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Abstract

In this paper, we characterize matrix transformations be-
tween weighted modular sequence spaces £ and the space £

of all bounded sequences, and also a general Fréchet K —space
A. In the final section, we identify the class of diagonal oper-

ators or multipliers between two modular sequence spaces as a
modular sequence space.
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1 Introduction

This paper deals with two aspects of studies on particular type of se-
quence spaces, namely, the matrix transformations and the multipliers



which are, indeed, diagonal transformations. In order to understand
the subject matter of this paper, let us consider a few notations, def-
initions and results on locally convex spaces, general sequence spaces,

and in particular, Orlicz and modular sequence spaces from [1], 2], (4],
5], 6], [7] and [8].

We denote by (X,T'), a locally convex space with X as a vector
space over the field K of real or complex numbers and Dy as the family
of semi-norms generating the topology 7" on X. In case, Dy is count-
able (X, T') is metrizable and if (X,T) is also complete, it is called a

Fréchet space. In this paper, we consider vector spaces consisting of
scalar sequences, namely, the sequence spaces.

To be precise, let us denote by w the family of all real or complex
sequences, which is a vector space with the usual pointwise addition
and scalar multiplication. We write e® (n > 1) for the n** unit vector
In w, i.e e® = {0,;}52; where §,; is the Kronecker delta, and ¢ for
the subspace of w, generated by the e™s, n > 1, i.e ¢ is the vector
space of all finitely non-zero sequences. For a sequence z = {z,} in
w, we write its n** section as ™ which is defined as the sequence
(Z1,%2,23,...20,0,0,...). Clearly, z™ € ¢, for each n € N, where N
denotes the set of natural numbers. For the sequences z = {z;} and
y = {¥} in w, we write zy for the sequence {z;y;} in w. A sequence
space A is a subspace of w containing ¢. A sequence space \ equipped
with a linear topology T is called a K—space if its topology is finer
than the co-ordinate wise convergence topology; and an AK —space if
it is a K—space and ™ — z in T as n — 0, for each x € A\. A
K —space (A,T) is an FK—space(resp. Fréchet K—space) if (), T)
is also a Fréchet space(resp. if (A, T") is complete and metrizable). For
any sequence space A, its G-dual )\? is given by

N={y={y)ew : inyi converges for all {z;} € \}

Let A and i be two sequence spaces. An infinite matrix A = (a;;) is
said to be a matrix transformation from ) to u if for each z € )\, the
series ) .5 aijT; converges and if y; = D _i>1 i, then Az = {y;} € p.
The collection of all matrix transformations from A to u is denoted by

(A, ).



For an infinite matrix A, the set d4 defined by

da = {z2:2€w, Az exists }

is called the domain of the matrix A. In case Az also belongs to ) for
a glven sequence space \, write \ 4 for d4 and call it the summability
domain of A; in particular, for A = ¢, ¢y and #°° the spaces ¢4, (¢p) 4

and €3 are known as the convergence domain, null domain and
bounded domain of A respectively.

Topologizing the space )4, we have the following result due to Zeller
9] (cf. also [2], p.209)

Theorem 1.1 Let A = (a;;) be an infinite matriz and (\,T) be an
FK— space with Dy = {r;}. Suppose S is the topology on )4 generated
by (i}, {ai} and {ri0 A}, where pi(z) = |z, 4(z) = sup, | 5" anyz,
and r; o A(x) = r;(A(x)) fori> 1. Then (A4, S) is an FK —space and
the map A : (A4, S) = (A\,T) is continuous.

[t is known that if (A, T) and (g, S) are two Fréchet K —spaces such

that A C u, then the identity map I : (A, T) = (i, S) is continuous,
cf.(2], p.204.

Corresponding to a given sequence space A, a series D_i>1Zi in a
locally convex TVS (X, T) is said to be weakly A—unconditionally

Cauchy (w. A—u.C) provided 2_i>1 Qi%; converges in X for each a € A
cf.[2], p.185.

We make use of the following characterization of a w. A—u.C. series.

