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1. Introduction

A semiring is a nonempty set R on which operations of addition and
multiplication have been defined such that (i) (R; +) is a commutative
monoid with identity element 0; (ii) (R;-) is a monoid with identity
element 1g; (iii) Multiplication distributes over addition from either
side; (iv) a-0=0=0-a; foralla € R and (v) 1r = 0. A multiplicative
Euclidean norm é on Ris a function d : R — N satistying the conditions:
(1) 0 (r) = Oifand only if r = 0, (ii)d (rs) = § (r)d (s)forall 7, s € R and
(ifi) If r and s are elements of R with s # 0, then there exist elements
u and v of R such that r = us + v with § (v) < 6 (s). Obviously the
maps 0 : n+—> n and d : n — n? are multiplicative Euclidean norms on
the semiring N.

If R has a multiplicative Euclidean norm, then it follows from (i)
and (ii) that d (1g) = 1 = §(r) for all units r in R and R is entire.
TI'wo elements 7, s € R are said to be associates of each other if their ¢
values are same; i.e., § (r) = 6 (s). Every unit in R is an associate of
lg. An element r of R is said to be prime if 7 is not an associate of
1r and whenever r = st, then one of r and ¢ is an associate of 1 r. We
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prove that nonzero nonassociates of 1r can be written as the product
of a finite number of prime elements in R. This factorization is unique
it 0 satisfies an additional property (iv) § (r +s) > 6 (r) + d (s) for all
r,s € R and R is yoked (for r,s € R there exists t € R such that
r+t=sors+t=r).

It is proved in (1] that every subtractive ideal (r+s,s € I andr € R
implies that r € I') of a semiring R with multiplicative Euclidean norm
0 defined on it is principal. We give an example (Example 2.6) to show
that the converse is not true in general. However if R is yoked and a
multiplicative Euclidean norm ¢ has an additional property (iv), then
converse also holds. Using this we prove that ideals generated by prime
elements of R are precisely the maximal subtractive ideals of R.

A noetherian semimodule over a semiring is defined in [1]. Here
noetherian semimodules mean left noetherian semimodules. Further
noetherian semimodules are studied by Katsov et. al. [3] with the
restriction that all subsemimodules of the semimodules considered are
subtractive. More generally, we define a subtractive noetherian semi-
module considering the chains of subtractive subsemimodules of a semi-
module and prove that if M is subtractive noetherian, then both K

and M/K are subtractive noetherian, where K is a subtractive sub-
semimodule of M.

2. Multiplicative Euclidean Norms on a Semiring

A useful tool in the theory of semirings is R® = {a — b : a,b € R},
the ring of differences of R which exists when R is additively can-
cellative. In R®, we have a — b = ¢ — d if and only if there exist
r,v' € Rsuchthat a+r=c+ 1 and b+ 1 = d + r’. The set R2 be-
comes a ring under componentwise addition and multiplication given
by (@ —b)(c—d) = (ac+ bd) — (ad + bc). Clearly R® contains R by
way of embedding a — a — 0. The zero element of R® is a — a, denoted
by 0 and multiplicative identity is 1z.Throughout this section, we as-
sume that R is an additively cancellative commutative strict semiring
(@ + b= 0 implies a = 0-and b = 0) with multiplicative identity 1.

In this section, we repeatedly use a property of yoked semirings
observed in [5]; that is, for x,y € R eithery—z € Rorz —y € R.

Lemma 2.1. Let D (r) ={s € R :r € Rs} be the set of divisors of r
in K. Then we have

(a) r € D(r),
(b) if s € D (r) then D (s) C D (r),
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¢c) U(R)=D(1gr) CD(r) for all r € R,

d) D(r) € D(rs) for all s € R,

e) u € D(r)ND(s) givesu € D (ar + bs) for all a,b € R.

f) Forr€ R, D(r) C Dpa(r)={s€ R®:r e R3s}.

g) If R is a yoked semiring, then for r € R, we have Dga (r) N R =
D (r). .
(h) Let R has a multiplicative Euclidean norm ¢ and r, s € R be such
that D (r) = D (s). Then r is an associate of s.

