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Abstract

The main purpose of the present paper is to introduce the notion of
generalized φ−recurrency of generalized Sasakian-space-forms. We stud-
ied generalized φ−recurrent generalized Sasakian-space-forms, general-
ized concircular φ−recurrent generalized Sasakian-space-forms and ob-
tained a number of results. We also proved generalized Sasakian-space-
forms satisfying the condition S(X, ξ).R = 0 is reduced to η−Einstein.
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1 Introduction

In differential geometry, the curvature of a Riemannian manifold (M, g) plays a fundamen-
tal role. A Riemannian manifold with constant sectional curvature c is called a real−space
form and its curvature tensor is given by the equation

(1.1) R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y },

for any vector fields X,Y, Z on M . Models for these spaces are the Euclidean space (c = 0),
the sphere (c > 0) and the Hyperbolic space (c < 0).

A Sasakian manifoldM(φ, ξ, η, g) is said to be a Sasakian space form if all the φ−sectional
curvatures K(X ∧ φX) are equal to a constant c, where K(X ∧ φX) denotes the sectional
curvature of the section spanned by the unit vector field X, orthogonal to ξ and φX. In
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such a case, Riemannian curvature tensor of M is given by

R(X,Y )Z =
c+ 3

4
{g(Y,Z)X − g(X,Z)Y }(1.2)

+
c− 1

4
{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}

+
c− 1

4
{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

−g(Y,Z)η(X)ξ}.

In 2004, P. Alegre, D. E. Blair and A. Carriazo [13] introduced the concept of generalized
Sasakian space forms. The generalized Sasakian space form is defined as follows:

A generalized Sasakian-space-form is an almost contact metric manifold M(φ, ξ, η, g)
whose curvature tensor is given by

R(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }(1.3)

+f2{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}
+f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

−g(Y, Z)η(X)ξ},

where f1, f2, f3 are differentiable functions on M and X,Y, Z are vector fields on
M. Sasakian-space-forms appear as natural examples of generalized Sasakian-space-forms,
with constant functions f1 = c+3

4 , f2 = c−1
4 and f3 = c−1

4 , where c denotes constant
φ−sectional curvature. The generalized Sasakian-space-forms have been extensively stud-
ied by [2, 3, 14, 15, 16, 21] and many others.

The notion of locally φ−symmetric Sasakian manifold was introduced by T. Takahashi
[17] in 1977. φ−recurrent Sasakian manifold and generalized φ−recurrent Sasakian mani-
fold were studied by the author [5] and [16] respectively.

The notion of generalized φ−recurrent Kenmotsu manifolds was introduced by A. Basari
and C. Murathan [1] and also generalizing the notion of φ−recurrency, the authors D.
A. Patil, D. G. Prakasha and C. S. Bagewadi [5] introduced the notion of generalized
φ−recurrent Sasakian manifolds. Motivated by the above studies, we have studied of gen-
eralized φ−recurrent generalized Sasakian-space-forms and obtained number of interesting
results.

Thus motivated sufficiently, in this paper we study generalized φ−recurrent generalized
Sasakian-space-forms. Section 2 contains necessary details about generalized Sasakian-
space-forms. Section 3 is devoted to the study of generalized φ−recurrent generalized
Sasakian-space-forms and it is shown that generalized φ−recurrent generalized Sasakian-
space-forms is an Einstein manifold and for generalized φ−recurrent generalized Sasakian-
space-forms, a relation between the 1−forms α and β is established. Further it is shown
that generalized φ−recurrent generalized Sasakian-space-form is a manifold of constant
curvature. In section 4, we obtained a relation between the associated 1−forms α and
β for a generalized φ−recurrent and concircular φ−recurrent generalized Sasakian-space-
forms. In section 5, we study generalized Sasakian-space-forms satisfying the condition
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S(X, ξ).R = 0, where S and R are the Ricci and Riemannian curvature tensors respectively.
Here it is shown that the manifold under this condition is reduced to η−Einstein.

2 Preliminaries

An odd dimensional manifold M2n+1(n ≥ 1) is said to admit an almost contact structure,
sometimes called a (φ, ξ, η)−structure, if it admits a tensor field φ of type (1, 1), a vector
field ξ and a 1−form η satisfying ([8], [9]) :

(2.1) η(ξ) = 1,

(2.2) φ2(X) = −X + η(X)ξ, g(X, ξ) = η(X),

(2.3) g(φX, φY ) = g(X,Y )− η(X)η(Y ),

(2.4) (∇Xη)Y = g(∇Xξ, Y ),

(2.5) g(X,φY ) = −g(φX, Y ),

for any vector fields X,Y on M . In particular, in an almost contact metric manifold
we also have

(2.6) φξ = 0, η ◦ φ = 0.

