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Abstract

In the present paper we have studied steady flow of a viscous in-
compressible fluid in an annular region between two coaxial translating
cylindrical tubes filled by a porous medium of variable permeability. An-
alytical solution of the problem is obtained for three different cases of
permeability variation by using Brinkman equation. We have obtained
relevant quantities such as velocity, volume flow rate, average velocity
and stress on the surface of cylinders. The average permeability of the
porous medium is obtained in case of variable permeability. The effect
of various parameters on the flow are discussed and obtained results are
exhibited graphically.
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1 Introduction

Flow through porous media has numerous applications in filtering process, chemical en-
gineering, ground water flow, oil and gas refinery etc. We can find numerous articles on
the fluid flow through porous channels of various shape. Kaviany (1985) studied laminar
flow through a porous channel bounded by two parallel plates maintained at a constant
and equal temperature. Parang and Keyhani (1987) studied the boundary effect in laminar
mixed convection flow through an annular porous medium. Nakayama et al. (1988) were in-
vestigated non-Darcian fully developed flow and heat transfer in a porous channel bounded
by two parallel walls subjected to uniform heat flux. Vafai and Kim (1989) found an exact
solution for forced convection in a channel filled with porous media. Chikh et al. (1995) ob-
tained an analytical solution for a fully developed, forced convection in a gap between two
concentric cylinders. Kuznetsov (1998) investigated a analytical expression of heat transfer
in Couette flow through a porous medium utilizing the Brinkman-Forchheimer-extended
Darcy model. Nield and Kuznetsov (2000) investigated analytically the effects of variation
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of permeability and thermal conductivity on fully developed forced convection in a par-
allel plate channel and circular duct filled with a saturated porous medium. Haji-Sheikh
and Vafai (2004) analysed flow and heat transfer in porous media embedded inside vari-
ous shaped ducts. Mohammadein and El-Shaer (2004) studied combined free and forced
convection flow of viscous incompressible fluid past a semi-infinite vertical plate embedded
in a porous medium incorporating the variation of permeability and thermal conductivity.
Hooman (2006) investigated perturbation solution for forced convection in a porous parallel
plates analytically on the basis of a Brinkman-Forchheimer model. Hooman and Gurgenci
(2007) investigated the forced convection inside a circular tube filled with saturated porous
medium and with uniform heat flux at the wall on the basis of a Brinkman-Forchheimer
model. Wang (2008a) found an analytical solution for forced convection in a semi-circular
channel filled with a porous medium. Wang (2008b) found analytical solutions for the
transient starting flow due to a sudden pressure gradient in cylindrical, rectangular, and
parallel plate ducts filled with a Darcy-Brinkman porous medium. Wang (2010a) studied
the fully developed flow and constant flux heat transfer in super-elliptic ducts filled with a
porous medium. Wang (2010b) a perturbation analysis is carried out to the second order
to give effective equations for Darcy-Brinkman flow through a porous channel with slightly
corrugated walls. Wang (2011) studied the fully developed flow and heat transfer in a
polygonal duct filled with a Darcy-Brinkman medium. Verma and Singh (2015) investi-
gated steady flow of a conducting fluid in a circular channel filled with a saturated porous
medium in the presence of transverse magnetic field and obtained exact solution by using
Brinkma model. Wang (2016) studied pulsatile flow in ducts filled with a Darcy-Brinkman
medium and obtained analytic solutions for the annular duct, the rectangular duct and the
sector duct.

In all of the above mentioned work the porous medium is homogeneous but in real
problems porous medium may be of variable permeability. The available literature relat-
ed to the flow in variable permeability porous medium is very little. Some authors have been
investigated problems of this type such as Govender (2006), Verma and Datta (2012a,b),
Kim and Yuan (2005) and Verma and Dixit (2016) etc.

In the present problem we have study the Couette-Poiseuille flow of a viscous, incom-
pressible fluid between the gap of two coaxial cylinders filled by a variable permeability
medium when inner cylinder is stationary and outer cylinder is translating along the axis
of cylinder with uniform velocity. Exact solutions are obtained for three different useful
cases of permeability variation; (i)when permeability is uniform, i.e. k = ko (ii) when per-
meability variation is linear, i.e. k = kor and (iii) when permeability variation is quadratic,
i.e. k = kor

2.

