ϕ -Recurrent generalized Sasakian-space-forms

Shyam Kishor & Abhishek Singh

Department of Mathematics and Astronomy University of Lucknow, Lucknow, India

 $skishormath@gmail.com\ \ \ \ \ lkoabhi27@gmail.com$

Abstract

The main purpose of the present paper is to introduce the notion of generalized ϕ —recurrency of generalized Sasakian-space-forms. We studied generalized ϕ —recurrent generalized Sasakian-space-forms, generalized concircular ϕ —recurrent generalized Sasakian-space-forms and obtained a number of results. We also proved generalized Sasakian-space-forms satisfying the condition $S(X, \xi).R = 0$ is reduced to η —Einstein.

Subject class [2010]:53C05, 53C15, 53C20, 53C25.

Keywords: Generalized Sasakian-space-forms, generalized recurrent generalized Sasakian-space-forms, generalized ϕ -recurrent generalized Sasakian-space-forms, Einstein manifold, η -Einstein manifold

1 Introduction

In differential geometry, the curvature of a Riemannian manifold (M, g) plays a fundamental role. A Riemannian manifold with constant sectional curvature c is called a real—space form and its curvature tensor is given by the equation

(1.1)
$$R(X,Y)Z = c\{g(Y,Z)X - g(X,Z)Y\},\$$

for any vector fields X, Y, Z on M. Models for these spaces are the Euclidean space (c = 0), the sphere (c > 0) and the Hyperbolic space (c < 0).

A Sasakian manifold $M(\phi, \xi, \eta, g)$ is said to be a Sasakian space form if all the ϕ -sectional curvatures $K(X \wedge \phi X)$ are equal to a constant c, where $K(X \wedge \phi X)$ denotes the sectional curvature of the section spanned by the unit vector field X, orthogonal to ξ and ϕX . In

such a case, Riemannian curvature tensor of M is given by

(1.2)
$$R(X,Y)Z = \frac{c+3}{4} \{g(Y,Z)X - g(X,Z)Y\}$$
$$+ \frac{c-1}{4} \{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\}$$
$$+ \frac{c-1}{4} \{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi$$
$$-g(Y,Z)\eta(X)\xi\}.$$

In 2004, P. Alegre, D. E. Blair and A. Carriazo [13] introduced the concept of generalized Sasakian space forms. The generalized Sasakian space form is defined as follows:

A generalized Sasakian-space-form is an almost contact metric manifold $M(\phi, \xi, \eta, g)$ whose curvature tensor is given by

(1.3)
$$R(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\}$$

$$+f_2\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\}$$

$$+f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi$$

$$-g(Y,Z)\eta(X)\xi\},$$

where f_1, f_2, f_3 are differentiable functions on M and X, Y, Z are vector fields on M. Sasakian-space-forms appear as natural examples of generalized Sasakian-space-forms, with constant functions $f_1 = \frac{c+3}{4}$, $f_2 = \frac{c-1}{4}$ and $f_3 = \frac{c-1}{4}$, where c denotes constant ϕ -sectional curvature. The generalized Sasakian-space-forms have been extensively studied by [2, 3, 14, 15, 16, 21] and many others.

The notion of locally ϕ -symmetric Sasakian manifold was introduced by T. Takahashi [17] in 1977. ϕ -recurrent Sasakian manifold and generalized ϕ -recurrent Sasakian manifold were studied by the author [5] and [16] respectively.

The notion of generalized ϕ -recurrent Kenmotsu manifolds was introduced by A. Basari and C. Murathan [1] and also generalizing the notion of ϕ -recurrency, the authors D. A. Patil, D. G. Prakasha and C. S. Bagewadi [5] introduced the notion of generalized ϕ -recurrent Sasakian manifolds. Motivated by the above studies, we have studied of generalized ϕ -recurrent generalized Sasakian-space-forms and obtained number of interesting results.

Thus motivated sufficiently, in this paper we study generalized ϕ -recurrent generalized Sasakian-space-forms. Section 2 contains necessary details about generalized Sasakian-space-forms. Section 3 is devoted to the study of generalized ϕ -recurrent generalized Sasakian-space-forms and it is shown that generalized ϕ -recurrent generalized Sasakian-space-forms is an Einstein manifold and for generalized ϕ -recurrent generalized Sasakian-space-forms, a relation between the 1-forms α and β is established. Further it is shown that generalized ϕ -recurrent generalized Sasakian-space-form is a manifold of constant curvature. In section 4, we obtained a relation between the associated 1-forms α and β for a generalized ϕ -recurrent and concircular ϕ -recurrent generalized Sasakian-space-forms. In section 5, we study generalized Sasakian-space-forms satisfying the condition

 $S(X,\xi).R = 0$, where S and R are the Ricci and Riemannian curvature tensors respectively. Here it is shown that the manifold under this condition is reduced to η -Einstein.

