A new subclass of α-starlike functions associated with Salagean derivative operator with positive coefficients

K.K. Dixit ${ }^{1}$ \& Ankit Dixit ${ }^{2}$
${ }^{1}$ Department of Mathematics Janta College, Bakewar, Etawah (U.P.) India
${ }^{2}$ Department of Physical Sciences Mahatma Gandhi Chitrakoot Gramodaya Vishwavidyalaya Chitrakoot, Satna (M.P.) India
kk.dixit@rediffmail.com ξ^{3} ankitdixit.aur@gmail.com

Abstract

Making use of Salagean operator we introduce a new class of univalent functions with positive coefficients. Among the results presented in this paper include the coefficient bounds, distortion inequalities, extreme points and convolution property are studied.

Subject class [2000]:Primary 30C45; Secondary 30C50
Keywords: univalent functions, Salagean operator.

1 Introduction

Let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $U=\{z: z \in C$ and $|z|<1\}$ and S denote the subclass of A that are univalent in U.

Salagean [5] introduced the following operator which is popularly known as the Salagean derivative operator :

$$
\begin{gathered}
D^{0} f(z)=f(z) \\
D^{1} f(z)=D f(z)=z f^{\prime}(z)
\end{gathered}
$$

and in general,

$$
D^{n} f(z)=D\left(D^{n-1} f(z)\right) \quad\left(n \in N_{0}=N \cup\{0\}\right)
$$

We easily find from (1.1) that

$$
D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k} \quad\left(f \in A ; n \in N_{0}\right)
$$

In 1999, Kanas and Wisniowaska [2] (see also [1]) studied the class of α-uniformly convex analytic functions denoted by $\alpha-U C V, \quad 0 \leq \alpha<\infty$ so that $f \in \alpha-U C V$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+(z-\zeta) \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geq 0, \quad|\zeta| \leq \alpha, \quad(z \in U) \tag{1.2}
\end{equation*}
$$

For real ϕ we may let $\zeta=-\alpha z e^{i \phi}$. Then condition (1.2) can be written as

$$
\begin{equation*}
\operatorname{Re}\left\{1+\left(1+\alpha e^{i \phi}\right) \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geq 0 \tag{1.3}
\end{equation*}
$$

and $\alpha-U C V(\beta)$ denote the subclass of S , if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\left(1+\alpha e^{i \phi}\right) \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geq \beta, \quad(0 \leq \beta<1) . \tag{1.4}
\end{equation*}
$$

Further the class $\alpha-S_{p}(\beta)$ denotes the subclass of S , if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\left(1+\alpha e^{i \phi}\right) \frac{z f^{\prime}(z)}{f(z)}-\alpha e^{i \phi}\right\} \geq \beta, \quad(0 \leq \beta<1) . \tag{1.5}
\end{equation*}
$$

Further, let V be the subclass of S consisting of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k} \tag{1.6}
\end{equation*}
$$

then $D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n}\left|a_{k}\right| z^{k}$.
Also for $1<\gamma \leq \frac{4+\alpha}{3}$ and $z \in U$, we define

$$
\begin{equation*}
\alpha-S_{p, n}^{*}(\gamma)=\left\{f \in S: \operatorname{Re}\left\{\left(1+\alpha e^{i \phi}\right) \frac{D^{n+1} f(z)}{D^{n} f(z)}-\alpha e^{i \phi}\right\}<\gamma\right\} \tag{1.7}
\end{equation*}
$$

Remark : If we put $n=0$ we get the class $\alpha-S_{p}^{*}(\gamma)$ and if we put $n=1$ we get the class $\alpha-U C V^{*}(\gamma)$ studied by S. Porwal and K.K.Dixit [4].

Let

$$
\begin{equation*}
\alpha-P S_{p, n}^{*}(\gamma) \equiv \alpha-S_{p, n}^{*}(\gamma) \cap V \tag{1.8}
\end{equation*}
$$

In particular, when $\alpha=0, n=1$ we obtain $\alpha-S_{p, n}^{*}(\gamma) \equiv L(\gamma)$, when $\alpha=0, n=0$ we obtain $\alpha-S_{p, n}^{*}(\gamma) \equiv M(\gamma)$, when $\alpha=0, n=1$ we obtain $\alpha-P S_{p, n}^{*}(\gamma) \equiv U(\gamma)$ and when $\alpha=0, n=0$ we obtain $\alpha-P S_{p, n}^{*}(\gamma) \equiv V(\gamma)$. These classes $L(\gamma), M(\gamma), U(\gamma)$ and $V(\gamma)$ have been extensively studied by Uralegaddi et al. [6].

