial V\left(z_{0}, \lambda\right)$. Furthermore if $\log \frac{f\left(z_{0}\right)}{z_{0}}=\log \frac{H_{e^{i \theta, \lambda}}\left(z_{0}\right)}{z_{0}}$ for some $f \in \mathcal{L S}^{*}$ and $\theta \in(-\pi, \pi]$, then $f=H_{e^{i \theta}, \lambda}$. Proof. From (2.4)

$$
\log \frac{H_{a, \lambda}(z)}{z}=\int_{0}^{z} \frac{\sqrt{1+\delta(a \varepsilon, \lambda) \varepsilon}-1}{\varepsilon} d \varepsilon \quad(\lambda \in \mathbb{U})
$$

we easily obtain that

$$
\begin{equation*}
\frac{H_{a, \lambda}^{\prime}(z)}{H_{a, \lambda}(z)}-\frac{1}{z}=\frac{\sqrt{1+\delta(a z, \lambda) z}-1}{z} \tag{3.7}
\end{equation*}
$$

which implies that

$$
z^{2}\left(\frac{H_{a, \lambda}^{\prime}(z)}{H_{a, \lambda}(z)}\right)^{2}=1+\delta(a z, \lambda) z
$$

Hence, on using (3.3), we get

$$
\begin{equation*}
q_{H_{a, \lambda}}^{2}(z)-A=z \delta(a z, \lambda)-\lambda z \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
B-q_{f}^{2}(z)=\frac{z}{\bar{\lambda}}-z \delta(a z, \lambda) \tag{3.9}
\end{equation*}
$$

which on substituting $a=e^{i \theta}$, from (3.3), (3.7), (3.8) and (3.9), we have

$$
\begin{align*}
\left|q_{H_{a, \lambda}}^{2}(z)-\frac{A-B|E|^{2}}{1-|E|^{2}}\right| & =\left|\frac{|z|^{2}(1-\lambda \bar{\lambda})\left(e^{i \theta}+\lambda \bar{z}\right)}{(1-z \bar{z} \lambda \bar{\lambda})\left(1+\bar{\lambda} z e^{i \theta}\right)}\right| \\
& =\frac{|E||B-A|}{1-|E|^{2}}\left|\frac{e^{i \theta}+\lambda \bar{z}}{1+\bar{\lambda} z e^{i \theta}}\right| \tag{3.10}
\end{align*}
$$

since $\left|\frac{e^{i \theta}+\lambda \bar{z}}{1+\bar{\lambda} z e^{i \theta}}\right| \leq 1 \quad(\lambda \in \mathbb{U})$, from (3.10) and (3.1) we have

$$
q_{H_{a, \lambda}}^{2}(z)=\frac{|E||B-A|}{1-|E|^{2}}\left|\frac{e^{i \theta}+\lambda \bar{z}}{1+\bar{\lambda} z e^{i \theta}}\right| e^{i \phi}+\frac{1+\lambda z-(z+\bar{\lambda}) z \bar{z} \lambda}{1-|E|^{2}}, \quad \phi \in \mathbb{R}
$$

which implies that

$$
q_{H_{a, \lambda}}(z)=\left(\frac{|E||B-A|}{1-|E|^{2}}\left|\frac{e^{i \theta}+\lambda \bar{z}}{1+\bar{\lambda} z e^{i \theta}}\right| e^{i \phi}+\frac{1+\lambda z-(z+\bar{\lambda}) z \bar{z} \lambda}{1-|E|^{2}}\right)^{\frac{1}{2}} .
$$

Hence,

$$
\begin{equation*}
z \frac{H_{a, \lambda}^{\prime}(z)}{H_{a, \lambda}(z)}=\left(\frac{|E||B-A|}{1-|E|^{2}}\left|\frac{e^{i \theta}+\lambda \bar{z}}{1+\bar{\lambda} z e^{i \theta}}\right| e^{i \phi}+\frac{1+\lambda z-(z+\bar{\lambda}) z \bar{z} \lambda}{1-|E|^{2}}\right)^{\frac{1}{2}} . \tag{3.11}
\end{equation*}
$$

On integrating (3.11) along $\gamma: z(t), 0 \leq t \leq 1$ which is a C^{1} - curve in \mathbb{U} with $z(0)=$ $0, z(1)=z_{0}$, we obtain

$$
\begin{equation*}
\log \frac{H_{e^{i \theta}, \lambda}\left(z_{0}\right)}{z_{0}}=R(\lambda, \gamma) \quad(\lambda \in \mathbb{U}) \tag{3.12}
\end{equation*}
$$

where $R(\lambda, \gamma)$ is defined in Corollary 3.1, thus we have $\log H_{e^{i \theta}, \lambda}\left(z_{0}\right) \subset V\left(z_{0}, \lambda\right) \subset D$, where D is defined by

$$
D=\{w \in \mathbb{C}:|w| \leq R(\lambda, \gamma)\}
$$

which concludes that $\log \frac{H_{e^{i \theta} \theta_{\lambda}}\left(z_{0}\right)}{z_{0}} \subset \partial V\left(z_{0, \lambda}\right)$. Finally, we prove the uniqueness of the curve, suppose that

$$
\log \frac{f\left(z_{0}\right)}{z_{0}}=\log \frac{H_{e^{i \theta}, \lambda}\left(z_{0}\right)}{z_{0}}
$$

for $f \in \mathcal{L S} \mathcal{S}^{*}$ and $\theta \in(-\pi, \pi]$, we introduce

