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Abstract

The structure of shock wave in one-dimensional unsteady flow of a
viscous non-ideal gas between the two uniform boundary states is investi-
gated by the method of travelling wave solution. The system of basic gas
dynamic equations are reduced into a single ordinary differential equa-
tion of first order for non-dimensional velocity. The exact solution for
velocity, pressure, temperature and change in entropy are obtained be-
tween the boundary states. It has been found that there exist a travelling
shock transition zone of the thickness of order 10−6 meter. The shock
structure depends on Mach number, viscosity, adiabatic exponent and
non-idealness of the gas.
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1 Introduction

Travelling wave solution has been extensively used in the solution of many physical prob-
lems. Such solutions were first considered in 1930s by Fisher[1] and Kolmogorov, Petrovsky,
and Piscounoff [2] for what has now known as the Fisher-KPP equation. Travelling wave
solutions of reaction-diffusion equations have been extensively covered in [3]. Travelling
wave solutions of a non-linear reaction-diffusion equations in chemotaxis model for bacterial
pattern formation was studied by Mamsour [4]. Traveling shock waves arising in a model
of malignant invasion was studied by Marchant, Norbury and Perumpanani [5]. Traveling
wave phenomena for viscoelastic generalization of Burger’s equation was presented by Ca-
macho, Guy and Jacobsen [6]. Recently in 2015, Eabay and Sengul [7] have given travelling
waves in one-dimensional non-linear models of strain-limiting viscoelasticity.

The study of structure of shock wave is important due to the need of development of a
consistent theory which is valid under experimental measurement and is equally true up to
the scale of molecular mean free path. It has been a challenging field of investigation for
theoreticians and experimental scientist for a long time. Shock wave is a narrow transition
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zone (order of mean free path) in gas flow between the supersonic upstream and subsonic
downstream. The internal structure of shock wave is to study the rapid change of flow
variables such as velocity, pressure, temperature, change in entropy, viscous stress, heat
flux, shock asymmetry and ratio of mean free path with the thickness of shock wave etc,
through a narrow region between two uniform state. The reason behind the special interest
to the shock structure problem is to study the discontinuity in the fluid flow in a narrow
region of the order of mean free path under the objection on the validity of continuum
model.

There are a rich history of theoretical and experimental study of shock wave structure.
The theoretical treatment of shock structure is based either on continuum model or Navier-
Stokes Fourier’s equations, or on kinetic theory model ie analytical/numerical solutions of
Boltzmann equation. In the treatment of this problem, by the equations of fluid mechanics,
Rankine [8], Rayleigh [9] and Taylor [10] had recognized that the effect of the viscosity and
heat conduction must be taken into account. Becker [11], Thomas [12], [13], Morduchow
and Libby [14], Gilberg and Paolucci [15] were the early investigator for shock structure
in ideal gas under presence or absence of viscosity and heat conduction. In 1984, Khidr
and Mohmoud [16] have studied shock wave structure for arbitrary Prandtl numbers and
high Mach numbers. In 2013, Johnson [17], have reported the analytical shock solutions at
large and small Prandtl number in perfect gas under density and temperature dependent
viscosity and conductivity. In 2014, Myong [18] have given technical notes for analytical
solutions of shock structure in framework of NavierStokes/Fourier in perfect gas. Anand
and Yadav [19] have studied the structure of shock waves in a steady flow of viscous non-
ideal gas in absence of thermal conductivity. The most of the above study of shock wave
structure have been done in the steady flow of the ideal gas under constant dissipation
forces.

In this work, the travelling wave solution approach is employed to study the unsteady
motion of viscous non-ideal gas between two uniform boundary conditions at +∞ and −∞.
The system of governing equations are reduced into a single ordinary differential equation
in term of non-dimensional gas velocity. By taking the origin of coordinate system at the
inflection point of the velocity profile, the exact solution for velocity, pressure, temperature,
change in entropy and viscous stress have been obtained. The inverse shock thickness has
been computed. The structure of shock wave is investigated in term of shock thickness,
inverse shock thickness, shock strength, Mach number, ratio of specific heat, viscosity and
non-idealness of the gas.

