Region of Variability for a Class of Strongly Starlike Analytic Functions

Poonam Sharma¹ & Rajesh Kumar Maurya²

¹Department of Mathematics & Astronomy, Lucknow University, Lucknow, Uttar Pradesh ² Department of Mathematics, Govt. Post Graduate College Gopeshwar, (Chamoli) Uttarakhand

Abstract

In this paper, we determine region of variability for $\log \frac{f(z_0)}{z_0}$, where z_0 is a non zero fixed complex number in the unit disk $\mathbb U$ and f varies over a class of strongly starlike functions determined by the subordination codition $\frac{zf'(z)}{f(z)} \prec \sqrt{1+z} \ (z \in \mathbb U)$.

Subject class [2010]:Primary 30C45; Secondary 30C50

Keywords: Subordination, Strongly starlike, Region of Variability, Lemniscate of Bernoulli, Schwarz class functions.

1 Introduction

Let $\mathcal{H}[a,n]$ denotes the class of functions of the form

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots,$$

which are analytic in the open unit disk $\mathbb{U} = \{z : |z| < 1\}$ in the complex plane \mathbb{C} . Let \mathcal{A} denotes a subclass of $\mathcal{H}[0,1]$ whose members are of the form

(1.1)
$$f(z) = z + \sum_{n=1}^{\infty} a_{n+1} z^{n+1} \quad (z \in \mathbb{U}).$$

Here we think of \mathcal{H} as topological vector space endowed with the topology of uniform convergence over compact subsets of \mathbb{U} .

We say that an analytic function f(z) is subordinate to another analytic function g(z) and write $f \prec g$, if and only if there exists a Schwarz class function w analytic in \mathbb{U} such that w(0) = 0 and |w(z)| < 1, $\forall z \in \mathbb{U}$ with f(z) = g(w(z)). In particular if g(z) is univalent in \mathbb{U} . We have the following equivalence

$$f \prec g \Leftrightarrow f(0) = g(0)$$
 and $f(\mathbb{U}) \subseteq g(\mathbb{U})$.

Let us denote

$$q_f(z) = z \frac{f'(z)}{f(z)}$$

and let $SS^*(\beta)$ denotes a class of strongly starlike functions of order β , defined by

$$SS^*(\beta) = \{ f \in \mathcal{A} : |\arg q_f(z)| \le \beta \frac{\pi}{2}, \ 0 < \beta \le 1 \}.$$

The class of strongly starlike functions $SS^*(1)$ becomes the well known class S^* of starlike functions.

In this paper, we consider the class \mathcal{LS}^* defined by

$$\mathcal{LS}^* = \{ f \in \mathcal{A} : |q_f^2 - 1| < 1 \}$$

which is associated with the right half of the lemniscate of Bernoulli [2]. Observe that $\mathcal{L} = \{w \in \mathbb{C} : Rew > 0, |w^2 - 1| < 1\}$ is the interior of the right half of the lemniscate of Bernoulli: $\gamma : (x^2 + y^2)^2 - 2(x^2 - y^2) = 0$. It is easy to see that $f \in \mathcal{LS}^*$ if and only if

(1.3)
$$q_f(z) \prec q_0(z) = \sqrt{1+z}, \ q_0(0) = 1.$$

Moreover

$$\mathcal{L} \subset \{w : |\arg w| < \frac{\pi}{4}\}.$$

Thus, we have following inclusion relation

$$\mathcal{LS}^* \subset SS^*(\frac{1}{2}) \subset S^*.$$

We determine the region of variability $V(z_0, \lambda)$ for the function $\log \frac{f(z_0)}{z_0}$, where z_0 is a non zero fixed complex number in the unit disk \mathbb{U} and $f \in \mathcal{LS}^*$. In recent years, the region of variability $V(z_0, \lambda)$ for functions belonging to various classes of \mathcal{A} is studied by several authors (see in [1, 3, 4, 5, 6]).

2 Main Results

Let

$$B_0 = \{ w \in \mathcal{H}, w(0) = 0, w'(0) \neq 0 \text{ and } |w(z)| < 1 \text{ for } z \in \mathbb{U} \}.$$

From (1.1) and from the definition of $q_f(z)$, we have $q_f(0) = 1$ and from (1.3)

(2.1)
$$q_f^2(z) = 1 + w_f(z)$$

for some $w_f(z) \in B_0$ and conversely.