Such a manifold is said to be a contact metric manifold if dη = Φ, where

(2.7) dη(X,Y ) = Φ(X,Y ) = g(X,φY ),

and Φ is called the fundamental 2−form of M . If, in addition, ξ is a Killing vector field,
then M is said to be a K−contact manifold. It is well-known that a contact metric manifold
is a K−contact manifold if and only if

(2.8) ∇Xξ = −φX,

for any vector field X on M . On the other hand, the almost contact metric structure of
M is said to be normal if

[φ, φ](X,Y ) = −2dη(X,Y )ξ,

for any X,Y on M , where [φ, φ] denotes the Nijenhuis torsion of φ, given by

[φ, φ](X,Y ) = φ2[X,Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ].
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A normal contact metric manifold is called a Sasakian manifold. It can be proved that an
almost contact metric manifold is Sasakian if and only if

(2.9) (∇Xφ)Y = g(X,Y )ξ − η(Y )X,

for any X,Y on M.
On the other hand, given an almost contact metric manifold M2n+1(φ, ξ, η, g), we say

that M is a generalized Sasakian-space-form if there exist three functions f1, f2, f3 on M
such that the curvature tensor R is given by

R(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }(2.10)

+f2{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}
+f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

−g(Y, Z)η(X)ξ},

for any vector fields X,Y, Z on M [13]. Such a manifold is denoted by M2n+1(f1, f2, f3).
This kind of manifold appears as a generalization of the well known Sasakian-space-form,
which can be obtained as a particular case of generalized Sasakian-space-form by taking
f1 = C+3

4 , f2 = f3 = C−1
4 .

In a (2n+ 1)−dimensional generalized Sasakian-space-form M2n+1(f1, f2, f3), we have
the following relations [20];

(2.11) R(X,Y )ξ = (f1 − f3)[η(Y )X − η(X)Y ],

(2.12) R(ξ,X)Y = (f1 − f3)[g(X,Y )ξ − η(Y )X)],

(2.13) R(ξ,X)ξ = (f1 − f3)[η(X)ξ −X)],

(2.14) η(R(X,Y )Z) = (f1 − f3)[g(Y,Z)η(X)− g(X,Z)η(Y )],

(2.15) S(X,Y ) = (2nf1 + 3f2 − f3)g(X,Y )− (3f2 + (2n− 1)f3)η(X)η(Y ),

(2.16) QX = (2nf1 + 3f2 − f3)X − (3f2 + (2n− 1)f3)η(X)ξ,
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(2.17) S(X, ξ) = 2n(f1 − f3)η(X),

(2.18) S(φX, φY ) = S(X,Y )− 2n(f1 − f3)η(X)η(Y ),

(2.19) S(ξ, ξ) = 2n(f1 − f3),

(2.20) Qξ = 2n(f1 − f3)ξ,

(2.21) r = 2n(2n+ 1)f1 + 6nf2 − 4nf3,

where R,S and r denote the curvature tensor, Ricci tensor of type (0, 2) and scalar cur-
vature of the space-form, respectively, and Q is the Ricci operator defined by g(QX,Y ) =
S(X,Y ). We know that [13] the φ−sectional curvature of a generalized Sasakian-space-
form M2n+1(f1, f2, f3), is f1 + 3f2.

Again a Sasakian manifold is said to be a φ−recurrent manifold if there exists a non
zero 1−form A such that

φ2((∇WR)(X,Y )Z) = α(X)R(Y, Z)W,

for all vector fields X,Y, Z,W orthogonal to ξ. A Riemannian manifold (M2n+1, g) is called
generalized recurrent [19], if its curvature tensor R satisfies the condition

(∇XR)(Y, Z)W = α(X)R(Y,Z)W + β(X)[g(Z,W )Y − g(Y,W )Z],

where, α and β are two 1−forms, β is non zero and these are defined by

α(X) = g(X, ρ1) and β(X) = g(X, ρ2), ∀X ∈ TM,

ρ1 and ρ2 being the vector fields associated to the 1−form α and β.