Theorem 1.2 Let \ be a monotone FK — AK space and (X, T) be a
sequentially complete locally convezr space. Then the series 2_i>1 T in

X is w. A—u. C. if and only if {f(z:)} € M8 for all feXx

An Orlicz function is a continuous, convex, non-decreasing func-
tion defined from [0,00) to itself such that M 0) =0, M(z) >
0 for z > 0 and M(z) = oo as z — oco. Such function M always has
the following integral representation M (z) = [, p(t)dt, where p, known
as the kernel of M, is right continuous for ¢ > 0,p(0) = 0,p(t) > 0 for
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t > 0, p is non- decreasing and p(x) — oo as T — 00.

Given an Orlicz function M with kernel p, define ¢(s) =sup{t :

p(t) < s},s > 0. Then g possesses the same properties as p and
the function N defined as N(z) = [, g¢(t)dt, is an Orlicz function.
The functions M and N are called mutually complementary Or-
licz functions.

An Orlicz function M is said to satisfy the Ao-condition for small
r or at ‘0’ if for each k > 1, there exist Rr > 1 and x), > 0 such that

M(kx) < RpeM(z) , Y z € (0,zy).

For a sequence {M,} of Orlicz functions, the modular sequence
space ¢{M,} is defined as

UM} ={zr€cw : ZM “) < oo, forsomek > 0}.

The space ¢{M,} is a Banach space with respect to the norm ||.||{as}

defined as

o | |Zn)
|z || a3 = inf{k >0 ZM"‘( .

n>1

) < 1}

An important subspace of ¢{ M, }, which is an AK-apace is the space
h{M,} defined by

h{M,} = {x € ¢{M,} : Z Mn(l—xﬂ) < oo, foreach k > 0}.

K
n>1

In case, M,, = M for each n, we write €5 for ¢{My}, has for h{M,}
and ||z||ar) for ||zl (m,}. Further, has = €y iff M satisfies A,-condition
at ‘0. If N is an Orlicz function complementary to M, then an equiv-
alent definition of £, is also given as

by ={rew: thyt converges for each {y;} with é(y, N) = Z N(lyil)

i>1 i>1
< o0}

and an equivalent norm ||.||5s is defined as

|zl = sup{] Y ziwil : 6(y, N) < 1}

i>1
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A sequence {M,,} of Orlicz functions is said to satisfy uniform A.,-

condition at ‘0’ if there exists p 2 1 and ny € N such that for all
x M/

r € (0,1) and n > ng we have -Mﬂﬂ(ff)—)- < p. The subspace h{M,} is
a closed subspace of ¢{M,} with {e"} as its Schauder basis. Further,
MM, } = €{M,} if and only if {M,} satisfies uniform A,-condition at
‘0% cf. [2], p.299.

A sequence o = {7, } is called a multiplier between the modu-
lar sequence spaces ¢{M,,} and ({Nyn} if for each z = {x,} € ¢{M,)

we have ox = {on,z,} € ¢{N,}, where {M,} and {N,} are sequences
of Orlicz functions.

We now recall from (3], the spaces ¢M and £, where o = {a;} is a

fixed sequence of strictly positive reals and M and N are complemen-
tary Orlicz functions. Indeed, we have

£ = {rew : Zﬁ[(fi) < o0 for some p > 0}
i>1 :

and

by = {zew : ZN(%L&') < oo for some p > 0}.
i>1

The functions [|.[|3" : €' — R* and |.||% : €2, — R* defined by

, . Tn
212 = inf {p > 0 : 3 m(ll) <

n>1 PQn

O | 0|

[zly = inf {p > 0 : Y N

n>1 P

) <1}

are norms on £, and ¢4 respectively. Note that z € 6l iff 2 = { %} e

€m. Also if M satisfies Ay-condition at ‘0’ (&2 )1 1M) is an AK — BK
space and (¢21)F = ¢¢,.

2 DMatrix Transformation

Let M and N be complementary Orlicz functions where M satisfies
Aj-condition at ‘0’, and )\ be any sequence space equipped with a
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Fréchet topology. In this section, we characterize members of the space

(£, 6=)and (€M, N).

