defree antiquemes with engine of the systemical in an american in Some Recurrence Properties in a Tachibana R-Recurrent Space

S. Kumar

Department of Mathematics, Governemnt Post Graduate College, New Tehri, Tehri Garhwal-249001, Uttarakhand, India E-mail: drskbahubuna@gmail.com

ABSTRACT The present paper is devoted to the study of some recurrence properties in a Tachibana r-recurrent space, wherein we have defined and studied Weyl-Tachibana projective r-recurrent and Weyl-Tachibana conformal r-recurrent spaces and several theorems have been established. The necessary and sufficient condition for a Weyl-Tachibana projective r-recurrent space to be a Tachibana r-recurrent space has been derived therein. satisficari a sella rel basemple avea parabilir

1. FUNDAMENTAL FORMULAE

Mathai [2] and Walker [6] have studied Kaehlerian spaces and Ruse's spaces of recurrent curvature tensors respectively. Singh and Nautiyal [3] have defined and studied some recurrence properties in a Kaehler space and several theorems have been 生。其一度 british 12 年,身 investigated.

Further, Singh and Kumar [4] have defined and studied some recurrence properties in a Tachibana space and several interesting results have been obtained.

Here, we shall firstly define Tachibana space and give some preliminary formulae, which are pre-requisities to understand such a space.

An almost Tachibana space is an almost Hermite space (Fi, gij), where Fi is an almost complex structure and gij is a Hermite metric, such that

$$F^{h}_{i,j} + F^{h}_{j,i} = 0,$$
 (1.1)

where the comma (,) followed by indices denotes the operation of covariant differentiations with respect to the symmetric connection Γ^h_{ij} .

In an almost Tachibana space, we have (Yano [8])

$$N^{h}_{ji} = -4(F^{a}_{i,j}) F^{h}_{a},$$
 (1.2)

where $F_{i,j}^h$ is pure in i and j and N_{ji}^h is the *Nijenhuis tensor* (Yano [8]). When the Nijenhuis tensor vanishes, the almost Tachibana space is called a Tachibana space and it will be denoted in brief by ' T_n ' – space.

A Tachibana space is called recurrent Tachibana space, if it's curvature tensor 'R^h_{ijk}' satisfies the condition (Lal and Singh [1]):

$$R^{i}_{jkm,a} = \lambda_a R^{i}_{jkm},$$
Or,
$$R^{i}_{jkm,a} - \lambda_a R^{i}_{jkm} = 0,$$

$$(1.3)$$

where λ_a is a non-zero recurrence vector field and the Riemannian curvature tensor, which we have denoted by R^h_{ijk} , is defined as

$$R^{h}_{ijk} = \partial_{j} \Gamma^{h}_{ik} - \partial_{k} \Gamma^{h}_{ij} + \Gamma^{m}_{ik} \Gamma^{k}_{mj} - \Gamma^{m}_{ij} \Gamma^{h}_{mk}, \qquad \dots (1.4)$$

where $\partial_j \equiv \partial/\partial x^j$ and $\{x^i\}$ denotes the real local co-ordinates.

The Ricci tensor and the scalar curvature tensor are respectively given by

A STATE THAT I WEST TOTAL

$$R_{ij} = R^h_{ijh}$$
 and $R = R_{ij} g^{ij}$.

If the curvature tensor satisfies the conditions:

$$R^{h}_{ijk}, a_{1...a_r} - \lambda a_{1...a_r} R^{h}_{ijk} = 0,$$
 (1.5)

for some non-zero recurrence tensor field $\lambda a_1 \dots a_r$, then the space is called Tachibana recurrent space.

We shall call such a space an T_n - space.

The space T_n is said to be Tachibana Ricci – r recurrent, if it satisfies the condition:

 R_{ij} , a_1 ... a_r - λa_1 ... a_r R_{ij} = 0, ... (1.6) for some non-zero recurrence tensor field λa_1 ... a_r and is denoted in brief by an $R - {}^rT_n$ - space.