3 Generalized φ−recurrent generalized Sasakian-space-forms

Definition 3.1. A generalized Sasakian-space-form M2n+1(φ, ξ, η, g) is said to be locally
φ−symmetric if the relation

(3.1) φ2((∇WR)(X,Y )Z) = 0,

holds for any arbitrary vector field X,Y, Z and W.
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Definition 3.2. A generalized Sasakian-space-form M2n+1(φ, ξ, η, g) is said to be φ−recurrent
if there exist a non zero 1−form α such that

(3.2) φ2((∇WR)(X,Y )Z) = α(W )R(X,Y )Z,

for any arbitrary vector field X,Y, Z and W.

Definition 3.3. A generalized Sasakian-space-form M2n+1(φ, ξ, η, g) is called generalized
φ−recurrent if its curvature tensor R satisfies the condition

(3.3) φ2((∇WR)(X,Y )Z) = α(W )R(X,Y )Z + β(W )[g(Y, Z)X − g(X,Z)Y ],

where α and β are two 1−forms, β is non zero and these are defined by

α(W ) = g(W,ρ1) and β(W ) = g(W,ρ2), ∀W ∈ TM,

ρ1 and ρ2 being the vector fields associated to the 1−form α and β.

Definition 3.4. A generalized Sasakian-space-form M2n+1(φ, ξ, η, g) is said to be η−Einstein
manifold if its Ricci tensor S is of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

for any vector fields X and Y , where a and b are smooth functions on M2n+1(φ, ξ, η, g).
If b = 0, then it becomes Einstein manifold.

Let us consider a generalized Sasakian-space-forms M2n+1(φ, ξ, η, g), (n > 1), which is
generalized φ−recurrent. Then by virtue of (2.2), (3.3) yields

−(∇WR)(X,Y )Z + η((∇WR)(X,Y )Z)(3.4)

= α(W )R(X,Y )Z + β(W )[g(Y,Z)X − g(X,Z)Y ].

From which it follows that

−g((∇WR)(X,Y )Z,U) + η((∇WR)(X,Y )Z)(U)(3.5)

= α(W )g(R(X,Y )Z,U) + β(W )[g(Y, Z)g(X,U)

−g(X,Z)g(Y, U)].

Let {ei}, i = 1, 2, ..., 2n + 1 be an orthonormal basis of the tangent space at any point
of the space form. Then replacing X = U = ei in (3.5) and taking summation over i,
1 ≤ i ≤ 2n+ 1, we obtain

−(∇WS)(Y, Z) +

2n+1∑
i=1

η((∇WR)(ei, Y )Z)(ei)(3.6)

= α(W )S(Y,Z) + 2nβ(W )g(Y, Z).
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In the second term of (3.6), replacing Z = ξ. The equation (3.6) takes the form g((∇WR)(ei, Y )ξ, ξ)g(ei, ξ).
Consider

g((∇WR)(ei, Y )ξ, ξ) = g(∇WR(ei, Y )ξ, ξ)− g(R(∇W ei, Y )ξ, ξ)(3.7)

−g(R(ei,∇WY )ξ, ξ)− g(R(ei, Y )∇W ξ, ξ),

at p ∈ M.Since {ei} is an orthonormal basis, so ∇Xei = 0 at p. Using (2.2), (2.11) and
(2.9), we have

(3.8) g(R(ei,∇WY ), ξ) = (f1 − f3){η(∇WY )η(ei)− η(ei)η(∇WY )} = 0.

Now from (3.7) and (3.8), we have

(3.9) g((∇WR)(ei, Y )ξ, ξ) = g(∇WR(ei, Y )ξ, ξ)− g(R(ei, Y )∇W ξ, ξ).

Since (∇W g) = 0, we have

g(∇WR(ei, Y )ξ, ξ) + g(R(ei, Y )ξ,∇W ξ) = 0,

which implies that

(3.10) g((∇WR)(ei, Y )ξ, ξ) = −g(R(ei, Y )ξ,∇W ξ)− g(R(ei, Y )∇W ξ, ξ).

Now from (2.8) and (3.10), we have

(3.11) g((∇WR)(ei, Y )ξ, ξ) = g(R(ei, Y )ξ, φW )− g(R(ei, Y )ξ, φW ) = 0.

Putting Z = ξ in (3.6) and using (2.5) and (2.17), we have

(3.12) (∇WS)(Y, ξ) = −[2n(f1 − f3)α(W ) + 2nβ(W )]η(Y ).

Also, we know that

(∇WS)(Y, ξ) = ∇WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ).

Using (2.4), (2.8) and (2.17) in the above equation, we get

(3.13) (∇WS)(Y, ξ) = −2n(f1 − f3)g(Y, φW ) + S(Y, φW ).