2 Mathematical Formulation

We consider steady fully developed flow of viscous incompressible fluid in the annular
region between two coaxial impermeable cylinders filled with a porous medium of variable
permeability. Outer cylinder is translating with uniform velocity u1 parallel to the common
axis and inner cylinder is kept stationary. Flow is due to translation of cylinders and applied
constant pressure gradient ∂p∗/∂z∗ along the axis of cylinders. We use cylindrical polar
coordinate system (r, θ, z∗). The flow is unidirectional in z∗ direction along the axis of
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cylinder. Radius of outer and inner cylinder is R2 and R1, respectively. Flow within the
annular porous region is governed by Brinkman equation (1947). Brinkman equation for
the present problem in cylindrical polar coordinates is given by

(2.1) µe

(
d2u∗

dr∗2
+

1

r∗
du∗

dr∗

)
− µ

k
u∗ =

∂p∗

∂z∗

where u∗ is the fluid velocity, µe is the effective viscosity, µ is the fluid viscosity and k is
the permeability of porous medium. Here k = k(r) is taken as a function of radial distance
r. Authors have different opinion about effective viscosity. According to Liu and Masliyah
(2005) effective viscosity depending on the type of porous medium it may be greater or
smaller than fluid viscosity. Many authors, for example, Brinkman (1947) and chikh et al.
(1995) assume µe = µ. This assumption is valid for the porous medium of high porosity.
With this assumption, Brinkman Eq.(2.1) becomes

(2.2)
d2u∗

dr∗2
+

1

r∗
du∗

dr∗
− u∗

k
=

1

µ

∂p∗

∂z∗

R2

R1

Z axis

u1

Porous

Fig. 1: Definition Sketch

Boundary conditions for the present flow are no slip condition on the surface of inner
and outer cylinder. That are

(2.3) u∗ = 0 at r∗ = R1 and u∗ = u1 at r∗ = R2

We introduce non dimensional quantities as follows

(2.4) r =
r∗

R1
and u =

u∗

U

Boundary conditions (2.3) in terms of non dimensional quantities are

(2.5) u(1) = 0 and u(q) =
u1
U

= V
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Here, U is some characteristic velocity of flow. It may be velocity of outer cylinder or
average velocity of flow. V is non dimensional translating velocity of outer cylinder and
q = R2/R1 is defined as gap parameter. Eq.(2.2) in non dimensional form is given by

(2.6)
d2u

dr2
+

1

r

du

dr
− R2

1

k
u = −P

P = − R2
1

µ U
∂p∗

∂z∗ is non dimensional pressure gradient.

3 Solution

Now we assume that the permeability of the porous medium as a function of radial distance
as k(r) = kor

n; n is a real number. Then equation (2.6) becomes

(3.1) rn
d2u

dr2
+ rn−1

du

dr
− σ2u = −rn

where σ2 =
R2

1
ko

is the permeability variation parameter. Solution of above equation is very
difficult to deal with the general value of n. Therefore here we consider three particular
cases of permeability variation. (i) when k = ko (ii) when k = kor and (iii) when k = kor

2.
Here ko is some characteristic permeability, that may be taken as permeability on the
surface of inner cylinder. Now we discuss the flow for all the three cases of permeability
variation.

3.1 Case-I

When n = 0 i.e. k = ko, equation of motion (3.1) becomes

(3.2) r
d2u

dr2
+
du

dr
− σ2r u = −rP.

Eq.(3.2) is a modified Bessel’s equation of order zero, it’s general solution is

(3.3) u(r) = a1 Io(σr) + a2 Ko(σr) +
P

σ2

where Io and Ko are the modified Bessel functions of zeroth order of first and second kind,
respectively. Here a1 and a2 are constants of integration. Using boundary conditions (2.5).
We get

(3.4) a1 =
V σ2Ko(σ) + P (Ko(σq)−Ko(σ))

σ2(Io(σq)Ko(σ)− Io(σ)Ko(σq))
, a2 =

V σ2Io(σ) + P (Io(σq)− Io(σ))

σ2(Io(σ)Ko(σq)− Io(σq)Ko(σ))
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With this values of a1 and a2 eq. (3.3) gives us the dimensionless velocity of fluid at any
point with in annular region when permeability of the medium is k0. In limiting case, when
σ → 0 (i.e.when permeability of the medium is infinite ) in eq.(3.3), we get velocity u0 for
clear fluid flow

(3.5) u0 = lim
σ→0

(u) =
P (1− r2) log q + (P (q2 − 1) + 4V ) log r

4 log q
.