Multiplying equation (1.6) by gij and using the fact that

 g^{ij} , $a_1 \dots a_r = 0$, we obtain

 $R, a_{1...}a_{r} - \lambda a_{1...}a_{r} R = 0.$...(1.7)

The Weyl projective curvature tensor and Weyl conformal curvature tensor in a T_n-space are respectively given by

$$W^{h}_{ijk} = R^{h}_{ijuk} + ------ (R_{ik} \delta^{h}_{j} - R_{ij} \delta^{h}_{k}) \qquad(1.8)$$

and

$$C^{h}_{ijk} = R^{h}_{ijk} + \frac{1}{\dots - (R_{ik} \delta^{h}_{j} - R_{ij} \delta^{h}_{k} + gi_{k} R^{h}_{j} - g_{ij} R^{h}_{k}) - \frac{R}{(n-1)(n-2)} (g_{ik} \delta^{h}_{j} - g_{ij} \delta^{h}_{k}).$$

...(1.9)

In view of (1.8) and (1.9), we have

$$C^{h}_{ijk} = W^{h}_{ijk} + \frac{1}{(n-1)(n-2)} (R_{ik} \delta^{h}_{j} - R_{ij} \delta^{h}_{k}) + \frac{1}{n-2} (g_{ik} R^{h}_{j} - g_{ij} R^{h}_{k})$$

Remark 1.1. From (1.5), it follows that every ${}^{r}T_{n}$ -space is an $R - {}^{r}T_{n}$ - space, but the converse is not necessarily true.

2. WEYL-TACHIBANA PROJECTIVE r-RECURRENT AND WEYL-TACHIBANA CONFORMAL r-RECURRENT SPACES

Definition 2.1. A Tachibana space T_n satisfying the condition:

$$W^{h}_{ijk}, a_{1...a_{r}} - \lambda a_{1...a_{r}} W^{h}_{ijk} = 0,$$
 ...(2.1)

for some non-zero recurrence tensor $\lambda a_1 \dots a_r$ is called Weyl-Tachibana projective recurrent space and is denoted by W- rT_n – space.

Definition 2.2. A Tachibana space T_n satisfying the condition:

$$C^{h}_{ijk}, a_{1...a_r} - \lambda a_{1...a_r} C^{h}_{ijk} = 0.$$
 ...(2.2)

for some non-zero recurrence tensor $\lambda a_1 \dots a_r$ is called a Weyl-Tachibana conformal recurrent space and is denoted by an $C^{-r}T_n$ -space.

AND THE STATE OF T

We, now, have the following theorems:

Theorem 2.1. Every T_n-space is W-T_n-space.

Proof. Differentiating (1.8), we have

$$W^{h}_{ijk}, a_{1...}a_{r} = R^{h}_{ijk}, a_{1...}a_{r} + ------ (\delta^{h}_{j} R_{ik}, a_{1...}a_{r} - \delta^{h}_{k} R_{ij}, a_{1...}a_{r}).$$
 ...(2.3)

Multiplying (1.8) by λa_1 ar and subtracting the result thus obtained from (2.3), we get

$$W^{h}_{ijk}, a_{1...}a_{r} - \lambda a_{1...}a_{r} W^{h}_{ijk} = R^{h}_{ijk}, a_{1...}a_{r} - \lambda a_{1...}a_{r} R^{h}_{ijk} + ------- \{\delta^{h}_{j} (R_{ik}, a_{1...}a_{r} - A_{ijk}, a_{1...}a_{r} - A_{ijk}$$

$$-\lambda a_{1...} a_{r} R_{ik}) - \delta^{h}_{k} (R_{ij}, a_{1...} a_{r} - \lambda a_{1...} a_{r} R_{ij})$$
 ...(2.4)

If the space is ${}^{t}T_{n}$ – space, then (1.5) and (1.6) are satisfied and (2.4), in view of (1.5) and (1.6), gives

 $W^{h}_{ijk}, a_{1...} a_{r} - \lambda a_{1...} a_{r} W^{h}_{ijk} = 0,$

which shows that the space is W-Tn - space.

This completes the proof of the theorem.

Theorem 2.2. Every ${}^{r}T_{n}$ -space is $C - {}^{r}T_{n}$ - space. **Proof.** Differentiating (1.9), we get

$$C^{h}_{ijk}, a_{1...}a_{r} = R^{h}_{ijk}, a_{1...}a_{r} + ------ (\delta^{h}_{j} R_{ik}, a_{1...}a_{r} - \delta^{h}_{k} R_{ij}, a_{1...}a_{r} + g_{ik} R^{h}_{j}, a_{1...}a_{r}$$

$$n-2$$

Multiplying (1.9) by $\lambda a_1 \dots a_r$ and subtracting the result thus obtained from (2.5), we get

$$C^{h}_{ijk}, a_{1...} a_{r} - \lambda a_{1...} a_{r} C^{h}_{ijk} = R^{h}_{ijk}, a_{1...} a_{r} - \lambda a_{1...} a_{r} R^{h}_{ijk} + ----- \{\delta^{h}_{j} (R_{ik}, a_{1...} a_{r} a_{r} - A_{n-2} a$$