In view of (3.12) and (3.13), we obtain

−[2n(f1 − f3)A(W ) + 2nB(W )]η(Y ) = −2n(f1 − f3)g(Y, φW ) + S(Y, φW ).

Putting Y = ξ in the above relation and using (2.2) and (2.6), we have

(3.14) (f1 − f3)α(W ) + β(W ) = 0.

Again replacing Y by φY in (3.12) and then using (2.3), (2.5) and (2.17), we obtain

(3.15) S(Y,W ) = 2n(f1 − f3)g(Y,W ),

and
S(φY,W ) = 2n(f1 − f3)g(φY,W ).

Thus, we state the following:
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Theorem 3.1. A generalized φ−recurrent generalized Sasakian-space-forms M2n+1(φ, ξ, η, g)
satisfying is an Einstein manifold and more over, the 1−forms α and β are satisfying
(f1 − f3)α(W ) + β(W ) = 0.

Now from (2.2) and (3.3), we get

(∇WR)(X,Y )Z = η((∇WR)(X,Y )Z)ξ − α(W )R(X,Y )Z

−β(W )[g(Y, Z)X − g(X,Z)Y ].

Then using second Bianchi’s identity in above equation and again using (3.14), we get

α(W )R(X,Y )Z + (f1 − f3)α(W )[g(Y,Z)X − g(X,Z)Y ](3.16)

+α(X)R(Y,W )Z + (f1 − f3)α(X)[g(W,Z)Y − g(Y,Z)W ]

+α(Y )R(W,X)Z + (f1 − f3)α(Y )[g(X,Z)W − g(W,Z)X]

= 0.

Replacing Y = Z = {ei}, where {ei} be an orthonormal basis of the tangent space at any
point of the space form, in (3.16) and taking summation over i, 1 ≤ i ≤ 2n+ 1, we obtain

α(W )[S(X,U) + (2n− 1)(f1 − f3)g(X,U)](3.17)

−α(X)[S(W,U) + (2n− 1)(f1 − f3)g(W,U)]

−g(R(W,X)U, ρ1)

= 0.

Contracting (3.17) with respect to X,U ; we find

rα(W ) + 2n(2n− 1)(f1 − f3)α(W ) = 2S(W,ρ1).

Using (2.21) in above equation, we obtain

(3.18) (4n2f1 + 3nf2 − n(2n+ 1)f3)α(W ) = S(W,ρ1).

Thus, we state the following:

Theorem 3.2. Let M2n+1(φ, ξ, η, g) be a generalized φ−recurrent generalized Sasakian-
space-forms. Then

(4n2f1 + 3nf2 − n(2n+ 1)f3)α(W ) = S(W,ρ1),

holds.

Now,

(∇WR)(X,Y )ξ = ∇WR(X,Y )ξ −R(∇WX,Y )ξ(3.19)

−R(X,∇WY )ξ −R(X,Y )∇W ξ.
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By virtue of (2.8), (2.11) and (3.19), we can easily get

(∇WR)(X,Y )ξ = (f1 − f3)[(∇W η)(Y )X − (∇W η)(X)Y ](3.20)

−R(X,Y )φW.

If we consider X,Y orthogonal to ξ , then in view of (2.14), we get

η((∇WR)(X,Y )ξ) = 0.

Hence

(3.21) η((∇φWR)(X,Y )ξ) = 0.

From (3.20), we get

(3.22) (∇φWR)(X,Y )ξ = (f1 − f3)[(∇φW η)(Y )X − (∇φW η)(X)Y ]−R(X,Y )φ2W.

Using (2.2) in above equation, we obtain

(3.23) (∇φWR)(X,Y )ξ = (f1 − f3)[g(W,Y )X − g(W,X)Y ]−R(X,Y )W.

Suppose the space form is generalized φ−recurrent. Then in view of (3.4) and (3.23), we
get

η((∇φWR)(X,Y )ξ)ξ − α(φW )(f1 − f3)[η(Y )X − η(X)Y ](3.24)

−β(φW )[η(Y )X − η(X)Y ]

= (f1 − f3)[g(W,Y )X − g(W,X)Y ]−R(X,Y )W.

Using (3.21) and (3.14) in the above equation, we obtain

(3.25) R(X,Y )W = (f1 − f3)[g(Y,W )X − g(X,W )Y ],

for all X,Y,W .
Thus, we state the following:

Theorem 3.3. A generalized φ−recurrent generalized Sasakian-space-forms M2n+1(φ, ξ, η, g)
is of constant curvature .

