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Abstract

Within this paper recent characterizations of 15; 1 = 1,2, R;;
i = 0,1, and Urysohn spaces using proper subspaces are com-
bined with Ty-identification spaces to further characterize each
of Ry, R;, and weakly Urysohn spaces.
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1 Introduction

When studying a property of topological spaces the following question
often arises: ” Does the space have the property if and only if each sub-
space of the space has the property?, i.e., is the property a subspace
property? In a recent paper [2], it was observed that the proof of the
converse statement in subspace theorems is quick and easy simply citing
that a space is a subspace of itself and that the property itself plays no
role in the proof. In response proper subspaces were examined for sub-

space properties and other properties giving the properties themselves
a new, central role in subspace questions [2]. |

Definition 1.1. Let (X,T) be a space and let P be a property of
topological spaces. If the fact that every proper subspace of (X,7T) has
property P implies (X,T) has property P, then P is called a proper
subspace inherited property (psip) |2].
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In 1943 (8] T spaces were generalized to Ry spaces.

Definition 1.2. A space (X,T) is Ry if and only if for each closed set
C and each z ¢ C, CNCl({x}) = ¢ [8].

In 1961 [1| A. Davis was searching for properties, which together
with T5_;, would be equivalent to 7j; 2 = 1,2, which led to the redis-
covery of Rp spaces and the introduction and investigation of R; spaces.
Within the 1961 paper [1], it was proven that a space is T; if and only
if it is ’I;'_.l and &_1; g o= 1,2

Definition 1.3. A space (X,T) is R; if and only if for each z,y € X

such that Cl({z}) # Cl({y}), there exist disjoint open sets U and V
such that Cl({z}) C U and Cl({y}) C V [1]. |

Within the 1961 paper [1], the Ry separation axiom was equivalently
defined by: A space (X,T) is Ry if and only if one of the following
equivalent statements are true: (a) for each O € T and each x € O,
Cl({z}) C O and (b) {Cl({z}) | x € X} is a decomposition of X.

In 1975 (7] R, spaces were further studied under the name weakly
Hausdorff spaces. In that paper |7] it was proven that a space is weakly
Hausdorff if and only if its Ty-identification space is T5.

Definition 1.4. Let R be the equivalence relation on a space (X, T)
defined by xRy if and only if Cl({z}) = Cl({y}). The Ty-identification
space of (X,T) is (Xo,Q(X,T)), where X, is the set of equivalence

~ classes of R and Q(X,T) is the decomposition topology on Xy [9]. For
each x € X, let C, denote the R equivalence class containing x and let
Px : (X,T) = (Xo,Q(X,T)) be the natural map.

In 1977 3] Ry spaces were further characterized using Ty-identification

spaces.

Theorem 1.1. A space is Ry if and only if its Tp-identification is T
3].

In 1988 4] Urysohn spaces were generalized to weakly Urysohn
spaces and it was proven that a space is weakly Urysohn if and only if
its To-identification space is Urysohn.

Definition 1.5. A space (X,T') is weakly Urysohn if and only if for
z,y € X such that Cl({zx}) # Cl({y}) there exist open sets U and V
such that Cl({z}) C U, Cl({y}) €V and CI(U) N CI(V) = ¢.

Within the paper [2] it was proven that each of the subspace prop-
erties T; and R;_;, ¢ = 1, 2,, weakly Urysohn, and Urysohn are psip and
the following results were obtained.
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Theorem 1.2. Let (X,T) be a space and let P be any of the prop-
erties T;, : = 0,1,2, R;; ¢+ = 0,1, weakly Urysohn, or Urysohn. Then
(X,T) has property P if and only if every proper subspace of (X,T)
has property P [2].

Within a follow up paper [5] the results above were used to further
characterize T;; ¢ = 0,1,2, and Urysohn spaces, which will be used
below along with Ty-identification spaces to obtain additional charac-
terizations of R;; 1 = 0, 1, and weakly Urysohn spaces.

Since singleton sefs satisfy many properties, in the works cited above
and here, only spaces with three or more elements are considered. Be-
low, for those theorems in which Ty-identification spaces are used, only
spaces (X, T) for which X has three or more elements are considered.