2.1 The region $V(z_0, \lambda)$

For some $\lambda \in \overline{\mathbb{U}}$ with $w'_f(0) = \lambda$ and $z_0 \in \mathbb{U}, z_0 \neq 0$, we have

(2.2)
$$V(z_0, \lambda) = \{ \log \frac{f(z_0)}{z_0} : f \in \mathcal{LS}^* \},$$

where $V(z_0, \lambda)$ is region of variability as f varies over \mathcal{LS}^* , logarithm of $\frac{f(z_0)}{z_0}$ is single valued.

Lemma 2.1. Let f be an analytic function in \mathbb{U} with

$$f(z) = z^k + \sum_{n=1}^{\infty} a_{n+k} z^{n+k}.$$

If

$$Re\left(1+z\frac{f''(z)}{f'(z)}\right) > 0 \ (z \in \mathbb{U}),$$

then $f \in (S^*)^k$.

2.2 Basic Properties of $V(z_0, \lambda)$

Proposition 2.1. We have

- 1) $V(z_0,\lambda)$ is compact.
- 2) $V(z_0,\lambda)$ is convex.
- 3) for $|\lambda| = 1$

$$V(z_0, \lambda) = 2(\sqrt{1 + \lambda z_0} - 1) + 2\log \frac{2}{(\sqrt{1 + \lambda z_0} + 1)}$$

4) $for|\lambda| < 1$ and $z_0 \in \mathbb{U}\setminus\{0\}$, $V(z_0,\lambda)$ has $2(\sqrt{1+\lambda z_0}-1)+2\log\frac{2}{(\sqrt{1+\lambda z_0}+1)}$ as interior point.

Proof. 1) Since \mathcal{LS}^* is compact subset of \mathcal{A} , any bounded sequence of functions in \mathcal{LS}^* converges in it, hence corresponding sequence in $V(z_0, \lambda)$ also converges in $V(z_0, \lambda)$, it follows that $V(z_0, \lambda)$ is also compact.

2) If $f_1, f_2 \in \mathcal{LS}^*$ and $0 \le t \le 1$, then the function

$$\frac{f_t(z_0)}{z_0} = \exp\{(1-t)\log\frac{f_1(z_0)}{z_0} + t\log\frac{f_2(z_0)}{z_0}\}\$$
$$= f_1^{1-t}(z_0)f_2^t(z_0).$$

and

$$z\frac{f_t'(z)}{f_t(z)} = (1-t)z\frac{f_1'(z)}{f_1(z)} + tz\frac{f_2'(z)}{f_2(z)}.$$

Since we have

$$z \frac{f_1'(z)}{f_1(z)} \prec \sqrt{1+z}$$
 and $z \frac{f_2'(z)}{f_2(z)} \prec \sqrt{1+z}$

which implies that

$$z \frac{f'_t(z)}{f_t(z)} \quad \prec \quad (1-t)\sqrt{1+z} + t\sqrt{1+z}$$
$$= \quad \sqrt{1+z}.$$

Hence,

$$f_t \in \mathcal{LS}^*$$
.

Also because of the representation of f_t , we easily see that the set $V(z_0, \lambda)$ is convex.

3) If $|\lambda| = 1 = |w_f'(0)|$, then it follows from classical Schwarz lemma that

$$w_f(z) = \lambda z$$

and we have from (2.1) that

$$q_f^2(z) = 1 + \lambda z \Rightarrow z \frac{f'(z)}{f(z)} = \sqrt{1 + \lambda z}$$

consequently

$$\log \frac{f(z_0)}{z_0} = 2(\sqrt{1+\lambda z_0} - 1) + 2\log \frac{2}{(\sqrt{1+\lambda z_0} + 1)}.$$

4) For $|\lambda| < 1$ and $a \in \overline{\mathbb{U}}$, we define

(2.3)
$$\delta(z,\lambda) = \frac{z+\lambda}{1+\overline{\lambda}z}$$

and the function $H_{a,\lambda}(z)$ by

(2.4)
$$\log \frac{H_{a,\lambda}(z)}{z} = \left\{ \int_0^z \frac{\sqrt{1 + \delta(a\varepsilon, \lambda)\varepsilon} - 1}{\varepsilon} d\varepsilon \right\}.$$