Several authors such as ([1],[2],[3]) studied the classes of α-uniformly convex and α starlike functions only. In the present paper, using Salagean derivative operator, an attempt has been made to have unified study of above mentioned classes of functions with positive coefficients only.

2 Coefficient inequalities

The following theorem lays the foundation of our systematic study of the class $\alpha-S_{p, n}^{*}(\gamma)$ defined in the preceding section.

Theorem 2.1. Let $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ be in S if

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n}[k+k \alpha-\alpha-\gamma]\left|a_{k}\right| \leq \gamma-1 \tag{2.1}
\end{equation*}
$$

then $f \in \alpha-S_{p, n}^{*}(\gamma)$.
Proof. Let $\sum_{k=2}^{\infty} k^{n}[k+k \alpha-\alpha-\gamma]\left|a_{k}\right| \leq \gamma-1$. It suffices to show that

$$
\begin{equation*}
\left|\frac{\left(1+\alpha e^{i \phi}\right) \frac{D^{n+1} f(z)}{D^{n} f(z)}-\alpha e^{i \phi}-1}{\left(1+\alpha e^{i \phi}\right) \frac{D^{n+1} f(z)}{D^{n} f(z)}-\alpha e^{i \phi}-(2 \gamma-1)}\right|<1, \quad(z \in U) \tag{2.2}
\end{equation*}
$$

We have
L.H.S. of (2.2)

$$
\begin{gathered}
=\left|\frac{\left(1+\alpha e^{i \phi}\right) \frac{D^{n+1} f(z)}{D^{n} f(z)}-\alpha e^{i \phi}-1}{\left(1+\alpha e^{i \phi}\right) \frac{D^{n+1} f(z)}{D^{n} f(z)}-\alpha e^{i \phi}-(2 \gamma-1)}\right| \\
=\left|\frac{\left(1+\alpha e^{i \phi}\right)\left[D^{n+1} f(z)-D^{n} f(z)\right]}{\left(1+\alpha e^{i \phi}\right) D^{n+1} f(z)-\alpha e^{i \phi} D^{n} f(z)-(2 \gamma-1) D^{n} f(z)}\right| \\
=\left|\frac{\left(1+\alpha e^{i \phi}\right)\left[\sum_{k=2}^{\infty} k^{n+1} a_{k} z^{k}-\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}\right]}{2(\gamma-1)\left[z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}\right]-\left(1+\alpha e^{i \phi}\right)\left[\sum_{k=2}^{\infty} k^{n+1} a_{k} z^{k}-\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}\right]}\right| \\
=\left|\frac{\left(1+\alpha e^{i \phi}\right) \sum_{k=2}^{\infty} k^{n}(k-1) a_{k} z^{k}}{2(\gamma-1) z-\sum_{k=2}^{\infty}\left[2(\gamma-1) k^{n}+\left(1+\alpha e^{i \phi}\right) k^{n}(k-1)\right] a_{k} z^{k}}\right| \\
\quad \leq \frac{(1+\alpha) \sum_{k=2}^{\infty} k^{n}(k-1)\left|a_{k}\right|}{2(\gamma-1)-\sum_{k=2}^{\infty} k^{n}[(1+\alpha)(k-1)-2(\gamma-1)]\left|a_{k}\right|} .
\end{gathered}
$$

The last expression is bounded above by 1 by hypothesis

$$
\sum_{k=2}^{\infty} k^{n}[(1+\alpha)(k-1)+(1+\alpha)(k-1)-2(\gamma-1)]\left|a_{k}\right| \leq 2(\gamma-1)
$$

or

$$
\sum_{k=2}^{\infty} k^{n}[k+k \alpha-\alpha-\gamma]\left|a_{k}\right| \leq(\gamma-1)
$$