2 Preliminaries

An odd dimensional manifold $M^{2n+1}(n \ge 1)$ is said to admit an almost contact structure, sometimes called a (ϕ, ξ, η) -structure, if it admits a tensor field ϕ of type (1, 1), a vector field ξ and a 1-form η satisfying ([8], [9]):

$$\eta(\xi) = 1,$$

(2.2)
$$\phi^{2}(X) = -X + \eta(X)\xi, \quad g(X,\xi) = \eta(X),$$

$$(2.3) g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

$$(2.4) (\nabla_X \eta) Y = g(\nabla_X \xi, Y),$$

$$(2.5) g(X, \phi Y) = -g(\phi X, Y),$$

for any vector fields X, Y on M. In particular, in an almost contact metric manifold we also have

$$(2.6) \phi \xi = 0, \eta \circ \phi = 0.$$

Such a manifold is said to be a contact metric manifold if $d\eta = \Phi$, where

$$(2.7) d\eta(X,Y) = \Phi(X,Y) = q(X,\phi Y),$$

and Φ is called the fundamental 2-form of M. If, in addition, ξ is a Killing vector field, then M is said to be a K-contact manifold. It is well-known that a contact metric manifold is a K-contact manifold if and only if

$$(2.8) \nabla_X \xi = -\phi X,$$

for any vector field X on M. On the other hand, the almost contact metric structure of M is said to be normal if

$$[\phi, \phi](X, Y) = -2d\eta(X, Y)\xi,$$

for any X, Y on M, where $[\phi, \phi]$ denotes the Nijenhuis torsion of ϕ , given by

$$[\phi, \phi](X, Y) = \phi^{2}[X, Y] + [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y].$$

A normal contact metric manifold is called a Sasakian manifold. It can be proved that an almost contact metric manifold is Sasakian if and only if

(2.9)
$$(\nabla_X \phi) Y = g(X, Y) \xi - \eta(Y) X,$$

for any X, Y on M.

On the other hand, given an almost contact metric manifold $M^{2n+1}(\phi, \xi, \eta, g)$, we say that M is a generalized Sasakian-space-form if there exist three functions f_1, f_2, f_3 on M such that the curvature tensor R is given by

(2.10)
$$R(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\}$$

$$+f_2\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\}$$

$$+f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi$$

$$-g(Y,Z)\eta(X)\xi\},$$

for any vector fields X, Y, Z on M [13]. Such a manifold is denoted by $M^{2n+1}(f_1, f_2, f_3)$. This kind of manifold appears as a generalization of the well known Sasakian-space-form, which can be obtained as a particular case of generalized Sasakian-space-form by taking $f_1 = \frac{C+3}{4}, f_2 = f_3 = \frac{C-1}{4}$.

In a (2n+1)-dimensional generalized Sasakian-space-form $M^{2n+1}(f_1, f_2, f_3)$, we have the following relations [20];

(2.11)
$$R(X,Y)\xi = (f_1 - f_3)[\eta(Y)X - \eta(X)Y],$$

$$(2.12) R(\xi, X)Y = (f_1 - f_3)[q(X, Y)\xi - \eta(Y)X)],$$

(2.13)
$$R(\xi, X)\xi = (f_1 - f_3)[\eta(X)\xi - X)],$$

$$(2.14) \eta(R(X,Y)Z) = (f_1 - f_3)[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)],$$

$$(2.15) S(X,Y) = (2nf_1 + 3f_2 - f_3)g(X,Y) - (3f_2 + (2n-1)f_3)\eta(X)\eta(Y),$$

$$(2.16) QX = (2nf_1 + 3f_2 - f_3)X - (3f_2 + (2n-1)f_3)\eta(X)\xi,$$

(2.17)
$$S(X,\xi) = 2n(f_1 - f_3)\eta(X),$$

(2.18)
$$S(\phi X, \phi Y) = S(X, Y) - 2n(f_1 - f_3)\eta(X)\eta(Y),$$

$$(2.19) S(\xi, \xi) = 2n(f_1 - f_3),$$

$$(2.20) Q\xi = 2n(f_1 - f_3)\xi,$$

$$(2.21) r = 2n(2n+1)f_1 + 6nf_2 - 4nf_3,$$

where R, S and r denote the curvature tensor, Ricci tensor of type (0, 2) and scalar curvature of the space-form, respectively, and Q is the Ricci operator defined by g(QX, Y) = S(X, Y). We know that [13] the ϕ -sectional curvature of a generalized Sasakian-space-form $M^{2n+1}(f_1, f_2, f_3)$, is $f_1 + 3f_2$.