First we claim that $H_{a,\lambda}(z) \in \mathcal{LS}^*$, for this we may easily get by simple computation that

$$z\frac{H'_{a,\lambda}(z)}{H_{a,\lambda}(z)} = \sqrt{1 + \delta(az,\lambda)z}$$

as $\delta(az, \lambda)$ lies in the unit disk \mathbb{U} and hence, $H_{a,\lambda}(z) \in \mathcal{LS}^*$ and the claim follows. Also we observe that

$$w_{H_{a,\lambda}}(z) = \delta(az,\lambda)z.$$

Next we claim that the mapping $\mathbb{U} \ni a \to \log \frac{H_{a,\lambda}(z_0)}{z_0}$ is a non-constant analytic function of a for each fixed $z_0 \in \mathbb{U}/\{0\}$ and $\lambda \in \mathbb{U}$, to do this we put

$$h(z_0) = \frac{4}{1 - \lambda \overline{\lambda}} \frac{\partial}{\partial a} \{ \log H_{a,\lambda}(z_0) \} |_{a=0}$$
$$= \int_0^{z_0} \frac{2\varepsilon}{\sqrt{1 + \lambda \varepsilon}} d\varepsilon$$
$$= z_0^2 - \frac{1}{3} \lambda z_0^3 + ...,$$

so that

$$Re\left(z_0 \frac{h''(z_0)}{h'(z_0)}\right) = \frac{1}{2} Re\left(1 + \frac{1}{1 + \lambda z_0}\right) > 0.$$

By Lemma 2.1 there exists a function $h_0 \in S^*$ with $h(z) = h_0^2(z)$ the univalence of h_0 together with the condition $h_0(0) = 0$, implies that $h(z_0) \neq 0$ for $z_0 \in \mathbb{U} \setminus \{0\}$. Consequently, the mapping

$$\mathbb{U}\ni a\to \log\frac{H_{a,\lambda}(z_0)}{z_0}$$

is a non-constant analytic function of a therefore it is an open mapping, thus $V(z_0, \lambda)$ is an open set and

$$\log \frac{H_{a,\lambda}(z_0)}{z_0} = 2(\sqrt{1 + \lambda z_0} - 1) + 2\log \frac{2}{(\sqrt{1 + \lambda z_0} + 1)} \quad (\lambda \in \mathbb{U}),$$

is an interior of

$$\left\{\log \frac{H_{a,\lambda}(z_0)}{z_0} : a \in \mathbb{U}\right\} \subset V(z_0,\lambda).$$

We remark that, since $V(z_0, \lambda)$ is a compact convex subset of \mathbb{C} and has non empty interior, the boundary $\partial V(z_0, \lambda)$ is a Jordan curve and $V(z_0, \lambda)$ is union of $\partial V(z_0, \lambda)$ and its inner domain.

Theorem 2.1. For $\lambda \in \mathbb{U}$ and $z_0 \in \mathbb{U} \setminus \{0\}$, the boundary $\partial V(z_0, \lambda)$ is the Jordan curve given by

$$(-\pi,\pi]\ni\theta\to\log\frac{H_{e^{i\theta},\lambda}(z_0)}{z_0}=\int_0^{z_0}\frac{\sqrt{1+\delta(e^{i\theta}\varepsilon,\lambda)\varepsilon}-1}{\varepsilon}d\varepsilon.$$

If

$$\log \frac{f(z_0)}{z_0} = \log \frac{H_{e^{i\theta},\lambda}(z_0)}{z_0}$$

for some $f \in \mathcal{LS}^*$ and $\theta \in (-\pi, \pi]$, then $f(z) = H_{e^{i\theta},\lambda}(z)$, where $H_{e^{i\theta},\lambda}(z)$ is given by (2.4).

3 Region of Variability

Proposition 3.1. For $f \in \mathcal{LS}^*$ we have

$$\left| q_f^2(z) - \frac{1 + \lambda z - (z + \overline{\lambda})z\overline{z}\lambda}{1 - z\overline{z}\lambda\overline{\lambda}} \right| \le \frac{|z\overline{z}||1 - \lambda\overline{\lambda}|}{1 - z\overline{z}\lambda\overline{\lambda}} \quad (\lambda \in \mathbb{U})$$

for each $z \in \mathbb{U}\setminus\{0\}$. Equality in (3.1) holds if and only if $f(z) = H_{e^{i\theta},\lambda}(z)$ for some $\theta \in (-\pi,\pi]$, where $H_{e^{i\theta},\lambda}(z)$ is given by (2.4).