2 Basic equations and boundary condition

The equations governing the one-dimensional unsteady flow of a viscous, non-ideal gas
under an equilibrium condition can be written in absence of body force in case of planer
geometry as

(2.1)
∂ρ

∂t
+
∂(ρu)

∂x
= 0,

(2.2)
∂(ρu)

∂t
+
∂(p+ ρu2 − τ)

∂x
= 0,
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(2.3)
∂(ρe+ ρu2/2)

∂t
+
∂[ρu(e+ u2/2) + pu− τu]

∂x
= 0.

The viscous stress tensor (τ) is given by

τ =
4

3
µ
∂u

∂x
,(2.4)

where u, ρ, p, τ and e are the gas velocity, density, pressure, viscous stress and internal
energy per unit mass, respectively at position x and time t. The coefficient of dynamic
viscosity µ (in the limit of negligible bulk viscosity), is assumed to be independent of the
temperature and density for simplicity. We have to find the solution of above equations
between the uniform boundary states (u1, ρ1,p1) at x = −∞ and (u2, ρ2, p2) at x = +∞.

There are two common form of simplified van der Waals equation of state for the
non-ideal gas, one Roberts, P.H. and Wu, C.C. [20], Vishwakarma et al. [21] and other
Anisimov, S.I., and Spiner, O.M. [22]. The equation of the state of the non-ideal gas is
taken in the form of Anisimov, S.I., and Spiner, O.M. [22] as

p = ΓρT (1 + bρ).(2.5)

The internal energy e per unit mass of the non-ideal gas is given as

e = CvT = [p/ρ(γ − 1)(1 + bρ)],(2.6)

where Cv = Γ/(γ − 1) is the specific heat at constant volume and γ is the adiabatic index.
Eq. (2.6) implies that

Cp − Cv = Γ(1 + b2ρ2)/(1 + 2bρ) ∼= Γ.

Using the first laws of the thermodynamic and Eqs. (2.5) and (2.6) we obtain the isentropic
exponent

Γ? = γ(1 + 2bρ)/(1 + bρ).(2.7)

The isentropic velocity of sound a, in the non-ideal gas is given by

a2 = Γ?p/ρ.(2.8)

3 Travelling wave analysis

Travelling wave solution of the system of one-dimensional unsteady gas dynamic equation
(2.1)-(2.4) can be obtained by setting

u(x, t) = u(ξ), ρ(x, t) = ρ(ξ), p(x, t) = p(ξ), ξ = x− ct,(3.1)

where c is a constant to be determined. By using the above transformation, we can write
the Eqs (2.1)-(2.4) as

(3.2) c
dρ

dξ
− d(ρu)

dξ
= 0,
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(3.3) c
d

dξ
(ρu)− d(p+ ρu2 − τ)

dξ
= 0,

(3.4) c
d(ρe+ ρu2/2)

dη
− d[ρu(e+ u2/2) + pu− τu]

dη
= 0.

τ =
4

3
µ
du

dξ
,(3.5)

The two uniform boundary states (u1, ρ1, p1) at x = −∞ and (u2, ρ2, p2) at x = +∞ will
be transformed at ξ = −∞ and ξ = +∞ for finite time t including t = 0. The boundary
conditions on the solutions of these differential Eqs. (3.2)-(3.5) require that the gradient of
the flow variables must vanish at boundary states ξ = −∞ as well as ξ = +∞. With these
limits, using Eq. (2.6) into Eq. (3.4), we can integrate the Eqs. (3.2)-(3.4) with respect to
η as

ρ1(u1 − c) = ρ(u− c) = ρ2(u2 − c),(3.6)

p1 + ρ1(u2
1 − c2) = p+ ρ(u2 − c2)− τ = p2 + ρ2(u2

2 − c2),(3.7)

(u1 − c)
{

p1
(γ−1)(1+bρ1) +

ρ1u21
2

}
+ p1u1 = (u− c)

{
p

(γ−1)(1+bρ) + ρu2

2

}
+ pu+ τu

= (u2 − c)
{

p2
(γ−1)(1+bρ) +

ρ2u22
2

}
+ p2u2.(3.8)

The above relation between extreme left and right of the Eqs. (3.6)-(3.8) represents the
Rankine-Hugoniot jump conditions for the gas flow between the two uniform boundary
states. It shows that there exist a jump in values of flow variables across a travelling shock
moving with speed c in the gas between the two uniform state at −∞ and +∞.