(i) If r is prime and y € D (r), then y is an associate of 1 or .
Proof. (a)-(f) are obvious.

(8) Let w € Dpa (r) N R, then there exist 2,y € R such that r =
(x — y) u. Since R is yoked so either x—y € Rory—xz € R. fy—z € R

then —r = (y — z)u € R which is not possible, because R is strict.
Therefore z—y € R but then u € D (r) and hence Dga (r)NR = D (r).

(h) D(r) = D (s) implies s € D(r) and r € D (s). So there exist some
t,t' € R such that r = st and s = rt. Therefore r = st = r#/t which
gives 0 (t) = 1. Hence § (r) = 4 (s).

(i) Since y € D (r), there exists z € R such that r = 2y. As r is prime,
either x is an associate of 1 or y is an associate of 1. If z is an
associate of 1g, then d (r) = d (xy) = § (y) gives y is an associate of r.

Let A be any finite subset of a yoked semiring R, then there is an
element y € CD (A) =N{D (r) : r € A}, the set of common divisors of
A, which can be expressed as a linear combination of elements of A in
R2 and any two such elements are associated.

Lemma 2.2. If R is a yoked semiring having a multiplicative Euclidean
norm ¢ and A any finite subset of R, then there exists y € C'D (A) such
that D (y) = C'D (A). Further any two such elements are associated.

Proof. Let A = {a;,as,...,an}, define J = {\ja; + Xas + ... + A
Ai € R?)1 < i < m}. Then clearly J is an ideal of R®. Thus | =
J N R is a subtractive ideal of R by Lemma 3.2.(v) of [6] and hence
I is principal. Let I = (y) for y € I = J N R, so there exist \; €
R2 (1 <4< m) such that y = A\ja; + Xgay + ... + \na,,. Now each
a; € J N R =1, so there exists some x; € R such that a; = z;y which
implies that y € CD (A). Let u € CD (A), then u € D (a;) for all i and

which on using Lemma 2.1 gives u € Dga (A1a; + A2ag + ... + Amam) N
R = D (y). Hence D (y) = CD (A). The rest of the proof follows from
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Lemma 2.1.(h).

Lemma 2.3. Let R be a yoked semiring with multiplicative Euclidean

norm ¢ and 7,s,t € R such that r € D (st) and D (1g) = CD ({r, s}).
Then r € D (t).

Proof. Since D (1g) = CD ({r,s}), by Lemma 2.2 there exists y €
CD ({r,s}) of the type y = Ar+us; A, u € R® such that D (y) = D (1R)
and so there exists x € R such that 1z = 2y = zAr + zus. Now
r € D (st) so there exists z € R such that st = zr. Thus t = tlp =
t(xAr + zps) = (txdr + zpz)r = r'r with v’ = ta) + zuz € R2. Let
r'=a—>bfor a,b € R. Since R is yoked, eithera —be Rorb—a € R.
Ifb—a € R, then —t = —r'r € R which is a contradiction as R is strict.
Hence " =a—b € R gives r € D (¢).

Lemma 2.4. Let r be a prime element of a yoked semiring R having
a multiplicative Euclidean norm § satisfying property (iv).
(a) The function ¢ is one-one.

(b) Let s,y € R with D (y) =CD ({r,s}), theny =1gory=r.
(¢) For s € R, either r € D (s) or CD ({r,s}) = D (1g).
(d) Let s,t € R such that r € D (st), then r € D (s) or r € D ().

Proof. (a) Let r,s € R be such that § (r) = § (s). Now R is yoked so
either r —s € Ror s —r € R. By symmetry we assume that r —s € R,
then r = r —s+s. Therefore 6 (r) =d(r—s+s)>6(r—s)+6(s) =
0(r—s)+ d(r). Thus by property (i), § (r —s) = 0 implying that
P 8

(b) Follows directly using Lemma 2.1.(i) as § is one-one.