Proof. Let $f \in \mathcal{LS}^*$. Then from (2.1) there exists a function $w_f \in B_0$ such that

$$q_f^2(z) = 1 + w_f(z),$$

where $q_f(z)$ is as defined by (1.2). It follows from the Schwarz lemma that

$$\left| \frac{\frac{w_f(z)}{z} - \lambda}{1 - \overline{\lambda} \frac{w_f(z)}{z}} \right| \le |z| \quad (z \in \mathbb{U})$$

or,

$$\left| \frac{w_f(z) - \lambda z}{z - \overline{\lambda} w_f(z)} \right| \le |z| \quad (z \in \mathbb{U})$$

which from (2.1) is equivalent to

$$\left| \frac{q_f^2(z) - 1 - \lambda z}{\frac{z + \overline{\lambda}}{\overline{\lambda}} - q_f^2(z)} \right| \le |\overline{\lambda}z|$$

which implies that

(3.2)
$$\left| q_f^2(z) - \frac{A - B|E|^2}{1 - |E|^2} \right| \le \frac{|E||B - A|}{1 - |E|^2}$$

where

(3.3)
$$A = 1 + \lambda z, \ B = \frac{z + \overline{\lambda}}{\overline{\lambda}}, \ E = \overline{\lambda}z.$$

So we have

$$(3.4) \qquad \frac{A - B|E|^2}{1 - |E|^2} = \frac{1 + \lambda z - (z + \overline{\lambda})z\overline{z}\lambda}{1 - z\overline{z}\lambda\overline{\lambda}}, \quad \frac{|E||B - A|}{1 - |E|^2} = \frac{z\overline{z}|1 - \lambda\overline{\lambda}|}{1 - z\overline{z}\lambda\overline{\lambda}},$$

which proves the inequality (3.1). Now from the inequality (3.1) and the last two equations in (3.4), we check for the equality

$$\left| q_f^2(z) - \frac{1 + \lambda z - (z + \overline{\lambda}) z \overline{z} \lambda}{1 - z \overline{z} \lambda \overline{\lambda}} \right| = \frac{|z\overline{z}||1 - \lambda \overline{\lambda}|}{1 - z \overline{z} \lambda \overline{\lambda}},$$

where

$$q_f^2(z) = 1 + \delta(az, \lambda)z$$
$$= 1 + \frac{az + \lambda}{1 + \overline{\lambda}az}z$$

from (2.3). Thus, we have

(3.6)
$$\left| \left(1 + \left(\frac{az + \lambda}{1 + \overline{\lambda} az} \right) z \right) - \frac{1 + \lambda z - (z + \overline{\lambda}) z \overline{z} \lambda}{1 - z \overline{z} \lambda \overline{\lambda}} \right| = \frac{|z\overline{z}| |1 - \lambda \overline{\lambda}|}{1 - z \overline{z} \lambda \overline{\lambda}}.$$

On solving (3.6) for a, we get

$$|a| = \left| \frac{1 - \lambda z}{1 - \overline{z}\overline{\lambda}} \right| = 1 \Rightarrow a = e^{i\theta},$$

hence equality occurs for any $z \in \mathbb{U}$ in (3.1) when $f = H_{e^{i\theta},\lambda}$ for some $\theta \in (-\pi,\pi]$. Conversely if equality occurs for some $z \in \mathbb{U}\setminus\{0\}$ in (3.1), then equality must hold in (3.2), thus from the well known Schwarz lemma $\exists \theta \in (-\pi,\pi]$ such that

$$w_f(z) = z\delta(e^{i\theta}z, \lambda)$$

for $\forall z \in \mathbb{U}$ this implies $f = H_{e^{i\theta},\lambda}$.