When outer cylinder is also stationary i.e. when V → 0. We obtain velocity profile for the
classical poiseuille flow of clear fluid between two coaxial cylinders, which is

(3.6) lim
V→0

(u0) =
P (1− r2) log q + P (q2 − 1) log r

4 log q
.

3.1.1 Rate of volume flow

The dimensionless rate of volume flow through the cross-section of annular tube is given
by

(3.7) Q = 2π

∫ q

1
u(r) r dr.

Substituting u from eq. (3.3) and after integration we obtain

(3.8) Q = 2π

[(
q2 − 1

2σ2

)
+ a1

(
qI1(qσ)− I1(σ)

σ

)
+ a2

(
K1(σ)− qK1(qσ)

σ

)]
where I1 and K1 are the modified Bessel function of first and second kind of order one and
constants a1 and a2 are given by eq.(3.4). In the evaluation of above integrals the following
identity [Ref. Abramowitz and Stegun (1970)] has been used

(3.9)

(
1

z

d

dz

)m
{zν£ν(z)} = zν−m£ν−m(z)

with m = 1 and ν = 1. £ν denotes Iν and eνπiKν .

The dimensionless volume flow rate Qo for clear fluid flow (when permeability is infinite)
can be obtained by taking limit σ → 0 in eq.(3.8). We get

(3.10) Q0 = lim
σ→0

(Q) =
π

8

[
P (q4 − 1) + 8q2V − (q2 − 1)(P (q2 − 1) + 4V )

log q

]
.

When V = 0 i.e. outer cylinder is also stationary, we obtain volume flow rate for the
classical poiseuille flow of clear fluid between two coaxial cylinders, which is

(3.11) lim
V→0

(Q0) =
πP

8

[
(q4 − 1)− (q2 − 1)2

log q

]
.
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3.1.2 Average velocity:

The dimensionless average velocity of the flow within the annular region when permeability
of the region is uniform ko, is given by

(3.12) uavg =
Q

π(q2 − 1)
.

Substituting Q from the eq.(3.8) in the above equation, the average velocity of the flow is
obtained as

(3.13) uavg =
2

(q2 − 1)

[(
q2 − 1

2σ2

)
+ a1

(
qI1(qσ)− I1(σ)

σ

)
+ a2

(
K1(σ)− qK1(qσ)

σ

)]
.

For clear fluid flow the average velocity of flow is obtained by eq.(3.13) by taking limit
σ → 0, which is

(3.14) lim
σ→0

(uavg) =
1

8

[
P (q2 + 1) +

8q2V

(q2 − 1)
− (P (q2 − 1) + 4V )

log q

]
.

Average velocity for the classical Poiseuille flow is obtained by taking limit V → 0 in
the above equation (3.14), we get

(3.15) lim
V→ 0

((uavg)σ=0) =
P

8

[
(q2 + 1)− (q2 − 1)

log q

]
.

3.1.3 Shearing stress on the surface of cylinders:

The dimensionless shearing stress at any point is given by

(3.16) τrz(r) =
du

dr

Substituting u from eq.(3.3) and differentiating the modified Bessel functions Io(σr) and
Ko(σr) with the use of identity d

drIo(r) = I1(r) and d
drKo(r) = −K1(r) [Ref. Abramowitz

and Stegun (1970)], we obtain

(3.17) τrz(r) = a1σ I1(σr)− a2 σ K1(σr)

where I1 and K1are modified Bessel function of order one. Stress on the surface of inner
and outer cylinder is obtained by putting r = 1 and r = q in eq.(3.17), respectively by
using the appropriate sign. We get