$$- \, \lambda \, a_{1 \, ...} \, a_{r} \, R_{ik}) \, - \, \delta^{h}_{\ k} \, (R_{ij}, \, a_{1 \, ...} \, a_{r} \, - \, \lambda \, a_{1 \, ...} \, a_{r} \, R_{ij}) \, + \, g_{ik} \, (R^{h}_{\ j}, \, a_{1 \, ...} \, a_{r} \, - \, \lambda \, a_{1 \, ...} \, a_{r} \, R^{h}_{\ j})$$

$$\begin{array}{c} (R,\,a_{1\,..}\,a_{r}\,-\,\lambda\,\,a_{1\,..}\,a_{r}\,R) \\ -\,g_{ij}\,\left(R^{h}_{\,k},\,a_{1\,..}\,a_{r}\,-\,\lambda\,\,a_{1\,..}\,a_{r}\,R^{h}_{\,k}\right)\} - \frac{(R,\,a_{1\,..}\,a_{r}\,R)}{(n-1)\,(n-2)} \\ & (n-1)\,(n-2) \end{array}$$

If the space is ${}^{r}T_{n}$ -space, then (1.5), (1.6) and (1.7) are satisfied and (2.6), in view of (1.5), (1.6) and (1.7), becomes

 C^h_{ijk} , $a_{1...}a_r - \lambda a_{1...}a_r C^h_{ijk} = 0$, which shows that the space is $C^{-r}T_n$ – space.

This completes the proof of the theorem.

Theorem 2.3. If in a T_n – space any two of the following properties are satisfied:

- (i) the space is $R {}^{r}T_{n}$,
- (ii) the space is $W {}^{r}T_{n}$,
- (iii) the space is $C {}^{r}T_{n}$,

then the third is also satisfied.

Proof. Differentiating (1.10), we have

1
$$+$$
 $------ (g_{ik} R^h_j, a_{1...} a_r - g_{ij} R^h_k, a_{1...} a_r) -------- (g_{ik} \delta^h_j - g_{ij} \delta^h_k)$ $(n-2)$ $(n-1) (n-2)$

... (2.7)

are satisfied and (2.4), in vivw of (1.5)

I'V bein (But) by Tronvine of the Empel Friderical last

OF END AF BUILDING

Comversely let the W - T, - space be

Multiplying (1.10) by $\lambda a_{1...} a_{r}$ and subtracting the result thus obtained from (2.7), we get,

$$C^{h}_{ijk}, a_{1...}a_{r} - \lambda a_{1...}a_{r} C^{h}_{ijk} = W^{h}_{ijk}, a_{1...}a_{r} - \lambda a_{1...}a_{r} W^{h}_{ijk} + -------- \{\delta^{h}_{j} (R_{ik}, a_{1...}a_{r} - \lambda a_{1...}a_{r} R_{ij})\} + ------- \{g_{ik} (R^{h}_{j}, a_{1...}a_{r} - \lambda a_{1...}a_{r} R^{h}_{j})\}$$

n-2

Making use of equations (1.6), (1.7), (2.1), (2.2) and (2.8), we obtain the proof of the above theorem.

Theorem 2.4. The necessary and sufficient condition for a $W - {}^rT_n$ – space to be rT_n – is that the space be $R - {}^rT_n$ one.

Proof. Let the W - $^{r}T_{n}$ - space be $^{r}T_{n}$ - space, so that equations (1.5) and (2.1) are satisfied and (2.4), in view of (1.5) and (2.1), reduces to

PERSONAL (DI I) DERINGUATORIA (DI ROSTI)

 δ^h_j (R_{ik}, a_{1 ...} a_r - λ a_{1 ...} a_r R_{ik}) - δ^h_k (R_{ij}, a_{1 ...} a_r - λ a_{1 ...} a_r R_{ij}), which after some simplification and further calculation shows that the space is R - r T_n.

Conversely, let the W - $^{r}T_{n}$ - space be R - $^{r}T_{n}$, so that (1.6) and (1.7) are satisfied. Then (2.4), in view of (1.6) and (2.1), reduces to

 R^{h}_{ijk} , $a_{1...}a_{r} - \lambda a_{1...}a_{r} R^{h}_{ijk} = 0$, which shows that the spae is ${}^{r}T_{n}$ – space.

Hence the theorem is completed.

Theorem 2.5. The necessary and sufficient condition for a $C - {}^{r}T_{n}$ – space to be ${}^{r}T_{n}$ – space is that the space be $R - {}^{r}T_{n}$.