Corollary 3.1. Let $V(z_0, \lambda)$ be given by (2.2). Let $\gamma : z(t)$, $0 \le t \le 1$ be a C^1 - curve in \mathbb{U} with z(0) = 0, $z(1) = z_0$. Then

$$V(z_0, \lambda) \subset \{ w \in \mathbb{C} : |w| \le R(\lambda, \gamma) \},$$

where

$$R(\lambda, \gamma) = \left| \int_0^1 \left(\sqrt{\frac{1 + \lambda z - (z + \overline{\lambda}) z \overline{z} \lambda + z \overline{z} (1 - \lambda \overline{\lambda}) e^{i\theta}}{1 - z \overline{z} \lambda \overline{\lambda}}} - 1 \right) \frac{z'(t)}{z(t)} dt \right|$$

$$\forall \theta \in (-\pi, \pi].$$

Proof. For $f \in \mathcal{LS}^*$ we have equality (3.5) in Proposition 3.1 for the extremal function, hence, for any $\theta \in (-\pi, \pi]$,

$$q_f^2(z) = \frac{1 + \lambda z - (z + \overline{\lambda})z\overline{z}\lambda + z\overline{z}(1 - \lambda\overline{\lambda})e^{i\theta}}{1 - z\overline{z}\lambda\overline{\lambda}}$$

which implies that

$$q_f(z) = \sqrt{\frac{1 + \lambda z - (z + \overline{\lambda})z\overline{z}\lambda + z\overline{z}(1 - \lambda\overline{\lambda})e^{i\theta}}{1 - z\overline{z}\lambda\overline{\lambda}}}$$

or,

$$\frac{zf'(z)}{f(z)} = \sqrt{\frac{1 + \lambda z - (z + \overline{\lambda})z\overline{z}\lambda + z\overline{z}(1 - \lambda\overline{\lambda})e^{i\theta}}{1 - z\overline{z}\lambda\overline{\lambda}}}.$$

Hence,

$$\int_{0}^{1} \left(\frac{f'(z)}{f(z)} - \frac{1}{z(t)} \right) z'(t) dt$$

$$= \int_{0}^{1} \left[\sqrt{\frac{1 + \lambda z - (z + \overline{\lambda}) z \overline{z} \lambda + z \overline{z} (1 - \lambda \overline{\lambda}) e^{i\theta}}{1 - z \overline{z} \lambda \overline{\lambda}}} - 1 \right] \frac{z'(t)}{z(t)} dt$$

which implies that

$$\log \frac{f(z_0)}{z_0} = : w$$

$$= \int_0^1 \left[\sqrt{\frac{1 + \lambda z - (z + \overline{\lambda})z\overline{z}\lambda + z\overline{z}(1 - \lambda\overline{\lambda})e^{i\theta}}{1 - z\overline{z}\lambda\overline{\lambda}}} - 1 \right] \frac{z'(t)}{z(t)} dt$$

which implies

$$V(z_0, \lambda) \subset \{ w \in \mathbb{C} : |w| \le R(\lambda, \gamma) \}.$$

Proposition 3.2. Let $z_0 \in \mathbb{U}\setminus\{0\}$. Then for $\theta \in (-\pi, \pi] \log \frac{H_{e^{i\theta}, \lambda}(z_0)}{z_0} \in \partial V(z_0, \lambda)$. Furthermore if $\log \frac{f(z_0)}{z_0} = \log \frac{H_{e^{i\theta}, \lambda}(z_0)}{z_0}$ for some $f \in \mathcal{LS}^*$ and $\theta \in (-\pi, \pi]$, then $f = H_{e^{i\theta}, \lambda}$. Proof. From (2.4)

$$\log \frac{H_{a,\lambda}(z)}{z} = \int_0^z \frac{\sqrt{1 + \delta(a\varepsilon, \lambda)\varepsilon} - 1}{\varepsilon} d\varepsilon \quad (\lambda \in \mathbb{U})$$

we easily obtain that

$$\frac{H'_{a,\lambda}(z)}{H_{a,\lambda}(z)} - \frac{1}{z} = \frac{\sqrt{1 + \delta(az,\lambda)z} - 1}{z}$$

which implies that

$$z^{2} \left(\frac{H'_{a,\lambda}(z)}{H_{a,\lambda}(z)} \right)^{2} = 1 + \delta(az,\lambda)z.$$