4 Exact solutions

For the solution of Eqs. (3.5)-(3.8), we introduce the non-dimensional gas velocity η, and
Mach number M1 as

η =
u− c
u1 − c

=
ρ1

ρ
, M1 =

u1 − c
a1

,(4.1)

where a2
1 = γδp1/ρ1 is the speed of sound in the unperturbed state, and δ = (1+2b̄)/(1+b̄).

We can use the Eqs. (3.5), (3.6), and (3.7) into Eq. (3.8) together with Eq. (4.1) and
write a single first order differential equation for non-dimensional gas velocity (η) as

Aη3 +Bη2 + Cη +D = Gη2 dη/dξ,(4.2)
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whereA =
(γ+1)M2

1a
2
1ρ1

2 , B = − (γ(2−b̄))+b̄)M2
1a

2
1ρ1

2 −γp1, C = p1

(
(γ−1)(1−b̄2)+1

1+b̄

)
+

(γ−1)(1−2b̄)M2
1a

2
1ρ1

2 ,

D = p1

(
(γ−1)(1+b̄)b̄+1

1+b̄

)
+

(γ−1)b̄M2
1a

2
1ρ1

2 , G = 4
3µM1a1.

In uniform boundary state, outside the transition region, there is no gradient in the flow
variables, therefore, we can write the condition for the equilibrium state as

dη/dξ = 0 at η = ηeq.

Using above equilibrium condition, Eq. (4.2) becomes a cubic equation ηeq in equilibrium
state as

Aη3
eq +Bη2

eq + Cηeq +D = 0(4.3)

The above equation has three real roots η1, η2 and η3 depending on the values of ρ1, p1,
M1 and b̄. Now integrating Eq. (4.2) and using the real roots η1, η2 and η3 of Eq. (4.3)
we get an analytic solution for ξ as

ξ = A1log(η − η1) +B1log(η − η2) + C1log(η − η3) + C ′.(4.4)

where A1 = G
A

(
η21

(η1−η2)(η1−η3)

)
, B1 = G

A

(
η22

(η2−η1)(η2−η3)

)
, C1 = G

A

(
η23

(η3−η1)(η3−η2)

)
, and C ′

is the constant of integration. To find the value of C ′, let us choose origin at the point of
inflection of the velocity profile given by the condition d2η/dξ2 = 0 which is also a condition
for maximum value of dη/dξ at ξ = 0. Using this condition in Eq. (4.2), yields a cubic
equation given as

Aη3
in − Cηin − 2D = 0.(4.5)

Among the three possible real roots of Eq. (4.5), we choose the maximum value ηin = η?

at ξ = 0 as point of inflection of the velocity profile. Using this in Eq. (4.4), we get the
exact solution for the gas velocity as

ξ = A1log

[
η − η1

η? − η1

]
+B1log

[
η − η2

η? − η2

]
+ C1log

[
η − η3

η? − η3

]
.(4.6)

Equation (4.6) gives a relation between the gas velocity η and the distance ξ. Using Eqs.
(3.5), (3.6), (3.7), (4.1), (4.2) into the Eq. (3.8), we determine the exact solution for the
pressure within the shock transition region as

p/p1 = 1 + γδM2
1 (1− η) + (Aη3 +Bη2 + Cη +D)/(p1η

2)(4.7)

Using Eqs. (2.5), (3.6), (4.1) and (4.7) we can obtain the exact solution for the temperature
within the shock transition region as

T/T1 = {(1 + b̄)/(η + b̄)}{(A/p1 − γδM2
1 /2)η3 + (1 + γ δM2

1 +B/p1)η2

+(C/p1)η +D/p1}(4.8)
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Further, we can write the change-in-entropy (∆S/Γ)η across the shock of an arbitrary
strength in non-ideal gas as