Theorem 2.2. A function $f(z)=z+\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k}$ is in $\alpha-S_{p, n}^{*}(\gamma)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n}[k+k \alpha-\alpha-\gamma]\left|a_{k}\right| \leq \gamma-1 \tag{2.3}
\end{equation*}
$$

The result is Sharp.
Proof. The "if part", follows from Theorem 2.1. To prove the "only if" part, let $f \in$ $\alpha-S_{p, n}^{*}(\gamma)$, then by the definition (1.8), we have

$$
\operatorname{Re}\left\{\left(1+\alpha e^{i \phi}\right) \frac{D^{n+1} f(z)}{D^{n} f(z)}-\alpha e^{i \phi}\right\}<\gamma, \quad(z \in U)
$$

which is equivalent to

$$
\operatorname{Re}\left\{\left(1+\alpha e^{i \phi}\right) \frac{1+\sum_{k=2}^{\infty} k^{n+1}\left|a_{k}\right| z^{k-1}}{1+\sum_{k=2}^{\infty} k^{n}\left|a_{k}\right| z^{k-1}}-\alpha e^{i \phi}\right\}<\gamma
$$

The above condition must hold for all values of $z,|z|=r<1$. upon choosing the values of z on the positive real axis, where $0 \leq z=r<1$ and $\operatorname{Re}\left(-\alpha e^{i \phi}\right) \geq-\left|\alpha e^{i \phi}\right|=-\alpha$, the above inequality reduces to

$$
(1+\alpha)+\sum_{k=2}^{\infty}(1+\alpha) k^{n+1}\left|a_{k}\right| r^{k-1}-\alpha-\sum_{k=2}^{\infty} \alpha k^{n}\left|a_{k}\right| r^{k-1} \leq \gamma+\sum_{k=2}^{\infty} \gamma k^{n}\left|a_{k}\right| r^{k-1}
$$

Letting $r \rightarrow 1$, we have $\sum_{k=2}^{\infty} k^{n}[k+k \alpha-\alpha-\gamma]\left|a_{k}\right| \leq \gamma-1$ and the proof of the Theorem 2.2 is complete.

Finally, we note that the assertion (2.3) of Theorem 2.2 is sharp, the extremal function being

$$
f(z)=z+\frac{\gamma-1}{k^{n}[k+k \alpha-\alpha-\gamma]} z^{k}
$$

Remark: If we put $n=1$ we get the Theorem 2.3 and if $n=0$ we get the Theorem 2.4 of [4]

Corollary 2.1. Let the function $f(z)$ defined by (1.6) belong to the class $\alpha-S_{p, n}^{*}(\gamma)$. Then

$$
\begin{equation*}
\left|a_{k}\right| \leq \frac{\gamma-1}{k^{n}[k+k \alpha-\alpha-\gamma]} . \tag{2.4}
\end{equation*}
$$

3 Distortion Inequalities

In this section, we shall prove distortion theorem for the functions belonging to the class $\alpha-P S_{p, n}^{*}(\gamma)$ which yields the covering results for this class.

Theorem 3.1. Let $f \in \alpha-P S_{p, n}^{*}(\gamma)$ then for $|z|=r<1$, we have

$$
\begin{equation*}
|f(z)| \leq r+\frac{\gamma-1}{2^{n}[2+\alpha-\gamma]} r^{2} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \geq r-\frac{\gamma-1}{2^{n}[2+\alpha-\gamma]} r^{2} \tag{3.2}
\end{equation*}
$$

with equality for $f(z)=z+\frac{\gamma-1}{2^{n}[2+\alpha-\gamma]} z^{2}$.
Proof. Since $f(z) \in \alpha-P S_{p, n}^{*}(\gamma)$, we apply Theorem 2.2

$$
2^{n}[2+\alpha-\gamma] \sum_{k=2}^{\infty}\left|a_{k}\right| \leq \sum_{k=2}^{\infty} k^{n}[k+k \alpha-\alpha-\gamma]\left|a_{k}\right| \leq \gamma-1 .
$$

Thus we have

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left|a_{k}\right| \leq \frac{\gamma-1}{2^{n}[2+\alpha-\gamma]} \tag{3.3}
\end{equation*}
$$

From (1.6) and (3.3) we obtain

$$
\begin{aligned}
|f(z)| & \leq|z|+|z|^{2} \sum_{k=2}^{\infty}\left|a_{k}\right| \\
& \leq r+\frac{\gamma-1}{2^{n}[2+\alpha-\gamma]} r^{2}
\end{aligned}
$$

and

$$
|f(z)| \geq r-\frac{\gamma-1}{2^{n}[2+\alpha-\gamma]} r^{2} .
$$

This completes the proof of the Theorem 3.1.