Hence, on using (3.3), we get

(3.8)
$$q_{H_{a,\lambda}}^2(z) - A = z\delta(az,\lambda) - \lambda z$$

and

(3.9)
$$B - q_f^2(z) = \frac{z}{\overline{\lambda}} - z\delta(az, \lambda)$$

which on substituting $a = e^{i\theta}$, from (3.3), (3.7), (3.8) and (3.9), we have

$$\begin{vmatrix} q_{H_{a,\lambda}}^2(z) - \frac{A - B|E|^2}{1 - |E|^2} \end{vmatrix} = \begin{vmatrix} \frac{|z|^2 (1 - \lambda \overline{\lambda}) (e^{i\theta} + \lambda \overline{z})}{(1 - z\overline{z}\lambda \overline{\lambda}) (1 + \overline{\lambda}ze^{i\theta})} \end{vmatrix}
= \frac{|E||B - A|}{1 - |E|^2} \begin{vmatrix} e^{i\theta} + \lambda \overline{z} \\ 1 + \overline{\lambda}ze^{i\theta} \end{vmatrix}$$
(3.10)

since $\left|\frac{e^{i\theta}+\lambda\overline{z}}{1+\overline{\lambda}ze^{i\theta}}\right| \leq 1 \ (\lambda \in \mathbb{U})$, from (3.10) and (3.1) we have

$$q_{H_{a,\lambda}}^2(z) = \frac{|E||B-A|}{1-|E|^2} \left| \frac{e^{i\theta} + \lambda \overline{z}}{1+\overline{\lambda}ze^{i\theta}} \right| e^{i\phi} + \frac{1+\lambda z - (z+\overline{\lambda})z\overline{z}\lambda}{1-|E|^2}, \quad \phi \in \mathbb{R}$$

which implies that

$$q_{H_{a,\lambda}}(z) = \left(\frac{|E||B-A|}{1-|E|^2} \left| \frac{e^{i\theta} + \lambda \overline{z}}{1+\overline{\lambda}ze^{i\theta}} \right| e^{i\phi} + \frac{1+\lambda z - (z+\overline{\lambda})z\overline{z}\lambda}{1-|E|^2} \right)^{\frac{1}{2}}.$$

Hence,

$$(3.11) z \frac{H'_{a,\lambda}(z)}{H_{a,\lambda}(z)} = \left(\frac{|E||B-A|}{1-|E|^2} \left| \frac{e^{i\theta} + \lambda \overline{z}}{1+\overline{\lambda}ze^{i\theta}} \right| e^{i\phi} + \frac{1+\lambda z - (z+\overline{\lambda})z\overline{z}\lambda}{1-|E|^2} \right)^{\frac{1}{2}}.$$

On integrating (3.11) along $\gamma:z(t),\ 0\leq t\leq 1$ which is a C^1 - curve in $\mathbb U$ with $z(0)=0,\ z(1)=z_0,$ we obtain

(3.12)
$$\log \frac{H_{e^{i\theta},\lambda}(z_0)}{z_0} = R(\lambda,\gamma) \quad (\lambda \in \mathbb{U})$$

where $R(\lambda, \gamma)$ is defined in Corollary 3.1, thus we have $\log H_{e^{i\theta},\lambda}(z_0) \subset V(z_0,\lambda) \subset D$, where D is defined by

$$D=\{w\in\mathbb{C}:|w|\leq R(\lambda,\gamma)\}$$

which concludes that $\log \frac{H_{e^{i\theta},\lambda}(z_0)}{z_0} \subset \partial V(z_0,\lambda)$. Finally, we prove the uniqueness of the curve, suppose that

$$\log \frac{f(z_0)}{z_0} = \log \frac{H_{e^{i\theta},\lambda}(z_0)}{z_0}$$

for $f \in \mathcal{LS}^*$ and $\theta \in (-\pi, \pi]$, we introduce

$$h(t) = \left[\frac{f'(z)}{f(z)} - \frac{1}{z} - \frac{1}{z(t)} \left\{ \left(\frac{|E||B - A|}{1 - |E|^2} \left| \frac{e^{i\theta} + \lambda \overline{z}}{1 + \overline{\lambda} z e^{i\theta}} \right| e^{i\phi} + \frac{1 + \lambda z - (z + \overline{\lambda}) z \overline{z} \lambda}{1 - |E|^2} \right)^{\frac{1}{2}} - 1 \right\} \right] z'(t)$$

where $\gamma: z(t) = z$, $0 \le t \le 1$ is given in Corollary 3.1, then h(t) is continuous function in the interval [0,1] and

$$\int_{0}^{1} Reh(t)dt$$

$$= \int_{0}^{1} Re\left\{ \left(\frac{f'(z)}{f(z)} - \frac{1}{z} \right) \right.$$

$$\left. - \left(\frac{1}{z(t)} \left(\frac{|E||B - A|}{1 - |E|^{2}} \left| \frac{e^{i\theta} + \lambda \overline{z}}{1 + \overline{\lambda} z e^{i\theta}} \right| e^{i\phi} + \frac{1 + \lambda z - (z + \overline{\lambda}) z \overline{z} \lambda}{1 - |E|^{2}} \right)^{\frac{1}{2}} - \frac{1}{z(t)} \right) \right\} z'(t)dt$$

$$(3.13) \quad Re\left\{ \log \frac{f'(z_{0})}{z_{0}} - R(\lambda, \gamma) \right\}.$$