Again a Sasakian manifold is said to be a ϕ -recurrent manifold if there exists a non zero 1-form A such that

$$\phi^2((\nabla_W R)(X, Y)Z) = \alpha(X)R(Y, Z)W,$$

for all vector fields X, Y, Z, W orthogonal to ξ . A Riemannian manifold (M^{2n+1}, g) is called generalized recurrent [19], if its curvature tensor R satisfies the condition

$$(\nabla_X R)(Y, Z)W = \alpha(X)R(Y, Z)W + \beta(X)[q(Z, W)Y - q(Y, W)Z],$$

where, α and β are two 1-forms, β is non zero and these are defined by

$$\alpha(X) = q(X, \rho_1)$$
 and $\beta(X) = q(X, \rho_2), \forall X \in TM$,

 ρ_1 and ρ_2 being the vector fields associated to the 1-form α and β .

3 Generalized ϕ -recurrent generalized Sasakian-space-forms

Definition 3.1. A generalized Sasakian-space-form $M^{2n+1}(\phi, \xi, \eta, g)$ is said to be locally ϕ -symmetric if the relation

(3.1)
$$\phi^{2}((\nabla_{W}R)(X,Y)Z) = 0,$$

holds for any arbitrary vector field X, Y, Z and W.

Definition 3.2. A generalized Sasakian-space-form $M^{2n+1}(\phi, \xi, \eta, g)$ is said to be ϕ -recurrent if there exist a non zero 1-form α such that

(3.2)
$$\phi^2((\nabla_W R)(X, Y)Z) = \alpha(W)R(X, Y)Z,$$

for any arbitrary vector field X, Y, Z and W.

Definition 3.3. A generalized Sasakian-space-form $M^{2n+1}(\phi, \xi, \eta, g)$ is called generalized ϕ -recurrent if its curvature tensor R satisfies the condition

(3.3)
$$\phi^{2}((\nabla_{W}R)(X,Y)Z) = \alpha(W)R(X,Y)Z + \beta(W)[g(Y,Z)X - g(X,Z)Y],$$

where α and β are two 1-forms, β is non zero and these are defined by

$$\alpha(W) = g(W, \rho_1)$$
 and $\beta(W) = g(W, \rho_2), \forall W \in TM$,

 ρ_1 and ρ_2 being the vector fields associated to the 1-form α and β .

Definition 3.4. A generalized Sasakian-space-form $M^{2n+1}(\phi, \xi, \eta, g)$ is said to be η -Einstein manifold if its Ricci tensor S is of the form

$$S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),$$

for any vector fields X and Y, where a and b are smooth functions on $M^{2n+1}(\phi, \xi, \eta, g)$. If b=0, then it becomes Einstein manifold.

Let us consider a generalized Sasakian-space-forms $M^{2n+1}(\phi, \xi, \eta, g), (n > 1)$, which is generalized ϕ -recurrent. Then by virtue of (2.2), (3.3) yields

$$(3.4) \qquad -(\nabla_W R)(X,Y)Z + \eta((\nabla_W R)(X,Y)Z)$$

= $\alpha(W)R(X,Y)Z + \beta(W)[g(Y,Z)X - g(X,Z)Y].$

From which it follows that

(3.5)
$$-g((\nabla_{W}R)(X,Y)Z,U) + \eta((\nabla_{W}R)(X,Y)Z)(U)$$

$$= \alpha(W)g(R(X,Y)Z,U) + \beta(W)[g(Y,Z)g(X,U) - g(X,Z)g(Y,U)].$$

Let $\{e_i\}$, i=1,2,...,2n+1 be an orthonormal basis of the tangent space at any point of the space form. Then replacing $X=U=e_i$ in (3.5) and taking summation over i, $1 \le i \le 2n+1$, we obtain

