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Abstract

In this paper effect of constant predation in food chain model is stud-
ied. Here the prey is structured as mature and immature and interaction
of mature prey with predator is taken as Holling type II functional re-
sponse. In the set of parameters, there are passages from instability to
stability, which are called bifurcation points. Further, we discuss the
dynamical behaviour of this model. It has found that crossing the bifur-
cation point, the stability of the system changed but it can be controlled
by a particular range of the predation.
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1 Introduction

Predator-prey systems have been studied and the analysis of the food chain is an active
research area in the mathematical biological science. In the food chain, a number of species
is linked to each other. Here, we consider a simple food chain model with prey is delayed
and top predator like predation on the middle predator. There are several interesting cases
of simple food chains of three interacting species categorized by the types of functional
response.
The functional response is the feeding rate describes the transfer of biomass between tropic
levels. Holling type II predator’s functional response describes the average feeding rate of
the predator when the predator spends some time for searching prey.
Mathematical models of prey-predator systems create a major interest during the last few
decades. Most of stage structured models considered two stages of the species one im-
mature and other mature, the age of maturity is represented by a time delay. A stage
structured prey predator models have been studied by many authors[10, 11, 12, 9].
Xu and Liao[2] investigated the local stability of positive equilibrium point and local Hopf
bifurcation in delayed three species food chain model with Holling type II functional re-
sponse. Agarwal and Devi [12] studied with ratio dependent the prey - predator model
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where prey population is stage - structured and the predator population influenced by re-
source biomass. Agarwal and Kumar [7] studied the behaviour of resource biomass on the
prey - predator stage - structure model with Holling type III functional response. Muratori
and Rinaldi [8] studied the second order nonlinear dynamical system (predator-prey), the
interactions of the tree and damaging insects in the forest. They discussed the influence of
acidic deposition, an increase of which can cause sudden insect infestation and the collapse
of the forest ecosystem.
The above studied, authors have considered the stage - structured prey predator model
with different functional responses. In this paper, we consider the interaction of one preda-
tor species depending on mature prey species. We assume that the predators do not need
any handling time or searching time for the immature prey species.

2 Mathematical models

In this paper, the effect of constant predation on the predator population in the prey-
predator model is studied by considering Holling type II functional response. The under-
lying system consists of the state variables xi(t), the density of immature prey; xm(t), the
density of mature prey population; y(t), the density of predator population. The mathe-
matical model is describe under following assumption;

1. Prey populations have two stages immature, mature and maturity period is taken as
τ .

2. Only mature prey population interact with predator and interaction of prey and
predator considered by Holling type II functional response.

3. Predator growth controlled by constant predation(ρ) under Holling type II functional
response.

Considering above point we describe following mathematical model;

(2.1)
dxi(t)

dt
= αxm(t)− α0e

−γτxm(t− τ)− d1xi(t),

(2.2)
dxm(t)

dt
= α0e

−γτxm(t− τ)− k1xm(t)y(t)

a1 + xm(t)
− d2xm(t)2,

(2.3)
dy(t)

dt
=
c1xm(t)y(t)

a1 + xm(t)
− d3y(t)− a0ρy(t)

a2 + y(t)
,

With xm(t) = φm(t) ≥ 0, τ ≤ t < 0, xi(0) ≥ 0 and y(0) > 0.
The meaning of the parameters of the model is given as follow:

H1. At any time t > 0, birth into the immature prey population is proportional to the
existing mature prey population with proportionality constant α0.



GANITA, Vol. 67(2), 2017, 163-174 165

H2. k1 is the maximum value which per capita reduction rate of prey can attain, c1 is
the conversion factor for prey population to predator and a1 is the half saturation
constant.

H3. Parameters a0, a2 have similar biological meaning as k1 and a1 respectively.

H4. di, i = 1, 2, 3 are natural death rate of immature, mature prey population and preda-
tor population respectively.