By the definition, we have

g((∇WR)(X,Y )Z,U) = g(∇WR(X,Y )Z,U) +R(∇WX,Y, Z, U)(3.26)

+R(X,∇WY,Z, U) +R(X,Y, U,∇WZ),

where g(R(X,Y )Z,U) = R(X,Y, Z, U) and the property of curvature tensor have been
used. Since ∇ is a metric connection, it follows that

(3.27) g(∇WR(X,Y )Z,U) = g(R(X,Y )∇WU,Z)−∇W g(R(X,Y )U,Z),
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and

(3.28) ∇W g(R(X,Y )U,Z) = g(∇WR(X,Y )U,Z) + g(R(X,Y )U,∇WZ).

From (3.27) and (3.28), we obtain

g(∇WR(X,Y )Z,U) = g(R(X,Y )∇WU,Z)− g(∇WR(X,Y )U,Z)(3.29)

−g(R(X,Y )U,∇WZ).

Hence from (3.29), (3.26) reduces to

(3.30) g((∇WR)(X,Y )Z,U) = −g((∇WR)(X,Y )U,Z).

Using (2.2), (2.5) and (3.30) in (3.3), we obtain

(∇WR)(X,Y )Z = −g((∇WR)(X,Y )ξ, Z)ξ − α(W )R(X,Y )Z(3.31)

−β(W )[g(Y, Z)X − g(X,Z)Y ].

Again using (2.1), (2.4), (2.6) and (2.11) in the above equation, we can easily get

(∇WR)(X,Y )ξ = (f1 − f3)[g(φY,W )X − g(φX,W )Y ](3.32)

−R(X,Y )φW.

By virtue of (3.32) and (3.31), we get

(∇WR)(X,Y )Z = {(f1 − f3)[g(φX,W )g(Y,Z)− g(φY,W )g(X,Z)](3.33)

+g(R(X,Y )φW,Z)}ξ − α(W )R(X,Y )Z

−β(W )[g(Y,Z)X − g(X,Z)Y ].

Conversely, if in a generalized Sasakian-space-forms M2n+1(φ, ξ, η, g) the relation (3.33)
holds, then applying φ on both sides of (3.33) and keeping mind that X,Y, Z and W are
orthogonal to ξ, we obtain (3.3).

Thus, we state the following:

Theorem 3.4. A generalized Sasakian-space-form M2n+1(φ, ξ, η, g) is generalized φ−recurrent
if and only if the relation

(∇WR)(X,Y )Z = {(f1 − f3)[g(φX,W )g(Y,Z)− g(φY,W )g(X,Z)]

+g(R(X,Y )φW,Z)}ξ − α(W )R(X,Y )Z

−β(W )[g(Y,Z)X − g(X,Z)Y ],

holds for all vector fields X,Y, Z,W on M .
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4 On generalized concircular φ−recurrent generalized Sasakian-space-forms

Definition 4.1. A generalized Sasakian-space-forms M2n+1(φ, ξ, η, g) is called generalized
concircular φ−recurrent if its concircular curvature tensor (Yano, K; Kon, M, 1984)

C(X,Y )Z = R(X,Y )Z − r

2n(2n+ 1)
[g(Y, Z)X − g(X,Z)Y ],

satisfies the condition [17]

(4.1) φ2((∇WC)(X,Y )Z) = α(W )C(X,Y )Z + β(W )[g(Y,Z)X − g(X,Z)Y ],

where α and β are two 1−forms, β is non zero and these are defined by

α(W ) = g(W,ρ1) and β(W ) = g(W,ρ2),∀W ∈ TM,

ρ1 and ρ2 being the vector fields associated to the 1−form α and β.

In this section we consider a generalized concircular φ−recurrent generalized Sasakian-
space-forms M2n+1(φ, ξ, η, g). Then from (2.2) and (4.1), we have

−(∇WC)(X,Y )Z + η((∇WC)(X,Y )Z)ξ(4.2)

= α(W )C(X,Y )Z + β(W )[g(Y,Z)X − g(X,Z)Y ],

from the above equation it follows that

−g((∇WC)(X,Y )Z,U) + η((∇WC)(X,Y )Z)η(U)(4.3)

= α(W )g(C(X,Y )Z,U) + β(W )[g(Y, Z)g(X,U)

−g(X,Z)g(Y, U)].