(3.6)
$$-(\nabla_W S)(Y, Z) + \sum_{i=1}^{2n+1} \eta((\nabla_W R)(e_i, Y)Z)(e_i)$$
$$= \alpha(W)S(Y, Z) + 2n\beta(W)g(Y, Z).$$

In the second term of (3.6), replacing $Z = \xi$. The equation (3.6) takes the form $g((\nabla_W R)(e_i, Y)\xi, \xi)g(e_i, \xi)$. Consider

$$(3.7) g((\nabla_W R)(e_i, Y)\xi, \xi) = g(\nabla_W R(e_i, Y)\xi, \xi) - g(R(\nabla_W e_i, Y)\xi, \xi) - g(R(e_i, \nabla_W Y)\xi, \xi) - g(R(e_i, Y)\nabla_W \xi, \xi),$$

at $p \in M$. Since $\{e_i\}$ is an orthonormal basis, so $\nabla_X e_i = 0$ at p. Using (2.2), (2.11) and (2.9), we have

(3.8)
$$g(R(e_i, \nabla_W Y), \xi) = (f_1 - f_3) \{ \eta(\nabla_W Y) \eta(e_i) - \eta(e_i) \eta(\nabla_W Y) \} = 0.$$

Now from (3.7) and (3.8), we have

$$(3.9) g((\nabla_W R)(e_i, Y)\xi, \xi) = g(\nabla_W R(e_i, Y)\xi, \xi) - g(R(e_i, Y)\nabla_W \xi, \xi).$$

Since $(\nabla_W q) = 0$, we have

$$g(\nabla_W R(e_i, Y)\xi, \xi) + g(R(e_i, Y)\xi, \nabla_W \xi) = 0,$$

which implies that

$$(3.10) g((\nabla_W R)(e_i, Y)\xi, \xi) = -g(R(e_i, Y)\xi, \nabla_W \xi) - g(R(e_i, Y)\nabla_W \xi, \xi).$$

Now from (2.8) and (3.10), we have

(3.11)
$$g((\nabla_W R)(e_i, Y)\xi, \xi) = g(R(e_i, Y)\xi, \phi W) - g(R(e_i, Y)\xi, \phi W) = 0.$$

Putting $Z = \xi$ in (3.6) and using (2.5) and (2.17), we have

$$(3.12) \qquad (\nabla_W S)(Y,\xi) = -[2n(f_1 - f_3)\alpha(W) + 2n\beta(W)]\eta(Y).$$

Also, we know that

$$(\nabla_W S)(Y,\xi) = \nabla_W S(Y,\xi) - S(\nabla_W Y,\xi) - S(Y,\nabla_W \xi).$$

Using (2.4), (2.8) and (2.17) in the above equation, we get

$$(3.13) \qquad (\nabla_W S)(Y,\xi) = -2n(f_1 - f_3)g(Y,\phi W) + S(Y,\phi W).$$

In view of (3.12) and (3.13), we obtain

$$-[2n(f_1 - f_3)A(W) + 2nB(W)]\eta(Y) = -2n(f_1 - f_3)g(Y, \phi W) + S(Y, \phi W).$$

Putting $Y = \xi$ in the above relation and using (2.2) and (2.6), we have

$$(3.14) (f_1 - f_3)\alpha(W) + \beta(W) = 0.$$

Again replacing Y by ϕY in (3.12) and then using (2.3), (2.5) and (2.17), we obtain

$$(3.15) S(Y,W) = 2n(f_1 - f_3)g(Y,W),$$

and

$$S(\phi Y, W) = 2n(f_1 - f_3)g(\phi Y, W).$$

Thus, we state the following:

Theorem 3.1. A generalized ϕ -recurrent generalized Sasakian-space-forms $M^{2n+1}(\phi, \xi, \eta, g)$ satisfying is an Einstein manifold and more over, the 1-forms α and β are satisfying $(f_1 - f_3)\alpha(W) + \beta(W) = 0$.

