CR-Submanifolds of HGF- Structure Metric Manifolds

N.K.Joshi and Mayank Mittal ${ }^{1}$
P.N.G.Govt.P.G. College, Ramnagar, Uttrakhand, India. mayankmittal2007@gmail.com

Abstract

The study of the differential geometry of CR-submanifolds, as a generalization of invariant and anti-invariant submanifolds of a Kaehler manifold was initiated by Bejancu ${ }^{1}$ and was followed by several geometers ${ }^{2,3}$. In the present paper we define and study CR submanifolds of HGF structure metric manifolds ${ }^{4}$.

1 Introduction

1.1 Definition:-

HGF metric structure manifolds:Let V_{n} be a differentiable manifold. Let there exists a tensor J of type $(1,1)$ such that

$$
\begin{equation*}
J^{2} X=-a^{2} X \tag{1.1}
\end{equation*}
$$

For arbitrary vector field X and ' a ' is a complex number. Then J is said to be a Hyperbolic differentiable structure, briefly known as HGF-structure and then V_{n} is called HGF manifold.

Let the HGF-structure be endowed with the Hermitian metric g, such that

$$
\begin{equation*}
g(J X, J Y)=a^{2} g(X, Y) \tag{1.2}
\end{equation*}
$$

Then (J, g) is said to be a Hyperbolic differentiable metric structure, briefly known as HGF - metric structure and V_{n} is called Hyperbolic differentiable metric structure manifold or HGF - metric structure manifold.

The HGF-structure gives different structures for different values of a.
(i) If $a \neq 0$,it is Hyperbolic π-structure.
(ii) If $a= \pm 1$, it is an almost complex or a hyperbolic almost product structure.
(iii) If $a= \pm i$,it is an almost product or a hyperbolic almost complex structure.
(iv) If $a=0$, it is an almost tangent or a hyperbolic almost tangent structure.

[^0]
2 CR submanifolds of HGF structure metric manifolds

2.1 Definition:

CR submanifolds of HGF structure metric manifolds:-

Let M be a submanifold of V_{n} then M is said to be CR submanifold of V_{n} if there exists a differentiable distribution.

$$
D: x \rightarrow D_{x} \subset T_{x}(M)
$$

On M satisfying the following conditions:-
$(i) . D$ is holomorphic, i.e. $J\left(D_{x}\right)=D_{x}$ for each $x \in M$.
(ii). The complementary orthogonal distribution $, D^{\perp}: x \rightarrow D_{x}^{\perp} \subset T_{x} M$ is antiinvariant, i.e. $J\left(D_{x}^{\perp}\right) \subset T_{x} M^{\perp}$, for each $x \in M$.

For each vector field X tangent to M, we put

$$
\begin{equation*}
J X=R X+S X \tag{2.1}
\end{equation*}
$$

where $R X$ and $S X$ are respectively the tangent part and normal part of $J X$.
For each vector field N Normal to M, we put

$$
\begin{equation*}
J N=B N+C N \tag{2.2}
\end{equation*}
$$

where $B N$ and $C N$ are respectively the tangent part and normal part of $J N$. From the definition of CR-submanifolds, we have

$$
T M=D \oplus D^{\perp}
$$

For each $X \in T(M)$, we put

$$
\begin{equation*}
X=P X+Q X \tag{2.3}
\end{equation*}
$$

where $P X \in D$ and $Q X \in D^{\perp}$
Theorem 2.1:- The submanifold M of V_{n} is a CR- submanifolds if and only if, we have

$$
\begin{equation*}
\operatorname{rank} R=\text { constant } \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
S o R=0 \tag{2.5}
\end{equation*}
$$

Proof:- Operating (2.3) by J and using (2.1) then equating tangential and normal parts, we get

$$
J X=J P X+J Q X
$$

$$
R X+S X=J P X+J Q X
$$

$$
\begin{equation*}
R X=J P X \tag{2.6}
\end{equation*}
$$

And

$$
\begin{equation*}
S X=J Q X \tag{2.7}
\end{equation*}
$$

for any X tangent to M.
From (2.6), we have $\operatorname{rank} R=\operatorname{rankJP}=2 \operatorname{dimP}=$ constant
From (2.6) and (2.7), we get (2.5).
Conversely, suppose (2.4) and (2.5) are satisfied.
Now, we define distribution D by
$D_{x}=I m R_{x}$ for each $x \in M$.
Clearly, D is an invariant distribution, since for each $X=R Y \in \Gamma D$, we have

$$
J X=J R Y=R(R Y)+S(R Y)=R^{2} Y \in \Gamma D
$$

Let D^{\perp} denote the complementary orthogonal distribution to D in $T M$. Then D^{\perp} is an anti invariant distribution.