Then by using of equation of continuity of initial conditions, we require

(2.4) xi(t) =

∫ 0

−τ
αe−γ(t−s)xm(s)ds

then the system of equation become as follow as:

(2.5)
dxm
dt

= α0e
−γτxm(t− τ)− k1xmy

a1 + xm
− d2x2m,

(2.6)
dy

dt
=

c1xmy

a1 + xm
− d3y −

a0ρy

a2 + y
,

xm(t) = φm(t) ≥ 0, −τ ≤ t < 0 and y(0) > 0

3 Boundeness of the system

In theoretical biology, boundeness of the system implies that the system is biologically well
behaved. The following lemma ensures the boundeness of the system.

Lemma 3.1. The region of attraction of the system is given as

(3.1) R =

{
(xm(t), y(t)) : 0 ≤ xm(t) ≤ α0e

−γτ

d2
, 0 ≤ xm(t)

k1
+
y(t)

c1
≤ (α0e

−γτ + d3)
2

4d2kd3

}
Proof. From the equation (2.5)

dxm
dt

= α0e
−γτxm(t− τ)− k1

xmy

a1 + xm
− d2x2m,

(3.2)
dxm
dt
≤ α0e

−γτxm(t− τ)− d2x2m,
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then by mathematical manipulation , we get

(3.3) lim
t→∞

supxm(t) ≤ α0e
−γτ

d2
.

Now from equation (2.5) and (2.6) of model,

(3.4)
d

dt

(
xm(t)

k1
+
y(t)

c1

)
≤ α0e

−γτxm(t− τ) +
d3xm(t)

k
− d2xm(t)2

k
− d3xm(t)

k
− d3y(t)

c1
,

(3.5)
d

dt

(
xm(t)

k1
+
y(t)

c1

)
≤ F (xm(t))− d3xm(t)

k
− d3y(t)

c1
,

where F (xm) = α0e
−γτxm(t − τ) +

d3xm(t)

k
− d2x

2
m(t)

k
then maximum value of F (xm) is

given as, Fmax(xm(t)) =
(α0e

−γτ + d3)
2

4d2k

then after mathematical simulation, we obtained

(3.6) lim
t→∞

sup

(
xm(t)

k1
+
y(t)

c1

)
≤ (α0e

−γτ + d3)
2

4d2kd3

This completes the proof of lemma.

4 Equilibrium points and stability analysis

In this section we analyze the existence of the equilibrium points. The system has only
three equilibrium points.

1. Trivial equilibrium point E0(0, 0).

2. Axial equilibrium point E1(xm1, 0), where xm1 =
α0e
−γτ

d2
, and

3. Interior equilibrium point E∗(x∗m, y
∗).

Existence of equilibrium point E∗(x∗m, y
∗)

Here x∗m and y∗ are positive solution of the following equations

(4.1) α0e
−γτxm(t− τ)− k1xmy

a1 + xm
− d2x2m = 0

(4.2)
c1xmy

a1 + xm
− d3y −

a0ρy

a2 + y
= 0
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then from equation 4.1, we get

(4.3) y =
(α0e

−γτ − d2xm)(a1 + xm)

k1
= w(xm)(say)

using this value in equation 4.2, we obtained

g(xm) = (c1 − d3)xmw(xm) + [(c1 − d3)a2 − a0ρ]xm(4.4)

−d3a1w(xm)− d3a1a2 − a0aρ = 0

then

(i). g(0) = −d3a1w(0)− d3a1a2 − a0aρ < 0

(ii). g

(
α0e
−γτ

d2

)
= [(c1 − d3)a2 − a0z]

α0e
−γτ

d2
− d3a1a2 − a0aρ > 0, if only if

[(c1 − d3)a2 − a0ρ]α0e
−γτ > (d3a1a2 + a0aρ) d2

then there exist a positive root xm = x∗m of equation (4.4), this root must be unique for

g′(xm) > 0 in

(
0,
α0e
−γτ

d2

)
.