Now from (2.2) and (3.3), we get

$$(\nabla_W R)(X, Y)Z = \eta((\nabla_W R)(X, Y)Z)\xi - \alpha(W)R(X, Y)Z$$
$$-\beta(W)[g(Y, Z)X - g(X, Z)Y].$$

Then using second Bianchi's identity in above equation and again using (3.14), we get

(3.16)
$$\alpha(W)R(X,Y)Z + (f_1 - f_3)\alpha(W)[g(Y,Z)X - g(X,Z)Y] + \alpha(X)R(Y,W)Z + (f_1 - f_3)\alpha(X)[g(W,Z)Y - g(Y,Z)W] + \alpha(Y)R(W,X)Z + (f_1 - f_3)\alpha(Y)[g(X,Z)W - g(W,Z)X] = 0$$

Replacing $Y = Z = \{e_i\}$, where $\{e_i\}$ be an orthonormal basis of the tangent space at any point of the space form, in (3.16) and taking summation over $i, 1 \le i \le 2n + 1$, we obtain

(3.17)
$$\alpha(W)[S(X,U) + (2n-1)(f_1 - f_3)g(X,U)] - \alpha(X)[S(W,U) + (2n-1)(f_1 - f_3)g(W,U)] - g(R(W,X)U, \rho_1) = 0.$$

Contracting (3.17) with respect to X, U; we find

$$r\alpha(W) + 2n(2n-1)(f_1 - f_3)\alpha(W) = 2S(W, \rho_1).$$

Using (2.21) in above equation, we obtain

$$(3.18) (4n^2f_1 + 3nf_2 - n(2n+1)f_3)\alpha(W) = S(W, \rho_1).$$

Thus, we state the following:

Theorem 3.2. Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a generalized ϕ -recurrent generalized Sasakian-space-forms. Then

$$(4n^2f_1 + 3nf_2 - n(2n+1)f_3)\alpha(W) = S(W, \rho_1),$$

holds.

Now,

(3.19)
$$(\nabla_W R)(X,Y)\xi = \nabla_W R(X,Y)\xi - R(\nabla_W X,Y)\xi - R(X,Y)\nabla_W \xi.$$

By virtue of (2.8), (2.11) and (3.19), we can easily get

$$(3.20) \qquad (\nabla_W R)(X,Y)\xi = (f_1 - f_3)[(\nabla_W \eta)(Y)X - (\nabla_W \eta)(X)Y] -R(X,Y)\phi W.$$

If we consider X, Y orthogonal to ξ , then in view of (2.14), we get

$$\eta((\nabla_W R)(X, Y)\xi) = 0.$$

Hence

(3.21)
$$\eta((\nabla_{\phi W} R)(X, Y)\xi) = 0.$$

From (3.20), we get

$$(3.22) \qquad (\nabla_{\phi W} R)(X, Y) \xi = (f_1 - f_3) [(\nabla_{\phi W} \eta)(Y) X - (\nabla_{\phi W} \eta)(X) Y] - R(X, Y) \phi^2 W.$$

Using (2.2) in above equation, we obtain

$$(3.23) \qquad (\nabla_{\phi W} R)(X, Y) \xi = (f_1 - f_3)[g(W, Y)X - g(W, X)Y] - R(X, Y)W.$$

Suppose the space form is generalized ϕ -recurrent. Then in view of (3.4) and (3.23), we get

(3.24)
$$\eta((\nabla_{\phi W}R)(X,Y)\xi)\xi - \alpha(\phi W)(f_1 - f_3)[\eta(Y)X - \eta(X)Y] \\ -\beta(\phi W)[\eta(Y)X - \eta(X)Y] \\ = (f_1 - f_3)[g(W,Y)X - g(W,X)Y] - R(X,Y)W.$$

Using (3.21) and (3.14) in the above equation, we obtain

(3.25)
$$R(X,Y)W = (f_1 - f_3)[g(Y,W)X - g(X,W)Y],$$

for all X, Y, W.

Thus, we state the following:

Theorem 3.3. A generalized ϕ -recurrent generalized Sasakian-space-forms $M^{2n+1}(\phi, \xi, \eta, g)$ is of constant curvature.

By the definition, we have

(3.26)
$$g((\nabla_W R)(X, Y)Z, U) = g(\nabla_W R(X, Y)Z, U) + R(\nabla_W X, Y, Z, U) + R(X, \nabla_W Y, Z, U) + R(X, Y, U, \nabla_W Z),$$

where g(R(X,Y)Z,U) = R(X,Y,Z,U) and the property of curvature tensor have been used. Since ∇ is a metric connection, it follows that

$$(3.27) q(\nabla_W R(X,Y)Z,U) = q(R(X,Y)\nabla_W U,Z) - \nabla_W q(R(X,Y)U,Z),$$

and

$$(3.28) \qquad \nabla_W g(R(X,Y)U,Z) = g(\nabla_W R(X,Y)U,Z) + g(R(X,Y)U,\nabla_W Z).$$