(∆S/Γ)η = {γ/(γ − 1)} log(T/T1)− log(p/p1).(4.9)

With the help of the Eqs. (4.7), (4.8) and (4.9), we can easily obtain the entropy production
across the shock front with respect to the position ξ. The viscous stress τ between the two
uniform state at −∞ and +∞ can be obtained from Eqs. (3.5), (4.1) and (4.2) as

τ = (Aη3 +Bη2 + Cη +D)/η2.(4.10)

5 Thickness of travelling shock wave

The thickness of shock wave in term of the mean free path is a quantity which can be de-
termined experimentally from the measurable quantities like viscosity, density and temper-
ature. The shock thickness can be computed from equation (4.6) and Prandtl’s definition
for shock thickness. Since boundary states η1 and η2 are singular point for ξ in equation
(4.6), we can compute the value of ξ1 and ξ2 corresponding to the velocity changes from
(0.99 η1 +0.01 η2) to (0.01 η1 +0.99 η2) instead of η1 to η2. Then, the shock thickness
will be given by ∆ξ = ξ2 − ξ1. By Prandtl definition [14, 15, 16], the shock thickness (∆ξ)
is a width of the region in which the major portion of the change in the flow characteristics
occurs and is given by

∆ξ = −(u1 − u2)/(du/dη)max,

where u1 = u(x = −∞) and u2 = u(x = +∞), and the denominator is the maximum slope
of the velocity profile. The shock thickness (∆ξ) in term of non-dimensional gas velocity
(η) can be written as

∆ξ = (η2 − 1)/(dη/dξ)max

Since the maximum value of dη/dξ exist at the inflection point η = η? which is given by
Eq. (4.5) therefore, the the shock thickness is given by

∆ξ = (η2 − 1)η?
2
G/(Aη?

3
+Bη?

2
+ Cη? +D).(5.1)

The molecular mean free path λ1, is used as a characterristic length to scale the thickness
of shock front. The mean free path (λ1) at minus infinity is given [23, 24, 25] as.

λ1 =
4

5

µ1

ρ1

√
8

πΓ T1
,

where µ1 is viscosity at minus infinity. From Eqs. (4.6) and (5.1) we have obtained the
shock thickness (∆ξ) and inverse shock thickness (λ1/∆ξ) of travelling shock wave in a
non-ideal gas in Table 1− 2.

Table 1 Shock thickness, inverse shock thickness and adiabatic compressibility β2/β1

for γ = 1.4, ρ1 = 1.225 kg/m3, and p1 = 101325 Pascal.
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Inverse shock thickness

M1 b̄ β2/β1 ξ1/λ1 ξ2/λ1 Shock thickness Eq. (4.6) Prandtl’s def.

[m] [m] ∆ξ/λ1 [m] (Eq. 4.6) λ1/∆ξ [m] λ1/∆ξ [m]

0 0.8032 -18.2958 21.1241 39.4199 0.0253 0.0583
1.1 0.10 0.8044 -16.9436 19.5065 36.4501 0.0274 0.0631

0.20 0.8079 -16.2392 18.5809 34.8200 0.0287 0.0660
0 0.6037 -6.4165 8.9066 15.3231 0.0652 0.1511

1.25 0.10 0.6037 -5.9116 8.1657 14.0775 0.0710 0.1644
0.20 0.6044 -5.5835 7.6403 13.2238 0.0756 0.1750

0 0.4067 -2.7017 4.7795 7.4813 0.1336 0.3144
1.5 0.10 0.4057 -2.4934 4.3713 6.8647 0.1456 0.3425

0.20 0.4046 -2.3553 4.0661 6.4215 0.1557 0.3659
0 0.3546 -2.1293 4.0783 6.2076 0.1610 0.3815

1.6 0.10 0.3534 -1.9678 3.7284 5.6962 0.1755 0.4155
0.20 0.3520 -1.8616 3.4646 5.3263 0.1877 0.4440

0 0.2767 -1.4533 3.1876 4.6409 0.2154 0.5171
1.8 0.10 0.2754 -1.3472 2.9124 4.2597 0.2347 0.5631