After evaluating the value of x∗m, value of y∗ =
(α0e

−γτ − d2x∗m)(a1 + x∗m)

k1
may be deter-

mined.

The stability analysis of the equilibrium point is given by the variation matrices, char-
acteristic matrix obtain by Jacobian of system of differential equations,

(4.5)

V (E) =

α0e
−γτ−λτ − k1

ya1
(a1 + xm)2

− 2d2xm − λ
−xmk1

(a1 + xm)
ya1c1

(a1 + xm)2
xmc1

(a1 + xm)
− d3 −

ρa2a0
(a2 + y)2

− λ


The stability analysis of the equilibrium points E0, E1 and E∗ is given as;

1. For trivial equilibrium point E0, the eigenvalues of this point are given by following
characteristic equation,

(4.6) (α0e
−γτ−λτ − λ)

(
−a0ρ
a2
− d3 − λ

)
= 0

Eigen value corresponding xm direction is given by the equation λ1 = α0e
−γτ−λ1τ > 0

and in direction y , λ2 = −a0ρ
a2
− d3 < 0. So this point saddle point.
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2. For equilibrium point Em1 characteristic equation is give as,

(4.7)
(
α0e
−γτ−λτ − 2d2xm1 − λ

)( xm1c1
(a1 + xm1)

− d3 −
ρa0
a2
− λ

)
= 0

Eigenvalue corresponding xm direction is given by the equation
λ1 = α0e

−γτ−λ1τ − 2d2xm1.
Consider that <λ1 ≥ 0, then we compute the real part of λ1 and obtained that,
<λ1 = α0e

−γτ (e−τ<λ1 cos(τImλ1)
)
−2d2xm1= α0e

−γτ−τ<λ1 −2d2xm1 < 0 for xm1 =
α0e
−γτ

d2
, a contradiction, hence <λ1 ≤ 0.

From this characteristics equation, we note that the eigenvalue, namely, λ2 =
xm1c1

(a1 + xm1)
−

d3−
za0
a2

> 0 iff, xm1 [(c1 − d3)a2 − ρa0] > (d3a2 + ρa0)a1 if c1 > d3 corresponding to

y direction.
Therefore, the equilibrium Em1 is a saddle point which is unstable in the y direction
and stable in the xm-direction.

3. Now stability analysis of interior equilibrium point (x∗m, y
∗) is given as, characteristic

equation for the equilibrium point (x∗m, y
∗) is given as follow as

(4.8) Φ(λ, τ) =
(
λ2 +A1λ+A2

)
− e−λτ (λA3 +A4) = 0

where

A1 =

(
k1y
∗a1

(a1 + x∗m)2
− x∗mc1

(a1 + x∗m)
+

ρa2a0
(a2 + y∗)2

+ d3 + 2d2x
∗
m

)
,

A2 =

(
k1y
∗a1

(a1 + x∗m)2
+ 2d2x

∗
m

)(
d3 +

ρa2a0
(a2 + y∗)2

− x∗mc1
(a1 + x∗m)

)
+
k1a1c1xmy

(a1 + xm)3
,

A3 = α0e
−γτ ,

A4 =

(
d3 +

ρa2a0
(a2 + y∗)2

− x∗mc1
(a1 + x∗m)

)
αe−γτ ,

The stability analysis of E∗ can be seen by following theorem;

Theorem 4.1. A necessary and sufficient condition for (x∗m, y
∗) is locally asymptotically

stable for τ ≥ 0 is,

a. The real part of all roots of Φ(λ, τ) = 0 are negative.

b. For all b and τ > 0, Φ(ib, τ) 6= 0 where i =
√
−1

Theorem 4.2. The positive equilibrium point (x∗m, y
∗) for the system (2.5)-(2.6), is locally

asymptotically stable providing condition

1. d2x
∗
m >

α0e
−γτ

2
and
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2. d3a1 > x∗m(c1 − d3) if c1 > d3 .