From (3.27) and (3.28), we obtain

$$(3.29) g(\nabla_W R(X,Y)Z,U) = g(R(X,Y)\nabla_W U,Z) - g(\nabla_W R(X,Y)U,Z) - g(R(X,Y)U,\nabla_W Z).$$

Hence from (3.29), (3.26) reduces to

$$(3.30) g((\nabla_W R)(X,Y)Z,U) = -g((\nabla_W R)(X,Y)U,Z).$$

Using (2.2), (2.5) and (3.30) in (3.3), we obtain

$$(3.31) \qquad (\nabla_W R)(X,Y)Z = -g((\nabla_W R)(X,Y)\xi,Z)\xi - \alpha(W)R(X,Y)Z -\beta(W)[g(Y,Z)X - g(X,Z)Y].$$

Again using (2.1), (2.4), (2.6) and (2.11) in the above equation, we can easily get

(3.32)
$$(\nabla_W R)(X, Y)\xi = (f_1 - f_3)[g(\phi Y, W)X - g(\phi X, W)Y] - R(X, Y)\phi W.$$

By virtue of (3.32) and (3.31), we get

(3.33)
$$(\nabla_W R)(X,Y)Z = \{ (f_1 - f_3)[g(\phi X, W)g(Y, Z) - g(\phi Y, W)g(X, Z)] + g(R(X,Y)\phi W, Z) \} \xi - \alpha(W)R(X,Y)Z - \beta(W)[g(Y,Z)X - g(X,Z)Y].$$

Conversely, if in a generalized Sasakian-space-forms $M^{2n+1}(\phi, \xi, \eta, g)$ the relation (3.33) holds, then applying ϕ on both sides of (3.33) and keeping mind that X, Y, Z and W are orthogonal to ξ , we obtain (3.3).

Thus, we state the following:

Theorem 3.4. A generalized Sasakian-space-form $M^{2n+1}(\phi, \xi, \eta, g)$ is generalized ϕ -recurrent if and only if the relation

$$(\nabla_{W}R)(X,Y)Z = \{(f_{1} - f_{3})[g(\phi X, W)g(Y, Z) - g(\phi Y, W)g(X, Z)] + g(R(X, Y)\phi W, Z)\}\xi - \alpha(W)R(X, Y)Z - \beta(W)[g(Y, Z)X - g(X, Z)Y],$$

holds for all vector fields X, Y, Z, W on M.

4 On generalized concircular ϕ -recurrent generalized Sasakian-space-forms

Definition 4.1. A generalized Sasakian-space-forms $M^{2n+1}(\phi, \xi, \eta, g)$ is called generalized concincular ϕ -recurrent if its concincular curvature tensor (Yano, K; Kon, M, 1984)

$$C(X,Y)Z = R(X,Y)Z - \frac{r}{2n(2n+1)}[g(Y,Z)X - g(X,Z)Y],$$

satisfies the condition [17]

(4.1)
$$\phi^{2}((\nabla_{W}C)(X,Y)Z) = \alpha(W)C(X,Y)Z + \beta(W)[g(Y,Z)X - g(X,Z)Y],$$

where α and β are two 1-forms, β is non zero and these are defined by

$$\alpha(W) = g(W, \rho_1)$$
 and $\beta(W) = g(W, \rho_2), \forall W \in TM$,

 ρ_1 and ρ_2 being the vector fields associated to the 1-form α and β .

In this section we consider a generalized concircular ϕ -recurrent generalized Sasakianspace-forms $M^{2n+1}(\phi, \xi, \eta, g)$. Then from (2.2) and (4.1), we have

$$(4.2) -(\nabla_W C)(X,Y)Z + \eta((\nabla_W C)(X,Y)Z)\xi$$

= $\alpha(W)C(X,Y)Z + \beta(W)[g(Y,Z)X - g(X,Z)Y],$

from the above equation it follows that

$$(4.3) -g((\nabla_W C)(X,Y)Z,U) + \eta((\nabla_W C)(X,Y)Z)\eta(U)$$

= $\alpha(W)g(C(X,Y)Z,U) + \beta(W)[g(Y,Z)g(X,U)$
 $-g(X,Z)g(Y,U)].$

Let $\{e_i\}$, i=1,2,...,2n+1, be an orthonormal basis of the tangent space at any point of the space form. Then putting $Y=Z=\{e_i\}$ in the above equation and taking summation over $i,1 \leq i \leq 2n+1$, we find