(¢) By (b) either CD ({r,s}) = D(1g) or CD ({r,s}) = D(r). If
CD ({r,s}) = D (r) then r € D (s).

(d) By (c) either r € D (s) or CD ({r,s}) = D (13). If CD({r,s}) =
D (1g), then using Lemma 2.3 we get r € D (¢).

Now we prove the Unique Factorization Theorem for semirings.

Theorem 2.5. Let R be a semiring with multiplicative Euclidean norm
& defined on it.
(a) Every nonzero element of R is either an associate of 1 or it can be
written as the product of a finite number of prime elements in R.
(b) If § satisfies property (iv) and R is yoked, then the prime factoriza-
tion given in part (a) is unique.
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Proof. (a) Let r be a nonzero element in R. We prove this by induc-
tion on § (r). The result is obvious if § (r) = 1 = d (1g). So suppose
that d (r) > 1 and r = st with § (s) > 1 and d () > 1. Then the result
follows by induction hypothesis as d (s) < d(s)d(t) = d (st) = 4 (r)
and d (t) < d(s)d(t) =46 (r).

(b) Let r be a nonzero nonassociate element of R and r = pyp;...pp =
q1G2...gm Where p;’s and ¢;’s are prime elements in R. Without loss
of generality we suppose that m < n. Then ¢ = D (p1p3...pn) so by
Lemma 2.4.(d) ¢1 € D (p;) for some 7,1 < i < n. By renumbering
p;’s take ¢ = 1. So by definition of D (p;), p1 = sq; for some s € R.
Hence 6 (p;) = 6 (s)d (q1) . Since p;,q; are primes and 4 is one-one,
so 8 = lr and hence p; = ¢;. Now pi1ps...pn = 142...gm SO that
6 (p1) 6 (pa...pn) = 6(qu1) 90 (q2...qm) implying 0 (p2...pn) = 0 (g2...Gm)-
Since d is one-one, we get ps...pn = @o...gm. Repeating the above pro-
cess for m — 1 times, we get p; = q; for 1 = 1, 2,...m. Suppose m < n,

then p,.41...p, = 1p which is not possible as § is one-one and p;’s are
prime elements in K. Hence n = m.

Let 0 be a multiplicative Euclidean norm defined on R, then every
subtractive ideal in R is principal [1]. The converse is not true, in
general (as observed in the following example).

Example 2.6. Let R = (NU {—oc0},max,+) with § : R — N given
by §(—c0) =0 and §(¢) = ¢ fori € Nand 1 < ¢ € N. Then ¢ is
a multiplicative Euclidean norm on R. Let A be a principal ideal of

R generated by r(r > 0). Then A is not a subtractive ideal of R as
max(r,0) =r € A but 0 ¢ A. |

Now we prove converse for a yoked semiring with multiplicative Eu-
clidean norm on it that satisfies property (iv).

Lemma 2.7. If R is yoked having a multiplicative Euclidean norm 9

satisfying property (iv), then an ideal in R is a subtractive ideal if and
only if it is princial.

Proof. Let A = (r) be an ideal of R with ¢ # 0 and A # R.
Let za+vy € A, y € R. Then there exists some z € R such that
za + y = za. Therefore é (za) = d (xa+1y) 2> d (xa) + 4 (y) implying
that § (za) > 6 (za). So by property (ii), d (2) > d (z). Now 2,z € R
and R is yoked so either z—x € Rorx—2 € R. If t — 2 € R then
=2+ (x—2z) impliesthat § () =d(z+ (x—2)) 2 (2) + 4 (x — 2).
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Thus d (z) > 4 (2) which is not possible. Therefore 2 —2 € R, but then
y=(z2—1x)a € A. Hence A is a subtractive ideal of R.

Note. As an application of the above result it can be seen that the

subtractive ideals of semiring N are precisely those which are generated
by the non-negative integers.