Proof. Now for τ = 0, the equation (4.5) become

(4.9) λ2 + β1λ+ β2 = 0

Where

β1 =
k1y
∗a1

(a1 + x∗m)2
− x∗mc1

(a1 + x∗m)
+

ρa2a0
(a2 + y∗)2

+ d3 + 2d2x
∗
m − α0

β2 =

(
k1y
∗a1

(a1 + x∗m)2
+ 2d2x

∗
m − α0

)(
d3 +

ρa2a0
(a2 + y∗)2

− x∗mc1
(a1 + x∗m)

)
+
k1a1c1xmy

(a1 + xm)3

By the Routh-Hurwitz criteria, the system is locally asymptotically stable around the
interior point E∗(x∗m, y

∗) if β1, β2 > 0.
Now for delay is non zero τ 6= 0, let τ = a(t) + ib(t) then the equation (4.8), equating real
and imaginary part of this equation, we get

(4.10) cos bτ(aA3 +A4) + bA3 sin bτ = eaτ{a2 − b2 + aA1 +A2}

(4.11) bA3 cos bτ − sin bτ(aA3 +A4) = eaτ (2ab+A1b)

Now when root are purely imaginary λ = ib(t) then from equations (4.10) - (4.11), we get

(4.12) A4cosbτ + bA3sinbτ = −b2 +A2

(4.13) bA3cosbτ −A4sinbτ = A1b

Squaring and adding (4.12) and (4.13), we obtained

(4.14) b4 + b2
(
A2

1 − 2A2 −A2
3

)
+
(
A2

2 −A2
4

)
= 0

Now
A2

2 −A2
4 = (A2 −A4)(A2 +A4)

as A2 > 0 A4 > 0 then (A2 +A4) > 0 and

A2−A4 =

(
d3 +

ρa2a0

(a2 + y∗)2
− x∗mc1
a1 + x∗m

)(
k1y
∗a1

(a1 + x∗m)2
+ 2d2x

∗
m − α0e

−γτ
)

+
k1a1c1y

∗x∗m
(a1 + x∗m)3

> 0

it is providing

1. d2x
∗
m >

α0e
−γτ

2
and

2. d3a1 > x∗m(c1 − d3) if c1 > d3 .

as A2 −A1 > 0 this implies that A2
2 −A2

1 > 0
Now A2

1 − 2A2 − A2
3 = (A1 − A3)(A1 + A3) − 2A2 as A1 > A3 and A1 + A3 > 2A2 this

implies that A2
1 − 2A2 −A2

3 > 0

(4.15) b4 + b2
(
A2

1 − 2A2 −A2
3

)
+
(
A2

2 −A2
4

)
> 0

above equation is contradicts with (4.14), hence φ(ib, τ) 6= 0. Then it satisfied (b) condition
of theorem (4.1). Therefore equilibrium point E∗(x∗m, y

∗) is locally asymptotically stable
for all τ ≥ 0.
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5 Bifurcation analysis

Lemma 5.1. The following transverse conditions are satisfied:

<
[
dλ

dτ

]
6= 0, thus the system of equation (2.5)-(2.6) undergoes Hopf bifurcations at

positive equilibrium point E∗(x∗m, y
∗) for τ = τc.

Proof. Let λ = a(τ) + ib(τ) be the root of equation (4.8) near τ = τc satisfying a(τc) = 0,
b(τc) = b0,

Differentiating the equation (4.8) with respect to τ , we get[
dλ

dτ

]−1
=

(2λ−A1)− e−λτA3

λ(λA3 +A4)e−λτ
− τ

λ
,

Now for τ = τc , λ(τc) = ib(τc) = b0 we obtained that

(5.1) <
[
dλ

dτ

]−1
τ=τ0

=
(A3A2 +A3b

2
0 −A1A4)A1b

2
0 − 2b0A4(A2b0 − b30)

A2
1b

4
0 − (A2b0 − b30)2

6= 0,

so equation (5.1) shows the transversally condition holds hence Hopf bifurcation occurs at
τ = τ0 .