For any $X \in D^{\perp}$, and
$Y=U+W$, where $U \in \Gamma D$ and $W \in \Gamma D^{\perp}$, we have
$g(J X, Y)=-g(X, J Y)=-g(X, J U+J W)=-g(X, J W)=-g(X, R W+S W)=$ $-g(X, R W)=0$,
since $R W \in D$. Thus. M is a CR- Submanifold of V_{n}. This complete the proof.
Theorem 2.2:- The submanifold M of V_{n} is a CR- submanifolds if and only if, we have

$$
\begin{equation*}
\text { rank } B=\text { constant } \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
R o B=0 \tag{2.9}
\end{equation*}
$$

Proof:- Suppose M is CR- submanifold. First we show that $\operatorname{Im} B_{x} \subset D x^{\perp}$ for each $x \in M$.
$g(B N, Y)=g(J N, Y)=-g(N, J Y)=0$,for any $Y \in \Gamma D^{\perp}$ and $N \in \Gamma T M^{\perp}$.
Now to show that $D_{x}^{\perp} \subset \operatorname{Im} B_{x}$.
If we take $U \in D_{x}^{\perp}$ then $J U \in T_{x} M^{\perp}$ and we obtain

$$
-a^{2} U=J^{2} U=J(J U)=B(J U)+C(J U)
$$

Equating tangential part
$a^{2} U=-B(J U) \in \operatorname{Im} B_{x}$. Thus $D^{\perp}=\operatorname{Im} B$, which implies rankB=constant.
Hence (2.8) is proven.
For each $N \in \Gamma T M^{\perp}$ we have

$$
(J o B) N=(R o B) N+(S o B) N
$$

Equating tangential and normal part, we have

$$
(R o B) N=0,(J o B) N=(S o B) N
$$

Hence(2.9) is proven.
Conversely, Suppose (2.8) and (2.9) are satisfied. Then we define the distribution D^{\perp} by $D_{x}^{\perp}=\operatorname{Im} B_{x}$. First we see that D^{\perp} is an anti-invariant distribution.

For each $X \in D^{\perp}$ and $Y \in T M$, We have
$g(J X, Y)=0$
$g((J o B) N, Y)=g((S o B) N, Y)=0$.
Next, the complimentary orthogonal distribution D to D^{\perp} in $T M$ is an invariant distribution. Indeed, for each $X \in \Gamma D, Y \in \Gamma D^{\perp}$ and $N \in \Gamma T M^{\perp}$, we have
$g(J X, Y)=-g(X, J Y)=0$, since $J Y \in \Gamma T M^{\perp}$
and

$$
g(J X, N)=-g(X, J N)=-g(X, B N)=0, \text { since } B N \in D^{\perp}
$$

Thus M is CR- submanifolds.
Theorem 2.3:- On each CR- submanifold M, the vector bundle morphisms R and C define $\left(f, a^{2}\right)$ structures on $T M$ and $T M^{\perp}$ respectively.

Proof:- Operating (2.6) by J
$J R X=J^{2} P X$
Using (1.1) and (2.1) in above equation, we get
$R^{2} X+S R X=-a^{2} P X$

$$
\begin{equation*}
R^{2} X=-a^{2} P X \tag{2.10}
\end{equation*}
$$

Again operating above equation by J
$J R^{2} X=-a^{2} J P X$, Now using (2.1) and (2.6), we have $R^{3} X=-a^{2} R X$

$$
\begin{equation*}
R^{3}+a^{2} R=0 \tag{2.11}
\end{equation*}
$$

Operating (2.2) by J

$$
\begin{aligned}
& J^{2} N=J B N+J C N \\
& -a^{2} N=R B N+S B N+B C N+C^{2} N \\
& -a^{2} N=S B N+C^{2} N
\end{aligned}
$$

Again operating above equation by J and using (2.2), then we get
$-a^{2}(B N+C N)=J S B N+B C^{2} N+C^{3} N$
Equating tangential and normal part, we get

$$
\begin{equation*}
C^{3}+a^{2} C=0 \tag{2.12}
\end{equation*}
$$

This completes the proof of above theorem.

3 Integrability of distribution on a CR-submanifolds

In this section of this paper we study the integrability of both the distribution D and D^{\perp} on M.