2 New Characterizations of Ry Spaces.

Theorem 2.1. Let (X,T) be a space. Then the following are equiva-
lent:

(&) (X,T) is Ry,

(b) for each z € X and Y = X\{z}, (Y,Ty) is R,

(¢) for each Y C X, for each O € Ty and for each x € O,
Clr, ({x}) € O,

(d) foreach Y C X, {Clp, ({z}) | x € Y} is a decomposition of Y,

(e) for each subset Z of Xy, (Z,Q(X,T)z) is T}, and

(f) for each proper subset Z of Xy, (Z,Q(X,T)z) is Tj.

Proof: By the results above, (a) implies (b).

(b) implies (¢): Let Z be a proper subset of X. Let x € X\Z and
let Y = X\{zx}. Then (Z,Ty,) is a subspace of the Ry space (Y,Ty)
and is Ry. Since Ty, = Tz, (Z,Tz) is Ry. Hence every proper subspace
of (X,T) is Ry and (X, T) is Rp.

Let Y C X. Since (X,T) is Ro, then (Y,Ty) is Ry and for each
O € Ty and each z € O, Clp, ({z}) C O.

By the results above, (¢) implies (d).

(d) implies (e): By the results above, foreach Y C X, (Y, Ty) is Ry,
which implies that (X,T) is Ry. Thus (Xo,@(X,T)) is T; and every
subspace of (X, Q(X,T)) is Tj.

Clearly (e) implies (f).

(f) implies (a): Since every proper subspace of (Xo, @(X,T)) is T1,
(Xo0,Q(X,T)) is T} and (X,T) is Ry.
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Corollary 2.1. Let (X,T) be a space. Then the followmg are equiva-
lent:

( ) (X,T) 1S R{}, |
(b) for each proper subset Y of X, for each O € Ty and for each
z € 0, Clr,({x}) € O, and |

(c) for each proper subset Y of X, {OZTY({:C}) | z € X'} is a decom-
position of Y. -

Theorem 2.2. Let (X,T) be a space. Then the following are equiva-
lent:

(a) (X, T) is Ro,
(b) for each subset Y of X, (Px(Y), Q(X, T)pyx)) is Th, and
(¢) for each proper subset ¥ of X, (Px(Y), (Q(X,T)p, (v)) is T7.

Proof: (a) implies (b): Let Y be a subset of X. Then Px(Y) is a
subset of the T} space (Xg, Q(X,T)) and (Px(Y),Q(X,T) Py (Y)) i8 T
Clearly (b) implies (c).
(c) implies (a): Let Z be a proper subset of Xy and let Y = P¢'(Z2).

Then Y is a proper subset of X, Z = Px(Y), and (Z,Q(X,T)z) is T1.
Thus, by Theorem 2.1, (X,T) is Ry.

Theorem 2.3. Let (X,T) be a space. Then the followmg are equiva-
lent:

(a) (X, T) 1S Ro,
(b) for each subset Y of X, (Yy, Q(Y,Ty)) is T}, and
(c) for each proper subset Y of X, (Yy, Q(Y,Ty)) is T1.

Proof: (a) implies (b): Let Y be a subset of X. Then (Y,Ty) is Ry
and (Yba Q(Yz TY)) 1S Tl-
- Clearly (b) implies (c).

(c) implies (a): Let Y be a proper subset of X. Since (Y5, Q(Y, Ty))
is Th, (Y, Ty) is Ry. Hence (X, T) is Ry.

Since a space is Ry if and only if its Tg-identification space is Rg [3],

additional characterizations of Ry spaces can be obtained by replacmg
T in Theorems 2.1, 2.2, and 2.3 above by Ry.

Theorem 2.4. Let (X, T) be a space. Then the following are equiva-
lent:

(a) (X,T) is Ry,
(b) for each finite subset Y = {Ci|i=1,--- ,n} of Xy, Q(X,T)y
is the discrete topology on Y, .
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(c) for distinct elements C' and D in X, and Y = {C, D}, Q(X, T)y
is the discrete topology on Y, v X _tF fos
(d) for each finite proper subset Y = {x; |i=1,--- ,n} of X such
that Cl({z:}) = Cl({z;}) if and only if i = j, n > 2, Ty is the discrete
topology on Y, and '

(e) for x and ¥y in X such that Cl({z}) # Cl({y}) and Y = {z,y},
1y is the discrete topology on Y.