Proof. Let the $C - {}^{r}T_{n}$ – space be ${}^{r}T_{n}$ – space, so that (1.5) and (2.2) are satisfied and (2.6), in view of (1.5) and (2.2), reduces to

$$\frac{1}{(n-2)} = \frac{1}{\{\delta_{j}^{h}(R_{ik}, a_{1...}a_{r} - \lambda a_{1...}a_{r} R_{ik}) - \delta_{k}^{h}(R_{ij}, a_{1...}a_{r} - \lambda a_{1...}a_{r} R_{ij}) + g_{ik}(R_{j}^{h}, a_{1...}a_{r} R_{ij}) + g_{ik}(R_{j}^{h}, a_{1...}a_{r} R_{ij})}{(n-2)} + g_{ik}(R_{j}^{h}, a_{1...}a_{r} R_{ij}) + g_{ik}(R_{j}^{h}, a_{1...}a_{r} R_{ij}) + g_{ik}(R_{j}^{h}, a_{1...}a_{r} R_{ij})$$

$$a_{r} - \lambda a_{1...} a_{r} R^{h}_{j}) - g_{ij} (R^{h}_{k}, a_{1...} a_{r} - \lambda a_{1...} a_{r} R^{h}_{k})\} - \frac{(R, a_{1...} a_{r} - \lambda a_{1...} a_{r} R)}{(n-1) (n-2)} (g_{ik} \delta^{h}_{j} R^{h}_{j})$$

$$-g_{ji} \delta^h_{k}) = 0.$$

or,

$$(n-1)\{\delta^{h}_{j}(R_{ik}, a_{1...}a_{r} - \lambda a_{1...}a_{r} R_{ik}) - \delta^{h}_{k}(R_{ij}, a_{1...}a_{r} - \lambda a_{1...}a_{r} R_{ij}) + g_{ik}(R^{h}_{j}, a_{1...}a_{r} - \lambda a_{1...}a_{r} R_{ij}) - g_{ij}(R^{h}_{k}, a_{1...}a_{r} R^{h}_{k} - \lambda a_{1...}a_{r} R^{h}_{k})\}$$

-
$$(R, a_1 ... a_r - \lambda a_1 ... a_r R) (g_{ik} \delta^h_j - g_{ij} \delta^h_k) = 0,$$

which after some simplification shows that the space in $R - {}^{r}T_{n}$.

Conversely, let the $C-{}^rT_n-$ space be R- rT_n , so that (1.6), (1.7) and (2.2) reduces to

of regions of the later of the first of the first

The Empire of Hall marine at 12

$$R^{h}_{ijk}$$
, $a_{1...}a_{r} - \lambda a_{1...}a_{r} R^{h}_{ijk} = 0$,

which shows that the space is T_n - space.

This completes the proof of the theorem.

In view of equations (1.5), (1.6) and (2.4), the following theorem can be proved easily:

Theorem 2.6. If in a T_n – space, any two of the following properties are satisfied:

- (i) the space is ^rT_n,
- (ii) the space is $R {}^{r}T_{n}$,
- (iii) the space is $W {}^{r}T_{n}$,

then it must also satisfy the third.

Similarly, making use of (1.5), (1.6), (1.7) and (2.6), we may immediately prove the following:

Theorem 2.7. If in a T_n – space, any two of the following properties are satisfied:

- (i) the space is $^{r}T_{n}$,
- (ii) the space is $R {}^{r}T_{n}$,
- (iii) the space is $C {}^{r}T_{n}$,

then it must satisfy the third also.

REFERENCES

- [1] Lal, K.B. and S.S. Singh, On Kaehlerian space with recurrent Bochner curvature tensor, Acc. Naz. Dei Lincei, Rend., 51 (3-4), 213-20 (1971).
- [2] Mathai, S., Kaehlerian recurrent spaces, Ganita, 20(2), 121-33 (1969).

- [3] Singh, A.K. and R.C. Nautiyal, Some recurrence properties in a Kaehlerian space, Aligarh Bull. Of Maths, 13, 57-63 (1990-91).
- [4] Singh, A.K. and S. Kumar, Some recurrence properties in a Tachibana sp;ace, Aligarh Bull of Maths., (Communicated).
- [5] Kantzin, G.H., Levine, J. and W.R. Devus, Curvture collineations. A fundamental symmetric property defined by the vanishing Lie derivatives of the Riemannian curvature, *Journ. Math. Phy.* Vol. 10, No.4, 617-619 (1969).
- [6] Walker, A.G., On Ruse's spaces of recurrent curvature, *Proc. Lond. Math. Soc.*, II Series, 52 (1950).
- [7] Weatherburn, C.E., An introduction to Riemannian Geometry and the tensor calculus, Cambridge, (1938).
- [8] Yano, K., Differential geometry on complex and almost complex spaces, *Pergamon Press London*, (1965).

dentern I.I. if it is a line out the time of the interiors