The Nijenhuis tensor field of R is given by

$$
\begin{equation*}
[R, R](X, Y)=[R X, R Y]+R^{2}[X, Y]-R([R X, Y]+[X, R Y]) \tag{3.1}
\end{equation*}
$$

the Nijenhuis Tensor field of J is given by
$[J, J](X, Y)=[J X, J Y]+J^{2}[X, Y]-J([J X, Y]+[X, J Y])$
using (2.1) and (2.3) we get,

$$
\begin{equation*}
[J, J](X, Y)=[R, R](X, Y)-a^{2} Q[X, Y]-S([X, R Y]+[R X, Y]) \tag{3.2}
\end{equation*}
$$

for any $X, Y \in \Gamma D$
Theorem 3.1 :- Let M be a CR-submanifold of a HGF structure metric manifold V_{n} then the distribution D is integrable if and only if

$$
\begin{equation*}
[J, J](X, Y)^{\top}=[R, R](X, Y) \tag{3.3}
\end{equation*}
$$

for any $X, Y \in \Gamma D$
where superscript T denote the tangential part of Nijenhuis tensor J
Proof :- Proof of the theorem follows easily if
Taking normal part in (3.2), we have

$$
\begin{equation*}
[J, J](X, Y)^{\perp}=-S([X, R Y]+[R X, Y]) \tag{3.4}
\end{equation*}
$$

for any $X, Y \in \Gamma D$

Theorem 3.2 :- Let M be a CR -submanifold of a HGF structure metric manifold V_{n}. Then the distribution D is integrable if and only if

$$
\begin{equation*}
[J, J](X, Y)^{\perp}=0 \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
Q[R, R](X, Y)=0 \tag{3.6}
\end{equation*}
$$

for any $X, Y \in \Gamma D$
Proof:- Suppose D is integrable then (3.5) follows from (3.4)
In view of (3.1) and (2.10), we have
$[R, R](X, Y)=[R X, R Y]-a^{2} P[X, Y]-R([R X, Y]+[X, R Y])$
for any $X, Y \in \Gamma D$
Taking into account that $D=I m R$, we have
$[R, R](X, Y) \in \Gamma D$
which is equivalent to (3.6)
Conversely, suppose (3.5) and (3.6) are satisfied, then from (3.4) and (3.5), we have $Q([J X, Y]+[X, J Y])=0$
Which implies (By Replacing Y by $J Y$)
$Q\left([J X, J Y]+\left[X, J^{2} Y\right]\right)=0$
$Q\left([J X, J Y]-a^{2}[X, Y]\right)=0$
Hence $Q[J, J](X, Y)^{\perp}=0$
From (3.2), we have
$[J, J](X, Y)^{\perp}=[R, R](X, Y)-a^{2} Q[X, Y]$
$Q[J, J](X, Y)^{\perp}=Q[R, R](X, Y)-a^{2} Q^{2}[X, Y]$
$0=0-a^{2} Q^{2}[X, Y]$
$a^{2} Q^{2}[X, Y]=0$
$Q[X, Y]=0 \Rightarrow D$ is integrable.
Theorem 3.3 :- Let M be a CR-submanifold of an integrable HGF metric manifold V_{n} .The distribution D is integrable if and only if the Nijenhuis tensor of R vanishes identically on D.

Proof :- Let M be a CR- submanifold of an integrable HGF metric manifold V_{n}. Therefore

$$
[J, J](X, Y)=0
$$

The distribution D is integrable implies
$[R, R](X, Y)=0$
For Converse part, we have from (3.3)
$[J, J](X, Y)^{\perp}=R[X, Y]$
this implies $[R, R](X, Y)=0$
This completes the proof of above theorem.
Theorem 3.4 :- Let M be a CR- submanifold of a HGF structure metric manifold V_{n}. The distribution D^{\perp} is integrable iff the Nijenhuis tensor of R vanishes identically on D^{\perp}.

Proof :- If ,we take $X, Y \in \Gamma D$ and from(3.1)
$[R, R](X, Y)=R^{2}[X, Y]=-a^{2} P[X, Y]$
D^{\perp} is intergable iff $P[X, Y]=0$ for any $X, Y \in \Gamma D^{\perp}$
This Completes the proof of above theorem.

References

[1] Bejancu A. : CR-submanifold of a Kaehler manifold, I,Proc. Amer. Math. Soc. ,69,135142;1978
[2] Joshi N.K. and Dube K.K. : Semi-invariant submanifold of sasakian space form, Ganita 54(2) ,145-151; 2003
[3] Joshi N.K. and Dube K.K. : Semi Invariant Submainfold of an almost r-contact Hyperbolic Metric Manifold, Demonstratio Mathmatica,Vol. XXXIV,No.1, (2001)135-143.
[4] Pandey S.B. and Pant .M :On HGF-Structure metric Manifold, Journal of International academy of Physical Sciences,Vol.10(2006)45-68
[5] Yano K.: On a Structure defined by a Tensor Field f of Type $(1,1)$ satisfying $f^{3}+f=0$, Tensor, N.S.27(1973)99-109.

[^0]: ${ }^{1}$ corresponding author