Definition 2.8. An ideal A (# R) of R is said to be a maximal sub-
tractive ideal if A is a subtractive ideal of R and whenever there is

subtractive ideal B of R such that A C B C R, then either B = A or
B=R. -

Now we prove that ideals generated by prime elements of R are pre-
cisely the maximal subtractive ideals of R, if R is yoked and § satisfies

property (iv).

Lemma 2.9. Let R be a yoked semiring having a multiplicative Eu-
clidean norm ¢ satisfying (iv). Then an ideal of R is a maximal sub-
tractive ideal if and only if it is generated by a prime element of R.

Proof. Let A = (r) be a maximal subtractive ideal of R. Suppose
r = st for some s,t € R with 6(s) # 1 and 6 (t) # 1. Let B = (s).
Then B is a subtractive ideal of R containing A. If B = R, then
d (s) = 1 which is not possible. If B = A, then () = 1 which is not
possible. Hence we have a contradiction to the maximality of subtrac-
tive ideal A. Therefore must r be prime.

Conversely suppose that A = (r), where r is a prime element of R.
Then by Lemma 2.7, A is a subtractive ideal of R. Let AC B C R
with B a subtractive ideal of K. By Lemma 2.7, B = (s) for some
se€ R. Nowr € A C B = (s) so there exists some ¢t € R such that
r = ts. Since r is prime and ¢ is one-one, either s = lp ort = 1p
implying either B = R or B = A.

3. Subtractive Noetherian Semimodules

' A subsemimodule (nonempty subset) A of a semimodule M over a
semiring R is strong if and only if a + b € A implies that a,b € A.
Clearly, every strong subset (subsemimodule) of a semimodule M is
subtractive.

An R-semimodule M is said to be subtractive(strong) noetherian if
every ascending chain of subtractive(strong) subsemimodules of M is

stationary after a finite number steps. Clearly M is strong noetherian
if it is subtractive noetherian.
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We observe that every ascending chain of subtractive ideals of a
semiring R with a multiplicative Euclidean norm becomes stationary

after a finite number of steps and hence R becomes subtractive noethe-
rian.

Lemma 3.1. Let R be a semiring having multiplicative Euclidean
norm §. Let {I, : n = 1,2,...} be a chain of subtractive ideals of R i.e

I, C I, C .... Then there exists an integer Ny such that I, = In, for
all & > Ng.

Proof. We know that every subtractive ideal of a semiring R having
a multiplicative Euclidean norm is principal, so let I,, = (a,) for some

a, € R. Let I = U I,. Since I C I, for all k < [ therefore I is an ideal

of R. Next we show that I is a subtractive ideal of K. For this, let
a,a+b € I, then there exist integers k.l such that a € I, and a+0b € 1.
Now we have either I, C I; or I; C I but then either a,a + b € I; or
a,a + b € I,. As both I, and I; are subtractive ideals therefore either
bel, Clorbe I, CI. Sol is a subtractive ideal of R and by the

result stated earlier there exists some a € R such that I = (a). Now
a €] = U I so there exists some integer Ny such that a € Iy,. But
then [ = INO = [ for all &k > N,.

The ascending chain condition and maximal condition on subtrac-
tive subsemimodules are connected to each other as observed below:

Proposition 3.2. An R-semimodule M is subtractive noetherian if

and only if any collection of subtractive subsemimodules of M has a
maximal element.

Proof. First suppose that M is subtractive noetherian R-semimodule.
Let 7 = {Ax}xea be a collection of subtractive subsemimodules of M.
Define a inclusion relation on 7. Let w C 7 be any chain. Then w
becomes stationary after a finite number of steps. Therefore w has an
upper bound in 7. But then by Zorn’s Lemma 7 has a maximal element.

Conversely, let A; C A, C ... C A, C ... be an ascending chain
of subtractive ideals of M. Then {A,}.en has a maximal element say
A. Then there exists some ng € N such that A = A,,. But then
A, = A,, = A for all n > ng. Hence M is subtractive noetherian.

