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ABSTRACT

The purpose of the present paper is to introduce notions of curvature

collineations and various kinds of motions in a recurrent Hermitian space. The

necessary and sufficient conditions for the curvature collineations in recurrent
Hermitian space will be investigated. Further, relations between curvature collineations

and other symmetries will be established and several theorems will be proved.

1. FUNDAMENTAL FORMULAE
Katzin, Levine and Davis [1] have defined and studied curvature collineations: a
fundamental symmetry property of space time of general relativity defined by vanishing

Lie-derivative of Riemannian curvature tensor. Later, Singh and Singh [3] introduced

the notions of affine motion and curvature collineations in a recurrent Riemannian space
and several properties of this space have been studied. Further, Singh and Kothari [4]
~have introduced the notions of curvature collineation and various kinds of motions in a
recurrent — Tachibana space. The relations between curvature collineations and other
symmetries have been established by them and several theorems have been derived.

Here, We shall firstly define the Hermitian space and give some preliminary
formulae, which are pre-requisites to understand such a space.

Let us assume, that there 1s a self-conjugate positive definite Riemannian metric
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ds* = g;; dz' dz' ¥ .. (1.1)
in the complex manifold C, of dimension n.

[f the fundamental metric tensor g; is hybrid, then we evoke such a metric a
‘Hermite metric’ and the complex manifold equipped with this metric is said to be a
Hermitian manifold (Yano and Bochner [6]), which will be denoted by H,,

Since the fundamental tensor g; is hybrid, therefore its contravariant

components will satisfy the relation:

0 g
gl = e (1.2)
g 0
or
F By g = gl M 5.

where F', is an almost complex structure.

Moreover, a Hermitian space H, is said to be a recurrent Hermitian space, if its

curvature tensor field thjk satisfies the condition: (Lal and Singh [2]) :
Rhijk,a - Aa Rhijk =0, | ....(1.4)
where A, 1S a non-zero recurrence vector field and

def '
R = 0 {i'i} - 3 (i) + 6™ '3} — ™) '}
(6; = 0/8%)).
We shall denote such a space by H*n'—- space.

In the present paper, we are concerned with a symmetry property of space time,

which we call curvature collineation (CC).
A H, - space 1s said to admit a CC, if there exists an infinitesimal

transformation:

X' =x+Vv (x) 8t oo (1.5)
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where ot is a positive infinitesimal parameter.

The transformation (1.5) is called an affine motion iff

£, {i'k} =0, ... (1.6)
where £, denotes the Lie-derivative (Yano [8]) with respect to the vector space v' of
transformation (1.5). .

Clearly, the investigation of the symmetry property, which is

£, R" =0, .. (1.7)
1s strongly motivated by all important roles of the curvature tensor field Rhijk in the
general theory of relativity.

Throughout this paper, we need to refer to the equations describing motions,
conformal motions, affine motions, affine collineations, projective collineations,
homothetic collineations and conformal collineations.

We, therefore, need to outline a symmetry of these well known space time
symmetries.

MOTION (M) : A H', — space is said to admit a M, if there exists a killing
vector V', such that

hi; = £y g = Vi, j + vj,i = 0. ...(1.8)

AFFINE COLLINEATIONS (AC): AH, - space 1s said to admit an AC, if

there exists a vector \fi, such that
£, 551 =V i+ VO RN mi . =% g (hy,  + hy, i — hyj,)) =0, ek Lot )
where {;*} is the christoffel symbol of the second kind.

Alternatively, the necessary and sufficient condition (1.9) for an AC may be

expressed in the form:

hjj,x = 0. senik b5 1 0)
Obviously, every M is an AC. We use the terminology proper AC (prop AC) to denote
those AC, which are not M.
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PROJECTIVE COLLINEATION (PC): A H', — space is said to admit a PC, if there

exists a vector v;, such that

£,k =0, _ (111

where the projective connection
= §' i — (D) (8 (" + 8k {n'i})

Alternatively, we may express (1.6) in the form:

£, {'k} =98 W,k + 8% Wy ... (1.12)
where

v, = (1) VT ... (1.13)

It follows from (1.12) that for a PC, we get

hij,x = 28i Wk T+ ik Vsj T &ji Wi ... (1.14)

In addition, we find that for every PC, we have

£, Wi =0, oo (1.15)
where W'y is Weyl projective curvature defined as follows:

Wi = Rl — (n+1)" (8 Ry - 8'x Ry) ... (1.16)

By observation, every AC is a PC (i.e., a PC with yx = 0).