(3.18) τrz(1) = −[a1σI1(σ)− a2σK1(σ)]

(3.19) τrz(q) = −[a1σI1(σq)− a2σ K1(σq)]
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where a1, a2 are given by eq.(3.4). Dimensionless shearing stress on the surface of inner
and outer cylinders for the classical Couette-Poiseuille flow of clear fluid is obtained by
taking limit σ → 0 ) in eq.(3.18) and eq.(3.19), respectively. After taking limit we obtain

(3.20) τrz(1) =
P
(
q2 − 1

)
+ 4V − 2P log q

4 log q

(3.21) τrz(q) =
P
(
q2 − 1

)
+ 4V − 2Pq2 log q

4q log q

The dimensionless shear stress on the surface of inner and outer cylinder for the classical
Poiseuille flow of clear fluid is obtained by taking limit V → 0 in eq. (3.20) and (3.21),
respectively. Which provides us

(3.22) τrz(1) =
P
(
q2 − 1

)
− 2P log q

4 log q

(3.23) τrz(q) =
P
(
q2 − 1

)
− 2Pq2 log q

4q log q

3.2 Case-II

Now we consider the case when k = kor, i.e. permeability of the porous medium is varying
linearly with the radial distance. For this permeability eq.(3.1) becomes

(3.24) r
d2u

dr2
+
du

dr
− σ2u = −rP

General solution of eq.(3.24) is given by

(3.25) u = b1 Io(2σ
√
r) + b2 Ko(2σ

√
r) +

P

σ4
(
1 + rσ2

)
where b1 and b2 are constants of integration which are obtained by using boundary condi-
tions (2.5) in eq.(3.25). Thus we get constants b1 and b2 as

b1 =
V σ4K0(2σ)− P

(
K0(2β)

(
σ2q + 1

)
−
(
σ2 + 1

)
K0

(
2σ
√
q
))

σ4(K0(2σ)I0
(
2σ
√
q
)
− I0(2σ)K0

(
2σ
√
q
)
)

,

b2 =
V σ4I0(2σ)− P

(
I0(2σ)

(
σ2q + 1

)
−
(
σ2 + 1

)
I0
(
2σ
√
q
))

σ4(I0(2σ)K0

(
2σ
√
q
)
−K0(2σ)I0

(
2σ
√
q
)
)

(3.26)
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The dimensionless velocity of fluid at any point within the annular porous region when
permeability is k0r, is given by eq.(3.25). Velocity for the classical Couette-poiseuille flow
of clear fluid is obtained by taking limit σ → 0 (i.e. permeability of the medium is infinite)
in eq.(3.25). Which is

(3.27) u0 = lim
σ→ 0

(u) =
P (1− r2) log q + (P (q2 − 1) + 4V ) log r

4 log q

when V = 0 in the above equation, i.e. outer cylinder is also stationary, we obtain
velocity for the classical poiseuille flow of clear fluid between two coaxial cylinders, which
is

(3.28) lim
V→0

(u0) =
P (1− r2) log q + P (q2 − 1) log r

4 log q

3.2.1 Rate of volume flow

The dimensionless rate of volume flow through the cross-section of annular region of cylin-
drical channel, when permeability of the porous channel is kor, is given by

(3.29) Q = 2π

∫ q

1
u(r) r dr.

Substituting velocity u from eq.(3.25) in the above equation and integrating the resulting
expression, we obtained

Q = b1
2π

σ2
{σq√q I1(2

√
qσ)− σI1 (2σ)− qI2(2

√
qσ) + I2 (2σ) }

+b2
2π

σ2
{−σq√q K1(2

√
qσ) + σK1 (2σ)− qK2(2

√
qσ) +K2 (2σ) }

+
2πP

σ4
{1

2
(q2 − 1) +

σ2

3
(q3 − 1)}(3.30)

where constants b1, b2 are given by eq.(3.26). The dimensionless volume flow rate Qo for
clear fluid flow (when permeability is infinite) can be obtained by taking limit σ → 0 in
the above eq.(3.30). We get