Let us begin with a simple

Lemma 2.1 The sets {zx € €X' : ||z||¥ < 1} and {z € £ : §(%, M)
1} in the space ¥ are the same.

VA

Proof : Omitted.

We now prove

Theorem 2.2 Leta' = {a;}52, denote the i** row of an infinite matriz
= (a;j). Then A € (ng,ém) iff (1) a* € €%, (II) K = supl||aat|ny < oo
cmd 14| < K.

Proof : Let A € (¢M,¢®). Then for z = {z;} € ¥, Az = {y;} € £,
whgre Yi = D .01 04T Since ) 57, ai;T; cpnverges for all z € £},
aa® € (Cp)? = €n; cf. (2], p.311. Hence a* € £%. For proving (II),
define F; : €y — Kby Fi(r) = ) 72, aijzj, ¢ € N. Then F’s are
pointwise bouneded as {y;} € £*° and by Lemma 2.1,

|Fi| = sup{ |Fi(z)| : |lzlla’ <1}
= sup{ \Zajaijzﬂ . 0(z, M) < 1}
= sup|laa’||n.

Now apply uniform boundedness principle to conclude (II).

Conversely, suppose (I) and (II) are true. Then for x € €57,

where p > 0 is such that ) | N (JE*J';‘J'LI) < 0o. Thus ) a;;z; converges
and if y; = Z_«; a;;xi, 1 € N, then {y;} € €*° by (II). Indeed,

||aa |, if 6(%,M) <1
) il < { M)||aa||n, ifd(E,M)>1

1> 1

cf. (2], p.299. Hence

| Az||co = sup |y;| < max{K, 5( M)K} < o0

1>1
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= ||A|| £ K, by Lemma 2.1.

Note 2.3 It is natural to ask in the above theorem whether we can

replace ¢ by a general sequence space A equipped with a suitable
linear topology. This is answered in the last part of this section, namely

Theorem 2.9. However, we make some preparation for proving this
result.

Let us begin with

Propostion 2.4 Let (A T) be a sequentially complete K —space such
that the Banach space M g continuously embedded in ), i.e. 25 )

ana the inclusion map from €)' to X is continuous. Then {f(e’)} e %

Proof : Since (M = pM anq ho! is an AK — BK space with {e*} as
a Schauder basis; for {¢'} c A and z — {zn} € €}, the series Y z;¢!
converges to z in £,'. Hence {f(e?)} ¢ €5 for all f e \*,

Propostion 2.5 Let (A, T) be a sequentially complete K—space such
that { f(e*)} € €% for each f € X*. Then ¢M c )

Proof : Let z = {z,} € M. Since z = 2 is1Tie’ in €M and {f(e)} e
(€')P = €% for each f € A*, the series 2_i>1 Ti€' converges in \ by
Theorem 1.2. Hence ¢M c ).

Combining the above propositions and the result mentioned after
Theorem 1.1, we conclude

Theorem 2.6 Let (\,T) be a Fréchet K —space. Then M c )\ iff
{f(e")} € & for each [ € A%,

For the final result of this sectlon, we now prove a variation of
Theorem 1.1, which is also of independent interest

Theorem 2.7 Let (), T') be a sequentially complete K —space with Dy
as the family of semi-norms generating the topology T; and A = (as;)
be an infinite matriz. If S is the topology generated by {p;}, {&:} and
{r.A:r € Dr} on )4, then (A4, S) is a sequentially complete K —space

ana A : (A, S) = (N T) is continuous. ( Here p;, q; are the same as
in Theorem 1.1).



Proof : (A4, S) is already a K —space. For proving sequential com-
pleteness of (A\4,.59), consider a Cauchy sequence {u"} in A\4. Then for
each 7 € N, {u?} is Cauchy in the field K and so for each ¢, let u = {u;}.
Further for € > 0, we can find np € N such that

k
qz-(u'” P 'U.m) = supkl Za,;j(u}‘ —— U?I)I <E

j=1
and
r. Au” —u™) = r(Au” — Au™™) <¢g, forall n,m > ne.
Thus
k
g;(u" — u) = supy| Zaij(u? —u;)| <¢e, forall n>mng (1)
i=1

and {Au"} is Cauchy in A. Since (A, T) is sequentially complete, there
exists z = {2} in A such that Au™ — z = Zj‘;l iUy — Z; 88 N — 00
for each 2 € N.