Proof: (a) implies (b): Since (X,T) is Ry, (Xo,Q(X,T)) is T;. Then,
by Theorem 2.4 in the paper [5], (b) follows.
Clearly (b) implies (c). _
(¢) implies (d): By Theorem 2.4 in [3], (Xo,Q(X,T)) is T;. Thus
(X,T) is Ry and (d) follows from Theorem 2.4 in the paper 6].
Clearly (e) follows from (d). _ .
- (e) implies (a): Let O € T and let z € O. Let y ¢ O. Then
Cl({z}) # Cl({y} and there exists a T-open set U such that y € U
and x ¢ U. Hence y ¢ Cl({z}) and Ci({z}) C O. Thus (X, T) is R,.

Corollary 2.2. Let (X, T) be a space. Then the following are equiva-
lent: | -

(a) (X,T) is Ro,

(b) for each proper subset Z of X and finite subset Y = {z; | i =
1, ,n} of Z such that Clz,({z;}) = Clr,({z,}) if and only if i = j,
1zy is the discrete topology on Y, and -

- (c) for each proper subset Z of X and subset Y = {z,y} of Z such
that Clr,({z}) # Clr,({y}), Tzy is the discrete topology on Y.

Tp-identification spaces are a clever mathematical creation that has
been greatly utilized. With the focus in this paper on subspaces,
below the relationship between the spaces (Px(Y),Q(X,T)py(y) and
(Yo, Q(Y,Ty)) for a space (X,T) and subset Y of X is resolved. The
proof uses results from category theory as required by the referee.

Theorem 2.5. Let (X, T) be a space and let Y be a subset of X. Then
(Px(Y),Q(X,T)pev)) and (Yo, Q(Y,Ty)) are homeomorphic.

Proof: Given a subspace (Y, Ty) of (X, T),

(P){)y . (Y, Ty) —) (Px(Y),Q(X,T)pX(y)) 1S a Tg-epireﬂection of
(Y,Ty) since, given any continuous function f : (X,T) — (Z,W),
(Z,W) being T, the function f* : (Px(Y),Q(X,T)p,vy) = (Z,W),
defined by f*(Px(y)) = f(y), y € Y, is verified to be well-defined and
unique with the property f* o Py = f.
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3 New Characterizations of R; and Weakly
Urysohn Spaces.

Theorem 3.1. Let (X,T) be a space. Then the following are equiva-
lent:

(a’) (X? T) IS Rla

(b) for each z € X and Y = X\{z}, (Y,Ty) is Ry,

(c) for each subset Z of Xy, (Z,Q(X,T)z) is T3,

(d) for each proper subset Z of Xy, (Z,Q(X,T)z) is Ty,

(e) for each subset Y of X, (Yo, Q(Y,Ty)) is Ty,

(f) for each proper subset Y of X, (Yo, Q(Y,Ty)) is T,

(g) for each subset Z of X, and each finite set Y = {C; | i =
l,---,n};n > 2, of distinct elements of Z, there exist disjoint Q(X,T)z-
open sets O;; i = 1,--- ,n}, such that C; € O; for each 1,

(h) for each subset Z of Xj, for distinct elements C;; ¢ = 1,2, of Z,
there exist disjoint Q(X,Y)z-open sets O;, ¢ = 1, 2, such that C; € O;;
i=1,2

(i) for each proper subset Z of Xy and distinct elements Cj; 1 = 1, 2,
of Z, there exist disjoint Q(X,T)z-open sets O;; 1 = 1,2, such that
C; € Opit= 12

(j) for each subset Z of X and each finiteset Y = {z; |i= 1, ,n};
n > 2, of Z such that Clr({z;}) = Clr({z;}) if and only if ¢ = j, there
exist disjoint T'z-open sets O;; 1 = 1,--- ,n}, such that z; € O; for each
7, and

(k) for each proper subset Z of X and elements z;; 1 = 1,2, in Z

such that Clr({z,}) # Clr({x2}), there exist disjoint Tz-open sets O;;
i = 1,2, such that ; € O;; 1 = 1, 2.

“Proof: By the results in the introduction, (a) implies (b).