Let {ei}, i = 1, 2, ..., 2n + 1, be an orthonormal basis of the tangent space at any point of
the space form. Then putting Y = Z = {ei} in the above equation and taking summation
over i, 1 ≤ i ≤ 2n+ 1,we find

−(∇WS)(X,U) +
∇W r

2n+ 1
g(X,U)(4.4)

+(∇WS)(X, ξ)η(U)− ∇W r
2n+ 1

η(X)η(U)

= α(W )[S(X,U)− r

2n+ 1
g(X,U)

+2nβ(W )g(X,U)].

Now, taking U = ξ in (4.4) and then using (2.5) and (2.17), we get

α(W )[2n(f1 − f3)−
r

2n+ 1
]η(X) + 2nβ(W ))η(X) = 0,
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η(X) 6= 0, α(W )[2n(f1 − f3)−
r

2n+ 1
] + 2nβ(W ) = 0,

i.e.

(4.5) 2nβ(W ) = α(W )[
r

2n+ 1
− 2n(f1 − f3)].

Now using (2.21) in (4.5), we get

β(W ) = [
(3f2 + (2n− 1)f3)

(2n+ 1)
]α(W ).

Thus, we state the following:

Theorem 4.1. In a generalized concircular φ−recurrent generalized Sasakian-space-forms
M2n+1(φ, ξ, η, g), the 1−forms α and β are satisfying

β(W ) = [
(3f2 + (2n− 1)f3)

(2n+ 1)
]α(W ).

5 Generalized Sasakian-space-forms satisfying S(X, ξ).R = 0

We consider a generalized Sasakian-space-forms M2n+1(φ, ξ, η, g), (n > 1) satisfying the
condition

(5.1) (S(X, ξ).R)(U, V )Z = 0.

By the definition, we obtain

(S(X, ξ).R)(U, V )Z = ((X ∧S ξ).R)(U, V )Z(5.2)

= (X ∧S ξ)R(U, V )Z +R((X ∧S ξ)U, V )Z

+R(U, (X ∧S ξ)V )Z +R(U, V )(X ∧S ξ)Z,

where the endomorphism X ∧S Y is defined by

(5.3) X ∧S Y = S(Y, Z)X − S(X,Z)Y.

Using the above definition in (5.2), by virtue of (2.17), we get

(S(X, ξ).R)(U, V )Z = 2n(f1 − f3)[η(R(U, V )Z)X + η(U)R(X,V )Z(5.4)

+η(V )R(U,X)Z + η(Z)R(U, V )X]

−S(X,R(U, V )Z)ξ − S(X,U)R(ξ, V )Z

−S(X,V )R(U, ξ)Z − S(X,Z)R(U, V )ξ.

From (5.1) and (5.4), we get

2n(f1 − f3)[η(R(U, V )Z)X + η(U)R(X,V )Z(5.5)

+η(V )R(U,X)Z + η(Z)R(U, V )X]

−S(X,R(U, V )Z)ξ − S(X,U)R(ξ, V )Z

−S(X,V )R(U, ξ)Z − S(X,Z)R(U, V )ξ = 0.
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Taking the inner product with ξ on both sides of (5.5), we get

2n(f1 − f3)[η(R(U, V )Z)η(X) + η(U)η(R(X,V )Z)(5.6)

+η(V )η(R(U,X)Z) + η(Z)η(R(U, V )X)]

−S(X,R(U, V )Z)ξ − S(X,U)η(R(ξ, V )Z)

−S(X,V )η(R(U, ξ)Z)− S(X,Z)η(R(U, V )ξ) = 0.

Substituting U = Z = ξ in (5.6) and using (2.11), (2.14), (2.17), (2.18) and (2.20), we obtain

(f1 − f3)S(X,V ) + 2n(f1 − f3)2g(X,V )(5.7)

−(2n+ 1)(f1 − f3)2η(X)η(V )

= 0.

Since (f1 − f3) 6= 0, therefore

(5.8) S(X,V ) = −2n(f1 − f3)g(X,V ) + (2n+ 1)(f1 − f3)η(X)η(V ),

which is of the form
S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a = −2n(f1−f3) and b = (2n+1)(f1−f3), which shows that a generalized Sasakian-
space-forms is an η−Einstein manifold.

Thus, we state the following:

Theorem 5.1. A generalized Sasakian-space-forms M2n+1(φ, ξ, η, g), (n > 1) satisfying
the condition S(X, ξ).R = 0 with (f1 − f3) 6= 0, is an η−Einstein manifold.
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