The value of delay obtained by the equations (4.12)-(4.13)

(5.2) cot bτc =
bA3bA1 +A4(−b2 +A2)

bA3(−b2 +A2)−A4A1b
.

6 Persistence

Biologically, persistence means the survival of all populations in future time. Mathemat-
ically, persistence of a system means that strictly positive solutions do not have omega
limit points on boundary of nonnegative cone, then persistence of the system is given by
following theorem.

Theorem 6.1. Assume that
α0e
−γτa1
k1

> ymax and w0 =

(
cxmy

a1 + xm

)
min

. The system is

permanent.

Proof. From equation(2.5), we have

(6.1)
dxm
dt
≥ α0e

−γτxm(t− τ)− k1xmymax
a1

− d2x2m,
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then by comparing principle, it follows that

(6.2) lim
t→∞

inf xm(t) ≥ 1

d2

(
α0e
−γτ − k1ymax

a1

)
,

and from equation (2.6), we have

(6.3)
dy

dt
=

c1xmy

a1 + xm
− d3y −

a0ρy

a2 + y
,

Consider that w0 =

(
cxmy

a1 + xm

)
min

, then the above equation become,

(6.4)
dy

dt
≥ w0 − d3y −

a0ρy

a2
,

then by comparing principle, it follows that,

(6.5) lim
t→∞

inf y(t) ≥ w0a2
(d2a2 + a0ρ)

,

This is completes the proof of theorem.

7 Numerical Simulations

In this section, we present some numerical simulations for the supporting theoretical pre-
diction with the set of parameters values,
α0 = 0.9, γ = 0.01, τ = 10, k1 = 0.45, a1 = 10, c1 = 0.32, d3 = 0.04, a0 = 0.09,
a2 = 20, ρ = 0.05, d2 = 0.09.
Then the system of differential equation become as,

(7.1)
dxm
dt

= 0.9e−0.01∗10xm(t− 10)− 0.45xmy

10 + xm
− 0.09x2m,

(7.2)
dy

dt
=

0.32xmy

10 + xm
− 0.04y − 0.09 ∗ 0.05y

20 + y
,

and (1.433, 17.42) be the interior equilibrium point corresponding the above set of param-
eter. Behavior of the population for these parameters seen by the figures.
Figures (1(a))-(1(b)), time series graph for xm and y and global stability for the positive
equilibrium E∗. From figures we observed that both populations converges to their equi-
librium point E∗(1.433, 17.42).
Figures (2(a))-(2(b)) describe that behavior of prey and predator population at variation
of constant predation ρ, we observed that the value of ρ increases prey population has pos-
itive effect that means prey population also increases but predator has very less negative
effect.
From figure (3), we seen that half saturation constant a1 of prey functional response has
positive effect on both populations. In figure (4(a)), we observed the behavior of preda-
tor population at value of delay τ , here predator population decreases as the value of τ
increases. From figure (4(b)) we observed that for value of d2 ≤ 0.001 system loss their
global stability.
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(a) Time series of prey and predator (b) Global stability, E∗(1.433, 17.42)

Fig. 1: Local and global stabilities of system

8 Conclusion

In this paper, we conclude the effect of delay on the system (Prey-Predator model), also
see the behaviour of the system at a value of death rate of prey and effect of constant
predation. We obtain the result when plants (prey) are consumed by animals (predator)
and growth of animals are controlled by constant predation on prey it may be disease effect
or may be harvesting or may be migration, by graphical study we conclude that as death
rate of plants is very low(less than 0.001) then the system of food chain is not permanent
stable. The effect of constant predation on system obtained by numerical simulation. We
saw that value of constant predation ρ has positive effect on prey population and very less
negative effect on the predator.
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