In the following proposition we show that if every subtractive sub-
semimodule of a semimodule M is finitely generated then the above
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two equivalent conditions hold.

Proposition 3.3. Let M be an R-semimodule having every subtractive
subsemimodule finitely generated. Then M is subtractive noetherian.

Proof. Let A; C A, C ... C A, C ... be an ascending chain of

subtractive subsemimodules of M and A = UNA“‘ Clearly A is sub-
neciN

tractive subsemimodule of M. So there exist a;,as,..,a,, € M such

that A = Ra; + Ray + ... + Ra,,. Now a; € A = gNA” so there is some

n; € Ng such that a; € A,, for all i = 1,2,..,m. By renumbering these
n;’s assume that A,, C A,, C ... C A, . Therefore a;,as, .., am € > Ny

But then A = A,, so for A; = A all 1 > n,,. Hence M is subtractive
noetherian.

For any subsemimodule A of an R-semimodule M we have an R-
congruence relation =4 on M, known as the Bourne relation, by set-

ting b =4 bp if and only if there exist elements a,ay € A such that
b+ a = by + ap and M /A denotes the factor R-semimodule M 158y,

Proposition 3.4. Let K be a fixed subsemimodule of the R-semimodule
M and A a subtractive subsemimodule of M such that K C A C M.

Then A/K is a subtractive subsemimodule of M /K. Furthermore, if
B is a subtractive subsemimodule of M/K then there is one and only

one subtractive subsemimodule A of M such that B = A/K.

Proof. Now A/K = {z : x € A} C M/K. Let Z,7 € A/K then
T+yY=x+y € A/K and forr € R we have rT =Tz € A/K as A
is a semimodule of M. Therefore A/K is a subsemimodule of M/K.
Let 7,7+ 7 € A/K for some J € M/K. Then there exists some z € A
such that x +y =T+ 3y = Z € A/K. Therefore there exist n,n; € K
such that t +y+n=2+4+n;. Nowz +n,z2+n; € A and A is sub-
tractive so y € A and hence y € A/K proves that A/K is a subtractive
subsemimodule of M/K.

- Next suppose that B is a subtractive subsemimodule of M /K. De-
fine A={reM:Te€ B}. Forre Kwehave7=0c B=2z€ A
so K C A. Let x,y € A. Thenz,ye Bgivesx+y=T+7 € B and
therefore x,y € A. Also for r € R we have 7T = rZ € B implying that
rt € A. Let z,0+y€ Aforsomeye M. ThenZT,z +ty=T+7y € B
gives ¥ € B and therefore y € A. Hence A is a subtractive sub-
semimodule of M. Clearly, by defining of A we have B = A/K. If
A; is a subtractive subsemimodule of M such that B = A, /K then
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T € A== 7T € A/K so there exists some y € Ay such that T = 3. But
then x +n = y + n,; for some n,n; € K. Now r+n,n € A; and A,

Is a subtractive so z € A; and therefore A C A;. Similarly we have
A; C A. Hence A = A,.

Theorem 3.5. Let K be a subtractive subsemimodule of an R-semimodule

M. If M is subtractive noetherian then both K and M /K are subtrac-
tive noetherian.

Proof. First note that if K is a subtractive subsemimodule of a R-

semimodule M and A is a subtractive subsemimodule of K , then A is a
subtractive subsemimodule of M. kor, let z,z+y € A for some y € M.
Then z,z+y € K and K is a subtractive subsemimodule of M implies
that y € K. But then y € A as A is a subtractive subsemimodule of
K.

Now M is subtractive noetherian and K is a subtractive subsemi-
module of M therefore any chain A, C Ay, C...C A, C... of subtrac-

tive subsemimodules of K is a chain of subtractive subsemimodules
of M. So it becomes stationary after a finite number of steps show-

ing that K is subtractive noetherian. By the Proposition 3.4 there is
one-to-one correspondence between the subtractive subsemimodules of
M and those of M/K. Also this correspondence preserves the inclu-

sion relation therefore M/K must be subtractive noetherian as M is
subtractive noetherian.