We now show that z; = )~ a;;u; for each i € N. Note that the

oo

series ) o~ aiju; is convergent for each 7 € N in view of (1). Also

o0 m o0
1Y agui =zl < supl Y ay(uy —uf) 4| aigul — 2l
. j=1 j=1

< e€+e=2

Hence 2; = ) -, a;u; and so Au = z. Consequently, u € A4 and

u™ — u in A4. This completes the proof.

Note 2.8 If S* is the topology on A4, generated by the family of semi-
norms {r.A : r € Dr}, then one can easily check that (A4, S*) is
sequentially complete if (A, T) is sequentially complete space and A is
a bijective map from A4 to A. However, if (A, T) is also metrizable,
then both the topologies S and S* are metrizable and in this case
S = S*. Further in this case the inductive topology 71 on A for which
the bijective map A : A4 — A, is continuous would coincide with the
original topology T" of A.



Finally. we prove

Theorem 2.9 Let A = (ai;) be an infinite matriz and (A,7T) be a
sequentially complete K —space. Consider the following conditions

(i) A€ (€, N
(i1) {f(a*)} € €% for all f € X*, where a* = {ai;}32,

Then (1) = (1) if €X' is continuously embedded in A; and (i1) = (2) if
A is a bijective map from Mg to A and (A, T') is also metrizable.

Proof : (i) = (i) Let A € (¢2,)) then €)Y C A4. So by us-
ing Proposition 2.4 {g(e*)} € (€¥)? = £% for all g € (Aa)*. Now
A : ds — \is continuous and if f € A* then fo A € (A4)* so we have
foA(e') = g(a*) € €% for all f € A~

(i7) = (7) Let us assume that {f(a*)} € €% for all f € A\*. For prov-
ing A € (M, )\) it suffices to prove that {g(e*)} € €% for all g € (Aa)*.
So, consider ¢ € (A4)* and define f : A — K such that fo A = g.
As A is bijective, f is well-defined and is continuous in view of the
above note; Indeed, T" = T} and g is continuous. Hence by hypothesis,

{g(a®)} = {f(a*)} € £%. This completes the proof.

The above result, yields

Corollary 2.10 Let (A\.T) be a Fréchet K—spaces and A = (asj) be a
bijective map from Aa to A. Then A is a matriz transformation from
M to X iff {f(a®)} € € for all f € X*, where a* is the i** row of the
matriz A.

3  Multipliers Between Modular Sequence
Spaces

In this section, we identily the collection of multipliers or diagonal maps
between two modular sequence spaces as a modular sequence space. 1o
begin with, we have

Propostion 3.1 A sequence o = {o,} is a multiplier between ¢{M,}
and ¢{N,} iff it defines a continuous diagonal operator T, to ¢{My,}
and ¢{N,}, To(z) = {zhon} = 07



Proof : If o is a multiplier between ¢{M,} and ¢{N,}, then T, is
continuous from the closed graph theorem. Converse is immediate.

Note 3.2 We can thus identify multipliers with diagonal operators be-

tween €{M,} and ¢{N,}. If D(¢{M,},¢{N,}) denotes the space of
all multipliers between €{My,} and ¢{N,}, it becomes a Banach space
with the usual operator norm ||.|lo, defined by |lo|lo = sup{|lox|n,)

|zl ar,) < 1}

Next, we have

Propostion 3.3 Forx € ¢{M,}. we have

() le”{Mn} < 2:3:1 My (|zn]) if ”xu{Mn} > 1;

(1) D ney Mu(lznl) < l2lliany of 12l (aray < 1.

Proof : (i) If “féll{Mn} > 1, choose B > 0 such that ||z||a)} > 8 > 1.
Hence anM (J—“l) > 1and so B < )5, Mua(|za]) = |zl (a,) <

(ii) Let ||| {am,3 < 1. Choose o > 0 such that Hxll{MH} < a < l.