(4.4)
$$-(\nabla_{W}S)(X,U) + \frac{\nabla_{W}r}{2n+1}g(X,U)$$

$$+(\nabla_{W}S)(X,\xi)\eta(U) - \frac{\nabla_{W}r}{2n+1}\eta(X)\eta(U)$$

$$= \alpha(W)[S(X,U) - \frac{r}{2n+1}g(X,U)$$

$$+2n\beta(W)g(X,U)].$$

Now, taking $U = \xi$ in (4.4) and then using (2.5) and (2.17), we get

$$\alpha(W)[2n(f_1 - f_3) - \frac{r}{2n+1}]\eta(X) + 2n\beta(W))\eta(X) = 0,$$

$$\eta(X) \neq 0, \quad \alpha(W)[2n(f_1 - f_3) - \frac{r}{2n+1}] + 2n\beta(W) = 0,$$

i.e.

(4.5)
$$2n\beta(W) = \alpha(W)\left[\frac{r}{2n+1} - 2n(f_1 - f_3)\right].$$

Now using (2.21) in (4.5), we get

$$\beta(W) = \left[\frac{(3f_2 + (2n-1)f_3)}{(2n+1)}\right]\alpha(W).$$

Thus, we state the following:

Theorem 4.1. In a generalized concircular ϕ -recurrent generalized Sasakian-space-forms $M^{2n+1}(\phi, \xi, \eta, g)$, the 1-forms α and β are satisfying

$$\beta(W) = \left[\frac{(3f_2 + (2n-1)f_3)}{(2n+1)}\right]\alpha(W).$$

5 Generalized Sasakian-space-forms satisfying $S(X, \xi).R = 0$

We consider a generalized Sasakian-space-forms $M^{2n+1}(\phi,\xi,\eta,g), (n>1)$ satisfying the condition

(5.1)
$$(S(X,\xi).R)(U,V)Z = 0.$$

By the definition, we obtain

$$(5.2) (S(X,\xi).R)(U,V)Z = ((X \wedge_S \xi).R)(U,V)Z$$

= $(X \wedge_S \xi)R(U,V)Z + R((X \wedge_S \xi)U,V)Z$
 $+R(U,(X \wedge_S \xi)V)Z + R(U,V)(X \wedge_S \xi)Z,$

where the endomorphism $X \wedge_S Y$ is defined by

$$(5.3) X \wedge_S Y = S(Y, Z)X - S(X, Z)Y.$$

Using the above definition in (5.2), by virtue of (2.17), we get

(5.4)
$$(S(X,\xi).R)(U,V)Z = 2n(f_1 - f_3)[\eta(R(U,V)Z)X + \eta(U)R(X,V)Z + \eta(V)R(U,X)Z + \eta(Z)R(U,V)X]$$
$$-S(X,R(U,V)Z)\xi - S(X,U)R(\xi,V)Z$$
$$-S(X,V)R(U,\xi)Z - S(X,Z)R(U,V)\xi.$$

From (5.1) and (5.4), we get

(5.5)
$$2n(f_{1} - f_{3})[\eta(R(U, V)Z)X + \eta(U)R(X, V)Z + \eta(V)R(U, X)Z + \eta(Z)R(U, V)X] - S(X, R(U, V)Z)\xi - S(X, U)R(\xi, V)Z - S(X, V)R(U, \xi)Z - S(X, Z)R(U, V)\xi = 0.$$

Taking the inner product with ξ on both sides of (5.5), we get

(5.6)
$$2n(f_{1} - f_{3})[\eta(R(U, V)Z)\eta(X) + \eta(U)\eta(R(X, V)Z) + \eta(V)\eta(R(U, X)Z) + \eta(Z)\eta(R(U, V)X)] - S(X, R(U, V)Z)\xi - S(X, U)\eta(R(\xi, V)Z) - S(X, V)\eta(R(U, \xi)Z) - S(X, Z)\eta(R(U, V)\xi) = 0.$$

Substituting $U = Z = \xi$ in (5.6) and using (2.11), (2.14), (2.17), (2.18) and (2.20), we obtain

(5.7)
$$(f_1 - f_3)S(X,V) + 2n(f_1 - f_3)^2 g(X,V)$$

$$-(2n+1)(f_1 - f_3)^2 \eta(X)\eta(V)$$

$$= 0.$$

Since $(f_1 - f_3) \neq 0$, therefore

(5.8)
$$S(X,V) = -2n(f_1 - f_3)g(X,V) + (2n+1)(f_1 - f_3)\eta(X)\eta(V),$$

which is of the form

$$S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),$$

where $a = -2n(f_1 - f_3)$ and $b = (2n+1)(f_1 - f_3)$, which shows that a generalized Sasakian-space-forms is an η -Einstein manifold.