For a partial converse of the above result, we need

Lemma 3.6. Let A, B, K be subsemimodule of an R-semimodule M.

IfAC_iB,A+K=B+K,AﬂK=BﬂKandBasubtractivethen
A = B.

Proof. Let be B. Thenb=b4+0€c B+ K = A + K so there exist
some a € A and k € K such that b = q + k. Nowae ACB,be B
and B a subtractive therefore k € B. But then k € BN K — ANK
implying that k € A. Henceb=a+ ke A gives A = B.

Lemma 3.7. Let {A;}ica be a family of strong subsemimodules of a.
semimodule M over a semiring R. Then

(i) _EJAA,- is a strong subsemimodule of M; if M is yoked:
(ll) U Ai = ZA.,;; if M is yoked.

Proof. (i) First we prove that _gA/h Is a subsemimodule of M, if M
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is yoked. Let a,b € _‘LEJAA;-. Then a € A; and b € A; for some i,j € A.

Since M is yoked, there exists an element r € M such that either

a+r=>0borb+r=a Suppose a+r=>b¢€ A, then and the strong

character of A; will yield a € A; and r € A;. Hencea+b € A; C gAA

It b+ r=athen weget a+be A; C gAA Obviously for r € R and

a € U A;, we have ra,ar € U A;. Clearly U A; is strong as each A; is
1€EA 1€EA i€EA

strong.

(ii) Let a € ) A;. Then a = ) x; where z; € A;. This implies
1€EA 1€EA

x; € gAA for all 7 and since gAA i1s a subsemimodule of M; a =
1 7

Sx; € UA;. Hence Y A; C U A;. Converse follows from the fact
i€EA €A i€EA €A

that A; C ) A; for all ¢ and therefore U A; = ) A;.
€A 1€A €A

Theorem 3.8. If K is a strong subsemimodule of a yoked R-semimodule

M such that both K and M /K are subtractive noetherian, then M is
strong noetherian.

Proof. Let A, C A, C ... C A,, C ... be an ascending chain of strong
subsemimodules of M. Then ANK CANKC...CA,NK C ...is
a chain of strong (and hence subtractive) subsemimodules of K. More-
over by Lemma 3.7, M C —ﬁﬁ SRR —ﬂiﬁ C ... is a chain
of subtractive subsemlmodules of M/K. Since both K and M/K
are subtractive noetherian so there exist some N1, N ne € N such that

AnNK = A, NK for all m > n, a,ncil—mﬂ —zk—forallm>n2

Let n = max{n;,nya} then A,, N K = A, ﬂK and A"”LK A”:K for all

m > 1. Now iﬁf 2.4 ——'lﬂ{— for all m > n implies that An+K = A+ K
for all m > 1 so by the Lemma 3.6, A = Ay for all m > n. Hence M
is strong noetherian.

References

1. J. S. Golan, Semirings and Their Applications, Kluwer, Dordrecht-
Boston-London (1999).

2. 1. N. Herstein, Topics in Algebra, Wiley Edition (2009).
3. Y. Katsov, T. G. Nam and N. X. Tuyen, On Subtractive Semisimple
Semirings, Algebra Colloquium, 16:3 (2009), 415-426.

4. D. G. Northcott, Lessons in rings, modules and multiplicities, Cam_—_-
bridge University Press (1968).

24



5. R. P. Sharma and T. R. Sharma, G-prime ideals in semirings and
their skew group semirings, Comm. in Algebra, 34 (2006), 4459-4465.
6. R. P. Sharma and Rosy Joseph, Prime Ideals of Group Graded

Semirings and Their Smash Products, Vietnam J. Math., 36:4 (2008),
415-426.

25