Then En)lM (Z2) < 1 and so an My (|zn]) < aZn>1M (m" )
a =) s Ma(|zal) < [zl (m,)

IA

Corresponding to two sequences { M,,} and {N,,} of Orlicz functions,
a new sequence {F,} of Orlicz functions is defined as

Pr(s) = max(0, supg<s<1{ Nn(st) — Myn(t)}),s > 0.

As mentioned in the beginning of this section we now proceed to show

that the space D(¢{M,},¢{N,}) of multipliers between ¢{M,} and
¢{N,} coincides with the modular sequence spaces ¢{P,}. Let us first
prove

Propostion 3.4 ¢{F,} C D(¢{M,},¢{N,}) and for o € ¢{P,}, z €
E{Mﬂ};

loz||(n.y < 2llollipay Izl (a1,
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Proof : Let o ¢ ¢{F.} and x € ¢{M,}. Choose p,r such that p >
loll¢p.ys ™ > llzll{ar,}- Then

ZP(IUﬂl) <1 and ZM (‘“L'”'l) < 1.

n>1 n>1

Hence for the sequences {G,} = {2} and {#,} = {%2}, we have

> Moy <

n>1

Consequently, ox € ¢{N,} and |oz|(n,) < 2pr. Thus lox||(n,y <

2||lo|[(payllz|l{az,} for all o € €{P,} and z € ¢{M,}. This completes the
proof.

Finally, we prove

Theorem 3.5 For any two sequences of Orlicz functions {M,} and
{Nn} with M,(1) = 1 = N,(1) for all n > 1, the sequence spaces
D(¢{M,},¢{N,}) and €{P,} are the same. Further the topologies gen-
erated by the norms ||.|lo and ||.||(p,} on these spaces are equivalent.

Proof : In view of Proposition 3.4, it suffices to prove that
D(¢{ My },¢{Nyn}) C ¢{F,}

and
loll(p.y £ 2 ||ollo for all o € D(¢{M,},¢{N,}).

Since M,(1) = 1 = N,(1) for all n € N, we have ||¢"||a,} = 1,
le”|l{n,} = 1. Now consider o € D(¢{M,}, ¢{N,}) such that ||o]lo = 3.
Then 1

oa] = lloe™ () < llorllolle™ ] gasy = 5.

If P.(lon|) # 0, by definition of P, there exists z, € [0,1],n > 1 such
that

Pa(lal) = Na(lonln) — Ma(@n)

Then now

g n ]' T 1
lonzne™ iy < lollollane ) = llaneas) < 3
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n T 1
= ZNJ'“O'nlxne ) = Na(lon|zn) < ||lonzne™|| <

. 2
721

by Proposition 3.3 (ii). Hence for each n € N, for which P.(|ox|) # 0,

we get

1
My (zn) = Nup(lon|zn) — Pa(lon]) < 2

We now prove by induction that Zﬁzl M, (x,) < -% for k= 1,2,3,....

Clearly, it is true for k = 1. Consider the sequence £* = Z'f rne"™ and
assume that our claim is true upto k. Then

k+1 k 1 1
Z A/In(xn) —— Z Mn(wn) -+ Mn—i—l(xn—l—l) S ‘2' + 5 =ik

n=1 1

Hence [|€*1||(ar,y < 1 and so

lo&* T < llollollE* limny < =

k41 k+1 - 1
= ZMn(l"n) < ZNn(lgn‘$n) < le€" llinay < 9
n=1 n=1

by Proposition 3.3 (ii) . Consequently, > M,(|z,|) < 1. Thus z €
¢{M,} and ||z| {a,} < 1. Also, using Proposition 3.3 (ii) and ||o|lo = —%,
we get

Y Nu(loalzn) < llozlvay < slellany < 5
Hence Y, P,(|on|) £ 5 and so o € ¢{P,} and |o||(p,} < 1.

Now let n € D(¢{M,},¢{N,}) be an arbitrary multiplier. Consider
o = £ where p = 2||pllo, then o € ¢{F,} and |o|(p,) = IEN¢pay < 1,
hence u € ¢{P,} and |[ul/(p,} < 2|plo-
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