$$
\begin{aligned}
& h(t) \\
= & {\left[\frac{f^{\prime}(z)}{f(z)}-\frac{1}{z}\right.} \\
& \left.-\frac{1}{z(t)}\left\{\left(\frac{|E||B-A|}{1-|E|^{2}}\left|\frac{e^{i \theta}+\lambda \bar{z}}{1+\bar{\lambda} z e^{i \theta}}\right| e^{i \phi}+\frac{1+\lambda z-(z+\bar{\lambda}) z \bar{z} \lambda}{1-|E|^{2}}\right)^{\frac{1}{2}}-1\right\}\right] z^{\prime}(t)
\end{aligned}
$$

where $\gamma: z(t)=z, 0 \leq t \leq 1$ is given in Corollary 3.1, then $h(t)$ is continuous function in the interval $[0,1]$ and

$$
\begin{align*}
& \int_{0}^{1} \operatorname{Reh}(t) \mathrm{d} t \\
= & \int_{0}^{1} \operatorname{Re}\left\{\left(\frac{f^{\prime}(z)}{f(z)}-\frac{1}{z}\right)\right. \\
& \left.-\left(\frac{1}{z(t)}\left(\frac{|E||B-A|}{1-|E|^{2}}\left|\frac{e^{i \theta}+\lambda \bar{z}}{1+\bar{\lambda} z e^{i \theta}}\right| e^{i \phi}+\frac{1+\lambda z-(z+\bar{\lambda}) z \bar{z} \lambda}{1-|E|^{2}}\right)^{\frac{1}{2}}-\frac{1}{z(t)}\right)\right\} z^{\prime}(t) \mathrm{d} t \\
1 \mathcal{F}) & \operatorname{Re}\left\{\log \frac{f^{\prime}\left(z_{0}\right)}{z_{0}}-R(\lambda, \gamma)\right\} . \tag{3.1구}
\end{align*}
$$

Since logarithm function is single valued therefore from (3.11), (3.12) and (3.13), we have

$$
\frac{f^{\prime}}{f}=\frac{H_{e^{i \theta}, \lambda}^{\prime}}{H_{e^{i \theta}, \lambda}}
$$

on the curve γ, using the identity theorem for analytic function we conclude that last equality holds in \mathbb{U} and hence we have $f=H_{e^{i \theta}, \lambda}$.

Proof of Theorem 3.1. We need to prove that the closed curve $(-\pi, \pi] \ni \theta \rightarrow \log \frac{H_{e^{i \theta}, \lambda}\left(z_{0}\right)}{z_{0}}$ is simple. Suppose that $\log \frac{H_{e^{i \theta_{1, \lambda}}}\left(z_{0}\right)}{z_{0}}=\log \frac{H_{e^{i \theta_{2, \lambda}}}\left(z_{0}\right)}{z_{0}}$ for some $\theta_{1}, \theta_{2} \in(-\pi, \pi]$ with $\theta_{1} \neq \theta_{2}$, then from Proposition 3.2, we have,

$$
H_{e^{i \theta_{1}, \lambda}}=H_{e^{i \theta_{2}, \lambda}}
$$

Let us define $\tau(z, \lambda)=\frac{z-\lambda}{1-\bar{\lambda} z}$, from the equality $w_{H^{i \theta}, \lambda}=z \delta\left(e^{i \theta} z, \lambda\right)$, we have

$$
e^{i \theta_{1}} z=\tau\left(\frac{w_{H_{e^{i \theta_{1, \lambda}}}}}{z}, \lambda\right)=\tau\left(\frac{w_{H_{e^{i \theta_{2}, \lambda}}}}{z}, \lambda\right)=e^{i \theta_{2}} z
$$

which is contrary to the fact that $\theta_{1} \neq \theta_{2}$, thus the curve is simple. Since $V\left(z_{0}, \lambda\right)$ is a compact convex subset of \mathbb{C} and has non empty interior, the boundary $\partial V\left(z_{0}, \lambda\right)$ is a
simple closed curve. From Proposition 2.1 the curve $\partial V\left(z_{0}, \lambda\right)$ contains the curve $(-\pi, \pi]$ $\ni \theta \rightarrow \log \frac{H_{e^{i \theta}, \lambda}\left(z_{0}\right)}{z_{0}}$, since a simple closed curve can not contain any simple closed curve other than itself. Thus $\partial V\left(z_{0}, \lambda\right)$ is given by $(-\pi, \pi] \ni \theta \rightarrow \log \frac{{ }_{H^{i \theta} \theta^{\prime}}\left(z_{0}\right)}{z_{0}} \quad(\lambda \in \mathbb{U})$.

Remark 3.1. For $f \in S^{*}$ class of starlike functions we have $\log \frac{f\left(z_{0}\right)}{z_{0}}=\log \frac{1}{\left(1-z_{0}\right)^{2}}$ which is not bounded when $z_{0} \in \partial \mathbb{U}$, but in case $f \in \mathcal{L S}^{*}, \log \frac{f\left(z_{0}\right)}{z_{0}}$ is bounded even when $z_{0} \in \partial \mathbb{U}$

References

[1] S. B. Joshi, R. Aghalary and Ali Ebadian, Region of variability for a certain subclass of analytic functions, Math. Sci. Res. J., 17(8), 2013, 220-228.
[2] J. Sokol, Coefficient estimates in a class of strongly starlike functions, Kyungpook Math. J., 49(2009), 349-353.
[3] S. Ponnusamy and A.Vasudevarao, Region of Variability of two subclasses of univalent functions, J. Math. Anal. Appl., 332(2007), 1323-1334.
[4] S. Ponnusamy and A.Vasudevarao, Region of variability for functions with positive real part, Ann. Polon. Math., 21 pp (in press)
[5] S. Ponnusamy, A.Vasudevarao and H. Yanagihara, Region of variability for close-toconvex functions-II, Appl. Math. Comput., 215(3), (2009), 901-915.
[6] H. Yanagihara, Regions of variability for convex functions, Math. Nachr., 279 (2006), 1723-1730.