(b) implies (¢): Let Z be a proper subset of X. Let x € X'\Z and
let Y = X\{z}. Then (Z,T7) is a subspace of the R, space (Y,Ty),
which implies (Z,T%) is R;. Hence, by the results above, (X, T) is R;,
(X0, Q(X,Y)) is Ty, and for each subset Z of Xy, (Z,Q(X,T)z)) is Ts.

Clearly (c) implies (d).

(d) implies (e): By the results above, (Xo,Q(X,T)) is T> and every
subspace of (Xo, Q(X.T))isT,. Let Y C X. Then (Px(Y),Q(X,T)pyx))
is T, and, by Theorem 2.6 above, (Yo, Q(Y,Ty)) is Tb.

Clearly (e) implies (f).

(f) implies (g): Let Y be a proper subset of X. Since (Y, Q(Y,Ty))
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is T5, then (Y,Ty) is R;. Thus every proper subspace of (X,T) is Ry,
which implies (X,T) is Ry. Then (Xo, Q(X,Y)) is T, which implies
every subspace of (X, Q(X,T)) is T, and (g) follows immediately by
Theorem 2.5 in [5].

Clearly (g) implies (h) and (h) implies (i).

(i) implies (j): By Theorem 2.5 in (5], (Xo,Q(X,T)) is T5. Thus
(X,T) is Ry. Let Z be a proper subset of X. Then (Z,T%) is R, and
(j) follows immediately by Theorem 2.6 in [6].

Clearly (j) implies (k).

(k) implies (a): Let Z be a proper subset of Xy and let C,.; 1 = 1, 2,
be distinct element of Xy. Then Z = P3'(Z) is a proper subset of X
and Clp({z1}) # Clpr({x2}). Let O;; ¢ = 1,2 be disjoint Tz-open
sets such that x; € O;; 1 = 1,2. Then Px(0;); i = 1,2, are disjoint
Q (X, T)py (v)-open sets containing C;; 1 = 1, 2, respectively, and by the
arguments above (X, T) is R;.

Theorem 3.2. Let (X,T) be a space. Then the following are equiva-
lent:

(a) (X,T) is weakly Urysohn,

(b) for each x € X and Y = X\{z}, (Y,Ty) is weakly Urysohn,

(¢) for each subset Z of Xy, (Z,Q(X,Tz) Urysohn,

(d) for each proper subset Z of Xy, (Z,Q(X,T)z) is Urysohn,

(e) for each subset Y of X, (Yo, Q(Y,7y)) is Urysohn,

(f) for each proper subset Y of X, (Yo, Q(Y,Ty)) is Urysohn,

(g) for each subset Z of X, and each finite set Y = {C; | ¢ =
1,---,n}; n > 2, of distinct elements of Z, there exist Q(X,T)z-open
sets O;: 1 =1,--- ,n, such that C; € O; for each i and Clgx, T)Z(O )N

Clox1) = (O ) 7& qﬁ 1f and only if ¢ = 3,
(h) for each subset Z of X, and distinct elements C;; 2 = 1,2, in Z,

there exist Q(X,T')z-open sets O;; 1 = 1,2, such that C; € O;, 1= 1, 2,
and Clox,1)z(01) N Clox,1);(02) = ¢,

(i) for each proper subset Z of Xy and distinct elements Cj; 7 = 1, 2,
of Z, there exist Q(X,T)z-open sets O;; i = 1, 2 such that C; € O;;
g = 1,2, and ClQ(X;T)mIZ(O ) M OZQ(_){T (02) —

(j) for each subset Z of X and each finite subset Y= iyt 1'=
l,--+,n}; n > 2, of Z such that Clp, ({z;}) N Clyy, ({z;}) # ¢ if and
only if 2 = j, there exist Ty-open sets O;; ¢« = 1,---,n, such that
z; € O; for each ¢ and Clg, (O;) N Clry, (O;) # ¢ if and only if 7 = 7,
and

(k) for each proper subset Z of X and elements z;; : = 1,2, of 2
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such that Clp, ({z1}) N Clg, ({z2}) = ¢, there exist Ty-open sets O;:
R 1 2 such that xI; € O,;; ] == 1 2 and ClTy(Ol) M) CZTY (Og) — gb

The proof is similar to that of Theorem 3.1 using the results above,
Theorem 2.8 in [4], and Theorem 2.6 in [5] and is omitted.
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