(3.31) Q0 = lim
σ→0

(Q) =
π

8

[
P (q4 − 1) + 8q2V − (q2 − 1)(P (q2 − 1) + 4V )

log q

]
which is volume flow rate for Couette-poiseuille flow within clear annular region between
two coaxial cylinders. The flow rate for classical clear Poiseuille flow through annular
channel is obtained by taking V = 0 in the above expression for Q0, which is

(3.32) lim
V→ 0

(Q0) =
πP

8

[
(q4 − 1)− (q2 − 1)2

log q

]



GANITA, Vol. 67(2), 2017, 217-233 225

3.2.2 Average velocity:

The dimensionless average velocity of the flow is defined as

(3.33) uavg =
Q

π(q2 − 1)
.

Substituting Q from the eq.(3.30) in the above equation we get average velocity of the flow
through the porous annular region when permeability of the region is kor. For clear fluid
flow average velocity of the flow is obtained by taking limit σ = 0 in eq.(3.33), that is

(3.34) (uavg)σ=0 =
1

8

[
P (q2 + 1) +

8q2V

(q2 − 1)
− (P (q2 − 1) + 4V )

log q

]
when outer cylinder is stationary i.e. V = 0. Average velocity is

(3.35) (uavg)σ=0 =
P

8

[
(q2 + 1)− (q2 − 1)

log q

]
3.2.3 Average Permeability :

Darcy law in non dimensional form can be written as

(3.36) uavg =
K

R1
2P

Here, K is permeability of the porous channel and P is the nondimensional pressure gra-
dient as defined in eq. (2.6). Using this law we can evaluate average permeability of the
porous channel as given below

(3.37) Kavg =
uavgR1

2

P

where uavg is the average velocity given by eq.(3.33).

3.2.4 Shearing stress on the surface of cylinders:

The dimensionless shearing stress at any point within the channel when permeability of
the porous region vary according to law is kor is given by

τrz(r) =
du

dr

where velocity u is given by eq. (3.25). With this velocity shear stress at any point is given
by

(3.38) τrz(r) =
P

σ2
+ b1

σ I1 (2σ
√
r)√

r
− b2

σ K1 (2σ
√
r)√

r
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Stress on the surface of inner and outer cylinder is obtained by putting r = 1 and r = q ,
respectively in eq.(3.38) and using the appropriate sign. This give us

(3.39) τrz(1) = −[
P

σ2
+ b1σ I1 (2σ)− b2 σ K1 (2σ)],

(3.40) τrz(q) = −[
P

σ2
+ b1

σ I1
(
2σ
√
q
)

√
q

− b2
σ K1

(
2σ
√
q
)

√
q

]

where b1, b2 are given by eq.(3.26). Dimensionless shearing stress on the surface of inner
and outer cylinders for clear fluid flow, when permeability of the porous region is infinite,
are obtained by taking limit σ → 0 in eq.(3.39) and eq.(3.40), respectively. Then we get

(3.41) τrz(1) =
P
(
q2 − 1

)
+ 4V − 2P log q

4 log q

(3.42) τrz(q) =
P
(
q2 − 1

)
+ 4V − 2Pq2 log q

4q log q

When outer cylinder is stationary i.e. V = 0. Shear stress on inner and outer cylinders are

(3.43) τrz(1) =
P
(
q2 − 1

)
− 2P log q

4 log q

(3.44) τrz(q) =
P
(
q2 − 1

)
− 2Pq2 log q

4q log q

which is the classical result for clear Poiseuille flow.

3.3 Case-III

Now consider the case when k = kor
2, i.e. permeability of the porous medium is varying

quadratically with the radial distance. For this permeability eq.(3.1) becomes

(3.45) r2
d2u

dr2
+ r

du

dr
− σ2u = −Pr2.