Theorem 3.2. Let the function $f(z) \in \alpha-P S_{p, n}^{*}(\gamma)$ then $|z|=r<1$, we have

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq 1+\frac{\gamma-1}{2^{n-1}[2+\alpha-\gamma]} r \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geq 1-\frac{\gamma-1}{2^{n-1}[2+\alpha-\gamma]} r \tag{3.5}
\end{equation*}
$$

The equalities in (3.4) and (3.5) are attained for the function $f(z)$ given by $|f(z)|=$ $z+\frac{\gamma-1}{2^{n}[2+\alpha-\gamma]} z^{2}$.

Proof. We have

$$
\left|f^{\prime}(z)\right| \leq 1+\sum_{k=2}^{\infty} k\left|a_{k}\right||z|^{k-1} \leq 1+r \sum_{k=2}^{\infty} k\left|a_{k}\right|
$$

Since $f(z) \in \alpha-P S_{p, n}^{*}(\gamma)$, we have

$$
2^{n-1}[2+\alpha-\gamma] \sum_{k=2}^{\infty} k\left|a_{k}\right| \leq \sum_{k=2}^{\infty} k^{n}[k+k \alpha-\alpha-\gamma]\left|a_{k}\right| \leq \gamma-1
$$

Thus we have

$$
\sum_{k=2}^{\infty} k\left|a_{k}\right| \leq \frac{\gamma-1}{2^{n}[2+\alpha-\gamma]}
$$

hence

$$
\left|f^{\prime}(z)\right| \leq 1+\frac{\gamma-1}{2^{n-1}[2+\alpha-\gamma]} r
$$

4 Extreme Points

Theorem 4.1. Let $f_{1}(z)=z$ and $f_{k}(z)=z+\frac{\gamma-1}{k^{n}[k+k \alpha-\alpha-\gamma]} z^{k}, \quad(k=2,3,4, \ldots)$ then $f \in \alpha-P S_{p, n}^{*}(\gamma)$, if and only if it can be expressed in the form

$$
f(z)=\sum_{k=1}^{\infty} \lambda_{k} f_{k}(z)
$$

where $\lambda_{k} \geq 0$ and $\sum_{k=1}^{\infty} \lambda_{k}=1$.

Proof. Suppose that

$$
f(z)=\sum_{k=1}^{\infty} \lambda_{k} f_{k}(z)=z+\sum_{k=2}^{\infty} \lambda_{k} \frac{\gamma-1}{k^{n}[k+k \alpha-\alpha-\gamma]} z^{k} .
$$

Then from Theorem 2.2, we have

$$
\begin{gathered}
\sum_{k=2}^{\infty} k^{n}[k+k \alpha-\alpha-\gamma] \lambda_{k} \frac{\gamma-1}{k^{n}[k+k \alpha-\alpha-\gamma]}=\sum_{k=2}^{\infty}(\gamma-1) \lambda_{k} \\
=\left(1-\lambda_{1}\right)(\gamma-1) \leq(\gamma-1) .
\end{gathered}
$$

Thus, in view of Theorem 2.2, we find that $f(z) \in \alpha-P S_{p, n}^{*}(\gamma)$.
Conversely, suppose that $f(z) \in \alpha-P S_{p, n}^{*}(\gamma)$. Then, since

$$
a_{k} \leq \frac{\gamma-1}{k^{n}[k+k \alpha-\alpha-\gamma]},
$$

we may set

$$
\lambda_{k}=\frac{k^{n}[k+k \alpha-\alpha-\gamma]}{\gamma-1} a_{k}
$$

and

$$
\lambda_{1}=1-\sum_{k=2}^{\infty} \lambda_{k} .
$$

Thus, clearly, we have

$$
f(z)=\sum_{k=1}^{\infty} \lambda_{k} f_{k}(z)
$$

This completes the proof of theorem.
Corollary 4.1. The extreme points of the class $\alpha-P S_{p, n}^{*}(\gamma)$ are given by

$$
f_{1}(z)=z
$$

and

$$
\begin{equation*}
f_{k}(z)=z+\frac{\gamma-1}{k^{n}[k+k \alpha-\alpha-\gamma]} z^{k}, \quad(k \geq 2) . \tag{4.1}
\end{equation*}
$$

Theorem 4.2. The class $\alpha-P S_{p, n}^{*}(\gamma)$ is a convex set.