We shall use the terminology proper PC (prop. PC) to denote those PC, which
are not AC.

CONFORMAL MOTION (Conf. M): A H .- space is said to admit a

conformal mo'tion, i.e. conf. M, if there exists a vector, such that

£,(g"gij)=0, . (117)
Where

g=ij-

Equivalently, we have

hij =2 p g, ... (1.18)
where p is a scalar expressible in the form:

o=n" v k. ... (1.19)
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It follows that every conf, M must satisfy

£ {i'k } = 8 o+ 8% pyj — i 8™ pomy _ . (1.20)
It can also be shown that every conf. M satisfies
£, Kl =0,

where the conformal connection Kijk 1s formed with the relative tensor (g'" gii) in the

same manner as the Christoffel symbol {;'\} is constructed with the metric tensor gj;.
Alternatively, K'j may be expressible in the form:
Kic=§' =0 @ {m ™} 8k {m™}} — gik g™ (h" m}).
We use the concept proper conf. M with p # constant.
HOMOTHETIC MOTION (HM): A H', — space is said to admit, HM. if
there exists a vector v, such that (1.18) holds with p a non-zero constant.
CONFORMAL COLLINEATIONS (conf. C): A H', — space is said to admit

a conf. C., if there exists a vector for which (1.20) holds.

It follows that every conf. M. is a conf. C, but the converse is not necessarily

true. It can be shown that the necessary and sufficient condition (1.20) for a

conf. C may be expressed in the equivalent form:

hij,k=2P,kgij .....(1.21)
and that every conf. C must satisfy
£, Chy =0, s (1.22)

where the conformal curvature tensor C"k is defined by
Cijk = RV + (0-2)" (8% Rix - 8% Ry + g RY - g R%)
+R[(n-1) (n-2)]" (8" g - 8" g) e (1.23)

We define the Ricci tensor by R;; = R", and the scalar curvature R = R} = R; g".

2. NECESSARY AND SUFFICIENT CONDITIONS FOR CURVATURE
COLLINEATIONS IN A H', - SPACE

The infinitesimal transformation:
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x' =x'+ v (x) &, 0
where 8t is positive infinitesimal, defines a curvature collineation (CC), if the curvature
tensor of H , — space admits a vector field V' (x), such that

£, Cni=0. ..(2.2)

In general the solution of (2.2) consists of a set of vectors vi(a) ,o=1,2,....,T1,
which define an r-parameter invariance group. However, in this paper, we shall not
investigate the group property of CC.

We have the following:
£, Rkjhi = Rkjhi,m V™ + RE i v+ Rkjmi Vo ¥ Rkjhm vi— R%ni V'om. ...(2.3)
By the use of covariant differentiation, we get
£, thhi = Rkjhi,m v™ + R Ve F Rkjmi v+ Rkjhm v, — R%ni T ...(2.4)

If we introduce the Bianchi and Ricci identities and use (1.9), we find that (2.4)

can be expressed in the form:

£ RYni= (& {i* i) n— (& {5} .-(2.5)
and
£, R5n =Y ™ [(imsj + Nimjsi — Bijsm )sh — (Nhmsj + Nimjsh — Dby m {2.0)
By substitution of £.Rn as given by (2.6) into (2.2) and multiplying the
resulting equaion by gy to lower the index k, we get, the following theorem.

Theorem 2.1 : A necessary and sufficient condition for a H', — space to admit a
CC is that there exists a transformation of the form (2.1), such that the vector v

satisfies:

(himsj + Nmsi — Nijsm)s 1 — (Bhmyj + Nimjsh — biniim)si = 0 el B l)

We may express (2.7) in an equivalent, but simpler form, by returning to (2.2)
and substituting (2.5) into (2.2) and using the first expression for £,4; '«} given by (1.9)
alongwith the Ricci identity to obtain

(Vi: mj T anji " vi:jtﬂ):h Y (Vh,mj + Vmajh 2 Vh:jm): 1 = 0- o (2.8)
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Although(2.8) is a simpler equation than (2.7), we find (2.7) to be more useful for most

of our considerations.

From (2.2), we observe, by contracting on the indices k and 1, that every CC,
vector V' satisfies: '

£v Rjn = 0. perk )

In general, if a H ,- space admits a vector v' such that (2.9) holds, we say that
the H', — space admits “Ricci-Collineation” (RC).

Thus, we have the following:

Theorem 2.2: Ina H', - space, every CC 1s an RC.