Its general solution is

(3.46) u = c1 cosh(σ log r) + c2 sinh(σ log r)− Pr2

4− σ2
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Here c1 and c2 are the constants of integration. Using the boundary condition (2.5) in
eq.(3.46) we find value of c1 and c2 and after substituting these values in in eq. (3.46), we
get dimensionless velocity of the flow within annular porous region at any point as
(3.47)

u =
1

(4− σ2)

[
P cosh(σ log r) +

(V (4− σ2) + Pq2 − P cosh(σ log q)) sinh(σ log r)

sinh(σ log q)
− r2

]
In the limiting case when σ → 0 (i.e. when permeability of the porous medium is infinite)
the eq.(3.47)provide us velocity u0 for the clear fluid flow and is obtained as

(3.48) u0 = lim
σ→ 0

(u) =
P (1− r2) log q + (P (q2 − 1) + 4V ) log r

4 log q

When outer cylinder is stationary i.e. V = 0. The above equation (3.48) give the
velocity for classical Poiseuille flow within clear annular region. That is

(3.49) lim
V→ 0

(u0) =
P (1− r2) log q + P (q2 − 1) log r

4 log q
.

3.3.1 Rate of volume flow:

The dimensionless rate of volume flow through the cross-section of annular tube when
permeability of the region is kor

2, is given by

(3.50) Q = 2π

∫ q

1
u(r) r dr.

Substituting u from eq.(3.47) and after integration, we obtain

Q = 2π{
P
(
1− q4

)
4 (4− σ2)

−
P
(
q2(σ sinh(σ log q)− 2 cosh(σ log q)) + 2

)
(4− σ2)2

+(
σ + q2(2 sinh(σ log q)− σ cosh(σ log q))

) (
Pq2 − P cosh(σ log q) +

(
4− σ2

)
V
)

(4− σ2)2 sinh(σ log q)
}

(3.51)

The dimensionless volume flow rate Qo for clear fluid flow (when permeability is infinite)
can be obtained by taking limit σ → 0 in eq.(3.51), we get

(3.52) Q0 = lim
σ→0

(Q) =
π

8

[
P (q4 − 1) + 8q2V − (q2 − 1)(P (q2 − 1) + 4V )

log q

]
When outer cylinder is stationary i.e. V = 0. The above equation (3.52) give the volume
flow rate for classical Poiseuille flow through clear annular region. That is

(3.53) lim
V→ 0

(Q0) =
πP

8

[
(q4 − 1)− (q2 − 1)2

log q

]
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3.3.2 Average velocity:

The dimensionless average velocity of the flow is

(3.54) uavg =
Q

π(q2 − 1)

Substituting Q from the eq.(3.51) in the above equation we obtain the average velocity of
the flow when permeability of the porous annular region is k0r

2. For clear fluid flow when
σ = 0, the average velocity of flow is obtained by taking limit σ → 0 in (3.54). This give
us result

(3.55) (uavg)σ→0 =
1

8

[
P (q2 + 1) +

8q2V

(q2 − 1)
− (P (q2 − 1) + 4V )

log q

]
The volume flow rate, when outer cylinder is stationary, is obtained by putting V = 0

is the above equation. which is

(3.56) (uavg)σ=0 =
P

8

[
(q2 + 1)− (q2 − 1)

log q

]
3.3.3 Average Permeability :

The average permeability of the porous channel can be evaluated as in the case-I by using
Darcy law. Which is

(3.57) Kavg =
uavgR1

2

P

where uavg is the average velocity given by eq.(3.54).

3.3.4 Shearing stress on the surface of cylinders:

The dimensionless shearing stress at any point within the channel when permeability is
k0r

2 is obtained similarly as in case-I and II, which is

τrz(r) =
σ cosh(σ log r)

(
Pq2 − P cosh(σ log q) +

(
4− σ2

)
V
)

(4− σ2) r sinh(σ log q)

− 2Pr

4− σ2
+
σP sinh(σ log r)

(4− σ2) r
(3.58)

Stress on the surface of inner and outer cylinder is obtained by putting r = 1 and r = q,
respectively in eq.(3.58) and using the appropriate sign. We get

(3.59) τrz(1) = −[
σ
(
Pq2 − P cosh(σ log(q)) +

(
4− σ2

)
V
)

(4− σ2) sinh(σ log q)
− 2P

4− σ2
]
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Fig. 2: Velocity profiles for different permeabil-
ity variation when σ = 3, q=2, P=1 and
V=1.
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Fig. 3: Variation of volume flow rate with σ for dif-
ferent permeability variation when q=2, P=1
and V=1.