Thus, we state the following:

Theorem 5.1. A generalized Sasakian-space-forms $M^{2n+1}(\phi, \xi, \eta, g)$, (n > 1) satisfying the condition $S(X, \xi).R = 0$ with $(f_1 - f_3) \neq 0$, is an η -Einstein manifold.

6 References

- [1] A. Basari, C. Murathan, On generalized ϕ -recurrent kenmotsu manifolds, Sdu Fen Edebiyat Fakultesi Fen Dergisi (E-DERGI),310(2008),91 97.
- [2] A. Carriazo, D.E. Blair and P. Alegre, *On generalized Sasakian-space-form*, Proceedings of the Ninth International Workshop on Diff. Geom., 9, (2005), 31 39.
- [3] A. Carriazo, V. Martin-Molina and M. Mani Tripathi, Generalized $(k; \mu)$ -space forms, arXiv:0812.2605v1 [math.DG] 14 Dec 2008.
- [4]A. Sarkar and U. C. De, Some Curvature properties of generalized Sasakian space -forms, Lobachevskii Journal of Mathematics, 33(1), (2012), 22-27.
- [5] D.A. Patil, D.G. Prakasha, C.S. Bagewadi, On generalized ϕ -recurrent Sasakian manifolds, Bulletin Mathematical Analysis and Applications, vol 1 3(2009), 42 48.
- [6] D.A. Patil, D.G. Prakasha, C.S. Bagewadi, On Generalized ϕ –Recurrent Para Sasakian Manifolds, Journal of International Academy of Physical Sciences, 15(1), (2011), 1–10.
- [7] D. Debnath, A. Bhattacharyya, On generalized ϕ -recurrent trans-Sasakian manifold, Acta Universitatis Apulensis, 36, (2013), 253 266.
- [8] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture notes in Math.509, Springer verlag, 1976.

- [9] D. E. Blair, Riemannian Geometry of contact and symplectic manifolds, Birkhauser, Boston, 2002.
- [10] D.G. Prakasha, A. Yildiz, Generalized ϕ -recurrent Lorentzian -Sasakian manifolds, Commun. Fac. Sci. Univ. Ank. Series A1, 59(1)(2010), 53 62.
- [11] J.A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32(1985), 187 195.
- [12] K. Yano, M. Kon, Structures on manifolds, Series in Pure Math. Vol 3 World Sci, (1984).
- [13] P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math. 141(2004), 157 183.
- [14] P. Alegre and A. Carriazo, Structures on Generalized Sasakian-space-form, Diff. Geo. and its Application., 26(6), (2008), 656 666.
- [15] P. Alegre and A. Carriazo, Generalized Sasakian-space-forms and Conformal Changes of the Metric, Differential Geometry and its Applications, 26, (2008), 656 666.
- [16] S. Yadav, D.L. Suthar and A.K. Srivastava, Some Results on $M(f_1, f_2, f_3)$ (2n + 1)–Manifolds, International Journal of Pure and Applied Mathematics, 70(3), (2011), 415–423.
 - [17] T. Takahashi, Sasakian ϕ -symmetric spaces, Tohoku Math j., 29(1977), 91 113.
- [18] U.C. De, N. Guha, On generalized-recurrent manifolds, J.National Academy of Math. India, 9(1991), 85 92.
- [19] U.C. De, On ϕ -recurrent Sasakian manifolds, Novisad J. Math. 33(2), (2003), 43–48.
- [20] U.C. De and A. Sarkar, On the projective curvature tensor of generalized Sasakian space forms, Quaestines Mathematicae, 33(2010), 245 252.
- [21] U.C. De and A. Sarkar, Some Results on Generalized Sasakian-space-forms, Thai Journal of Mathematics, 8(1), (2010), 1-10.
- [22] Venkatesha, Sumangala B. & C. S. Bagewadi, On ϕ -recurrent generalized Sasakian-space-form, Global Journal of Science Frontier Research Mathematics and Decision Sciences, 12(9), (2012), 63 70.