Proof. Suppose that each of the functions $f_{i}(z), \quad(i=1,2)$ given by

$$
f_{i}(z)=z+\sum_{k=2}^{\infty} a_{k, i} z^{k}, \quad\left(a_{k, i} \geq 0\right)
$$

is in the class $\alpha-P S_{p, n}^{*}(\gamma)$. It is sufficient to show that the function $g(z)$ defined by

$$
g(z)=\eta f_{1}(z)+(1-\eta) f_{2}(z), \quad(0 \leq \eta<1)
$$

is also in the class $\alpha-P S_{p, n}^{*}(\gamma)$. Since

$$
\begin{gathered}
g(z)=\eta\left(z+\sum_{k=2}^{\infty} a_{k, 1} z^{k}\right)+(1-\eta)\left(z+\sum_{k=2}^{\infty} a_{k, 2} z^{k}\right) \\
=z+\sum_{k=2}^{\infty}\left[\eta a_{k, 1}+(1-\eta) a_{k, 2}\right] z^{k}
\end{gathered}
$$

with the aid of Theorem 2.2, we have

$$
\begin{gathered}
\sum_{k=2}^{\infty} k^{n}[k+k \alpha-\alpha-\gamma]\left[\eta a_{k, 1}+(1-\eta) a_{k, 2}\right] \\
=\eta \sum_{k=2}^{\infty} k^{n}[k+k \alpha-\alpha-\gamma] a_{k, 1}+(1-\eta) \sum_{k=2}^{\infty} k^{n}[k+k \alpha-\alpha-\gamma] a_{k, 2} \\
\leq \eta(\gamma-1)+(1-\eta)(\gamma-1)=(\gamma-1) .
\end{gathered}
$$

Which completes the proof of the theorem.

5 Theorems involving Hadamard Product

Let $f(z)$ be define by (1.6), and let

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}, \quad\left(b_{k} \geq 0\right) . \tag{5.1}
\end{equation*}
$$

The Hadamard Product of $f(z)$ and $g(z)$ is defined by

$$
\begin{equation*}
f * g(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k} . \tag{5.2}
\end{equation*}
$$

The following result presents an interesting property of Hadamard Product .

Theorem 5.1. Let the function $f_{1}(z), f_{2}(z), \ldots, f_{p}(z)$ be defined by

$$
\begin{equation*}
f_{m}(z)=z+\sum_{k=2}^{\infty} C_{k, m} z^{k}, \quad\left(C_{k, m} \geq 0\right) \tag{5.3}
\end{equation*}
$$

be in the class $\alpha-P S_{p, n}^{*}(\gamma), m=1,2, \ldots, p$ respectively and $0 \leq \alpha<1$.
Then

$$
\begin{equation*}
f_{1} * f_{2} * \ldots * f_{p} \in \alpha-P S_{p, n}^{*}(\gamma), \quad \text { where } \gamma=\max \left\{\gamma_{m}, \quad m=1,2, \ldots, p\right\} \tag{5.4}
\end{equation*}
$$

Proof. Since $f_{m}(z) \in \alpha-P S_{p, n}^{*}(\gamma), m=1,2, \ldots, p$ by using Theorem 2.2 we have