τrz(q) = −[
σ cosh(σ log q)

(
Pq2 − P cosh(σ log q) +

(
4− σ2

)
V
)

(4− σ2) q sinh(σ log q)

− 2Pq

4− σ2
+
σP sinh(σ log q)

(4− σ2) q
](3.60)

Dimensionless shearing stress on the surface of inner and outer cylinders for clear fluid flow
are obtained by taking limit σ → 0 in eq.(3.59)and eq.(3.60), respectively. We obtain

(3.61) τrz(1) =
P
(
q2 − 1

)
+ 4V − 2P log q

4 log q

(3.62) τrz(q) =
P
(
q2 − 1

)
+ 4V − 2Pq2 log q

4q log q

When outer cylinder is stationary the shear stress on the surface of cylinders for clear flow
is obtained by putting V = 0 in above eq. (3.62). That is

(3.63) τrz(1) =
P
(
q2 − 1

)
− 2P log q

4 log q

(3.64) τrz(q) =
P
(
q2 − 1

)
− 2Pq2 log q

4q log q
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Fig. 4: Variation of shear stress on inner cylin -
der with σ for different permeability variation
when q=2, P=1 and V=1.
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Fig. 5: Variation of shear stress on outer cylinder
with σ for different permeability variation
when q=2, P=1 and V=1.

4 Discussion

Figure (2) represent the velocity profile for the different cases of permeability variation
k = ko, k = kor and k = kor

2 for fixed values of permeability parameter σ = 3, gap
parameter q = 2, pressure gradient P = 1 and velocity of outer cylinder V = 1. We observe
that velocity at any point within the annular region greater for permeability variation kor

2

than that of kor and velocity in case of permeability kor is greater than that of ko. This
is because permeability kor

n at any point in the channel increases as n increases. Thus
permeability variation has remarkable effect on the velocity profile.

Fig.(3) shows the variation of rate of volume flow Q with the parameter σ for different
cases of permeability variation when q=2. It is seen that Q decreases as σ increases for
all values of permeability variation. This is due to the fact that increase in σ is caused by
decrease in permeability. It is noted that for uniform permeability ko, Q is smaller than
that of the case when permeability vary according to the law k = kor and k = kor

2.
Fig.(4)represent the variation of shear stress on the surface of inner cylinder with the

parameter σ for all the three cases of permeability variation. This variation is plotted for
fixed value of gap parameter q = 2, P = 1 and V = 1. This figure reveal that shear
stress on the inner cylinder decreases with the increase in value of σ (i.e. with decrease in
permeability) and settled down to almost fixed value for large σ for all the three cases of
permeability variation. We observe that the skin friction on the inner cylinder is smaller
when permeability is uniform ko than that of the case when permeability of the channel is
variable.

Fig.(5)represent the variation of shearing stress on the surface of outer cylinder with
the parameters σ for all the different cases of permeability variation for fixed values of q,
P and V . This figure reveal that shearing stress on the outer cylinder increases with the
increase of σ (i.e. decrease in permeability). This behaviour is stress is opposite to that
of the stress on inner cylinder. This is because inner cylinder is stationary but outer is
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moving with fixed velocity. It is also notable that the skin friction on the outer cylinder
is greater when permeability is uniform ko than that of the case when permeability of the
channel is variable.

5 Conclusion

A Couette - Poiseuille flow between two coaxial cylinders, filled by porous medium of vari-
able permeability, is investigated. Analytical solution of the considered problem has been
obtained by using Brinkman equation for three different cases of permeability variation (i)
when permeability of the annular porous region is uniform (ii) when permeability variation
is linear and (iii) when permeability variation is quadratic. Exact expressions for velocity,
average velocity, volume flow rate, average permeability and skin friction on the surface
of inner and outer cylinder are obtained and exhibited graphically. The effect of perme-
ability variation on the flow has been discussed. In the limiting case when permeability
of the porous region tend to infinity obtained results reduce to the classical results for
Couette-Poiseuille flow of clear fluid. It is resolved from the discussion that the permeabil-
ity variation has remarkable effect on the flow quantities. The obtained results are useful
in the cases where permeability of the porous medium is variable.
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