In (2.7), if we interchange the indices j and m and add the resulting equation to
(2.7), we get

Theorem 2.3 : A necessary condition for a transformation of the form (2.1) to

define CC is that
Bim,ih — hym,hi = 0. ... (2.10)
It 1s of interest to note that (2.10) could also be obtained by starting with
gia R'jkm + gja R%m = 0. s (2.11)
Taking the Lie-derivative of (2.11), it follows that if (2.2) holds, we have
hia R%km + hjzs R%m =0, sl 2)

which by means of the Ricci identity reduces to (2.1 0).
' The necessary condition (2.10) of a CC leads directly to an identity that has been
of special interest in the formulation of the conservation laws of general relativity.

In particular, if the conditio (2.10) is multiplied by g"? gi* g™ where g = ;;, we
get .

(g (v' =V, D) = {[g" (v} = V)1, }i = 0, voef2.13)
which is covariant identity.

Since, this tensor expression is obviously a vanishing identity for all v, it

follows that this necessary condition for a CC places no restriction on V',
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3. RELATIONS BETWEEN CC AND OTHER SYMMETRIES

From the condition (1.8) ofa M 1n a H', — space, it is immediate that we may
state the following:

Theorem 3.1 : In a H ;- space, every M is a CC.

Similarly, from the condition (1.9) of an AC, it follows that we may state the

following: _
Theorem 3.2 : Ina H ,, — space, every AC is a CC.
Also, it follows immediately from the definition of HM that from (1.18), (1.10)

is satisfied and hence as a consequence of theorem (3.2), we state the following:

Theorem 3.3 : Ina H 1 space every HM is a CC.

From Yano [7] (p. 167), it is known that if a transformation 1s both a conf. M
and PC, then it is a HM. Hence, we have the following as a consequence of theorem
(3.3):

Theorem 3.4 : In a H ,-space, if a transformation in both a conf. M and a Ly

then 1t 1s a CC.

Next, let us consider under what conditions a PC is a CC.

We, therefore, require that £, {; '} be given by (1.7) and substitute for £{; "} in
(2.5), if we then demand that
£, R =0,
we have
5", W,ih - 5" W,ii = 0. 31D
We set k= 1 and sum in (3.1) to get v, = 0. We call a projective collineation
with y,;; = 0, a special projective collineation (SPC). It follows immediately by a |

covariant differentiation of (1.12) that an SPC satisties

£, {5} =0. 1 Spy
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In general, ifa H ,, — space admits a vector V', such that (3.2) holds, we say that

the H , — space admits a special curvature collination (SCC). Thus, every SPC is a SCC.

We summarise the above by stating the following:
Theorem 3.5 : The necessary and sufficient condition for a PC to be a CC is that
W,ih = 0, ....(3.3)
where
Wi = (1) Vi,
1.e., a PC must be an Si’C.
Corollary 3.1. If a H',, — space admits a SPC, then it admits a parallel field of

vectors
yi=(n+1)" v,
where v' defines the SPC.
We, now, turn our attention to the condition for a conf. C to be a CC. We thus,

assume that the H', — space admits a conf. C, te., (1.21) holds. Now, we use (1.20) to

evaluate £, {; kj}, in (2.5) and require that £, {;" i+ = 0. We immediately obtain

km

5", Psih - 5% Psji— Lij & P> mj T Lh gkm P.mi = 0. (s k)

We set k =1 and sum in (3.4) to obtain

(0-2) pyin + & 8™ P, mi = 0. ....(3.5)
In (3.5), we multiply by g and sum to obtain
g" p,in=0. ...(3.6)

It follows from (3.5) and (3.6) that p,;; = 0. We call a conformal collineation with
P,ii = 0 a special conformal collineation (S conf. C). It follows immediately by covariant
differentiation of (1.15) that an S conf. C satisfies (3.2). Thus, every S conf. C is a SCC.

We, now, summarise the above by stating the following :

Theorem 3.6: The necessary and sufficient condition for a conf. C to be a CC is

that
P,ijh = 0, ... (3.7)
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where
. — —l i .
pﬁ_]h —n Vv sijh »
i.e., the conf. C must be a S conf. C.

Corollary 3.2: If a H',-space, admits a S conf. C, then it admits a parallel vector

field

— =l 3
pj_n Vaijn

where V' defines the S conf. C.
We define special conformal motion (S conf. M) as a conf. M with
Psij = 0.
Hence, we have the following:

Theorem 3.7 : Every S conf. M 1s a S cont. C.
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