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n}[k+k \alpha-\alpha-\gamma]\left|C_{k, m}\right| \leq\left(\gamma_{m}-1\right) \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=2}^{\infty} C_{k, m} \leq \frac{\gamma_{m}-1}{k^{n}[k+k \alpha-\alpha-\gamma]} \tag{5.6}
\end{equation*}
$$

for each $m=1,2, \ldots, p$.
Using (5.5) for any m_{0} and (5.6) for the rest, we have

$$
\begin{gathered}
\sum_{k=2}^{\infty} k^{n}[k+k \alpha-\alpha-\gamma] \prod_{m=1}^{p} C_{k, m} \leq \prod_{m=1}^{p}\left(\gamma_{m}-1\right)\left[\frac{1}{k^{n}[k+k \alpha-\alpha-\gamma]}\right]^{p-1} \\
\leq \prod_{m=1}^{p}\left(\gamma_{m}-1\right) \quad \leq(\gamma-1)^{p} \\
\leq(\gamma-1) \quad \text { since } \gamma_{m}>1 \text { for } m=1,2,3, \ldots, p
\end{gathered}
$$

Consequently, we have the assertion (5.4) with the aid of Theorem 2.2 .Theorem 5.1 yields.

Theorem 5.2. Let the function $f(z)$ be defined by (1.6) and $g(z)$ defined by (5.1) be in the class $\alpha-P S_{p, n}^{*}\left(\gamma_{1}\right)$ and $\alpha-P S_{p, n}^{*}\left(\gamma_{2}\right)$ respectively. Then the hadamard Product

$$
\begin{equation*}
(f * g)(z) \in \alpha-P S_{p, n}^{*}(\gamma), \quad \text { where } \quad \gamma=\max \left\{\gamma_{1}, \gamma_{2}\right\} \quad \text { and } \quad 0 \leq \alpha<1 \tag{5.7}
\end{equation*}
$$

Proof. Since $f(z) \in \alpha-P S_{p, n}^{*}\left(\gamma_{1}\right)$ and $g(z) \in \alpha-P S_{p, n}^{*}\left(\gamma_{2}\right)$ in view of Theorem 2.2 we have

$$
\sum_{k=2}^{\infty} k^{n}[k+k \alpha-\alpha-\gamma] a_{k} b_{k} \leq \sum_{k=2}^{\infty} k^{n}[k+k \alpha-\alpha-\gamma]\left|a_{k}\right| \frac{\left(\gamma_{2}-1\right)}{k^{n}[k+k \alpha-\alpha-\gamma]}
$$

$$
\begin{gathered}
\leq \frac{\left(\gamma_{2}-1\right)}{k^{n}[k+k \alpha-\alpha-\gamma]} \sum_{k=2}^{\infty} k^{n}[k+k \alpha-\alpha-\gamma]\left|a_{k}\right| \leq \frac{\left(\gamma_{1}-1\right)\left(\gamma_{2}-1\right)}{k^{n}[k+k \alpha-\alpha-\gamma]} \\
\leq(\gamma-1)^{2}=\left(\gamma^{2}-2 \gamma+2\right)-1
\end{gathered}
$$

(Since $1<\gamma \leq \frac{4+\alpha}{3}$, therefore $1<\left(\gamma^{2}-2 \gamma+2\right) \leq \frac{4+\alpha}{3}$)
Hence by the Theorem 2.2, the Hadamard Product $(f * g)(z) \in \alpha-P S_{p, n}^{*}\left(\gamma^{2}-2 \gamma+2\right)$ with γ is given by (5.7).

References

[1] Kanas, S. and Srivastava, H.M. (2000). Linear operators associated with k-uniformly convex functions, Integral Transforms Spec. Funct. 9,121-132.
[2] Kanas, S. and Wisniowska, A.(1999). Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105, 327-336.
[3] Kanas, S. and Wisniowska, A.(1999). Conic regions and k-starlike functions, Rev. Roumaine Math. Pure Appl. 45, 647-657.
[4] Porwal, S. and Dixit, K.K.(2010). An application of certain convolution operator involving hypergeometric function, J. Rajasthan Acad. Phy. Sci., vol. 9, no. 2, 173186.
[5] Salagean, G.S. (1983). Subclasses of univalent functions, in Complex Analysis, vol. 1013 of Lecture Notes in math,Springer, Berlin, Germany, pp.362-372.
[6] Uralegaddi, B. A. Ganigi, M. D. and Sarangi, S. M. (1994).Univalent functions with positive coefficients, Tamkang Journal of Mathematics, vol. 25, no. 3, pp. 225-230.