Since logarithm function is single valued therefore from (3.11), (3.12) and (3.13), we have

$$\frac{f'}{f} = \frac{H'_{e^{i\theta},\lambda}}{H_{e^{i\theta},\lambda}}$$

on the curve γ , using the identity theorem for analytic function we conclude that last equality holds in \mathbb{U} and hence we have $f = H_{e^{i\theta},\lambda}$.

Proof of Theorem 3.1. We need to prove that the closed curve $(-\pi, \pi] \ni \theta \to \log \frac{H_{e^{i\theta}, \lambda}(z_0)}{z_0}$ is simple. Suppose that $\log \frac{H_{e^{i\theta}, \lambda}(z_0)}{z_0} = \log \frac{H_{e^{i\theta}, \lambda}(z_0)}{z_0}$ for some $\theta_1, \theta_2 \in (-\pi, \pi]$ with $\theta_1 \neq \theta_2$, then from Proposition 3.2, we have,

$$H_{e^{i\theta_1},\lambda}=H_{e^{i\theta_2},\lambda}.$$

Let us define $\tau(z,\lambda)=\frac{z-\lambda}{1-\overline{\lambda}z}$, from the equality $w_{H_{e^{i\theta},\lambda}}=z\delta(e^{i\theta}z,\lambda)$, we have

$$e^{i\theta_1}z = \tau\left(\frac{w_{H_{e^{i\theta_1},\lambda}}}{z},\lambda\right) = \tau\left(\frac{w_{H_{e^{i\theta_2},\lambda}}}{z},\lambda\right) = e^{i\theta_2}z\ ,$$

which is contrary to the fact that $\theta_1 \neq \theta_2$, thus the curve is simple. Since $V(z_0,\lambda)$ is a compact convex subset of $\mathbb C$ and has non empty interior, the boundary $\partial V(z_0,\lambda)$ is a

simple closed curve. From Proposition 2.1 the curve $\partial V(z_0,\lambda)$ contains the curve $(-\pi,\pi]$ $\ni \theta \to \log \frac{H_{e^{i\theta},\lambda}(z_0)}{z_0}$, since a simple closed curve can not contain any simple closed curve other than itself. Thus $\partial V(z_0,\lambda)$ is given by $(-\pi,\pi]\ni \theta \to \log \frac{H_{e^{i\theta},\lambda}(z_0)}{z_0}$ $(\lambda \in \mathbb{U})$.

Remark 3.1. For $f \in S^*$ class of starlike functions we have $\log \frac{f(z_0)}{z_0} = \log \frac{1}{(1-z_0)^2}$ which is not bounded when $z_0 \in \partial \mathbb{U}$, but in case $f \in \mathcal{LS}^*$, $\log \frac{f(z_0)}{z_0}$ is bounded even when $z_0 \in \partial \mathbb{U}$

References

- [1] S. B. Joshi, R. Aghalary and Ali Ebadian, Region of variability for a certain subclass of analytic functions, Math. Sci. Res. J., 17(8), 2013, 220–228.
- [2] J. Sokol, Coefficient estimates in a class of strongly starlike functions, Kyungpook Math. J., 49(2009), 349–353.
- [3] S. Ponnusamy and A. Vasudevarao, Region of Variability of two subclasses of univalent functions, J. Math. Anal. Appl., 332(2007), 1323–1334.
- [4] S. Ponnusamy and A. Vasudevarao, Region of variability for functions with positive real part, Ann. Polon. Math., 21 pp (in press)
- [5] S. Ponnusamy, A. Vasudevarao and H. Yanagihara, Region of variability for close-to-convex functions-II, Appl. Math. Comput., 215(3), (2009), 901–915.
- [6] H. Yanagihara, Regions of variability for convex functions, Math. Nachr., 279 (2006), 1723–1730.