0.20 0.2737 -1.2790 2.7030 3.9820 0.2511 0.6015

Table 2 Shock thickness for different values of µ1 and M1 for γ = 1.4, ρ1 = 1.225kg/m3,
p1 = 101325 Pascal

µ1 M1 b̄ ξ1 ξ2 ∆ξ = ξ2 − ξ1
[Pas′s] [m] [m] [m]

0 -0.99444 e-06 1.14816 e-06 2.14260 e-06
1.1 0.10 -0.96589 e-06 1.11199 e-06 2.07788 e-06

0.20 -0.96689 e-06 1.10632 e-06 2.07322 e-06
15× 10−6 0 -0.14685 e-06 0.25978 e-06 0.40663 e-06

1.5 0.10 -0.14214 e-06 0.24919 e-06 0.39133 e-06
0.20 -0.14024 e-06 0.24210 e-06 0.38234 e-06

0 -1.14029 e-06 1.31656 e-06 2.45685 e-06
1.1 0.10 -1.10755 e-06 1.27508 e-06 2.38263 e-06

0.20 -1.10871 e-06 1.26858 e-06 2.37729 e-06
17.2× 10−6 0 -1.68389 e-06 0.29788 e-06 0.46627 e-06

1.5 0.10 -0.16299 e-06 0.28570 e-06 0.44872 e-06
0.20 -0.16081 e-06 0.27761 e-06 0.43842 e-06

Table 3 Strength of shock wave (Z) for different values of γ, M1 and b̄

γ Z

↓ b̄ M1 = 1.1 M1 = 1.5 M1 = 2

0 3.2186 5.9850 10.6400
1.33 0.10 3.5112 6.5290 11.6073

0.20 3.7550 6.9825 12.4133

0 3.3880 6.3000 12.2000
1.40 0.10 3.6960 6.8727 12.2182

0.20 3.9526 7.3500 13.0667

0 4.0172 7.4700 13.2800
1.66 0.10 4.3824 8.1490 14.4873

0.20 4.6867 8.7150 15.4933

6 Results and discussion

The equation (4.6) gives ξ as a one-one onto function of η therefore, ξ is monotonic function
of η, so we can obtain velocity η as a function of ξ from the implicit function theorem and
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Fig. 1: Variation of gas velocity (η) with distance (ξ/λ1) for different values of M1 and b̄. 1: M1 = 1.1,
b̄ = 0; 2: M1 = 1.3, b̄ = 0; 3: M1 = 1.5, b̄ = 0; 4: M1 = 1.1, b̄ = 0.10; 5: M1 = 1.3, b̄ = 0.10; 6:
M1 = 1.5, b̄ = 0.10; 7: M1 = 1.1, b̄ = 0.20; 8: M1 = 1.3, b̄ = 0.20; 9: M1 = 1.5, b̄ = 0.20.
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Fig. 2: Variation of pressure (p/p1) with distance (ξ/λ1) for different values of M1 and b̄. 1: M1 = 1.1,
b̄ = 0; 2: M1 = 1.3, b̄ = 0; 3: M1 = 1.5, b̄ = 0; 4: M1 = 1.1, b̄ = 0.10; 5: M1 = 1.3, b̄ = 0.10; 6:
M1 = 1.5, b̄ = 0.10; 7: M1 = 1.1, b̄ = 0.20; 8: M1 = 1.3, b̄ = 0.20; 9: M1 = 1.5, b̄ = 0.20.
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Fig. 3: Variation of temperature (T/T1) with distance (ξ/λ1) for different values of M1 and b̄. 1: M1 = 1.1,
b̄ = 0; 2: M1 = 1.3, b̄ = 0; 3: M1 = 1.5, b̄ = 0; 4: M1 = 1.1, b̄ = 0.10; 5: M1 = 1.3, b̄ = 0.10; 6:
M1 = 1.5, b̄ = 0.10; 7: M1 = 1.1, b̄ = 0.20; 8: M1 = 1.3, b̄ = 0.20; 9: M1 = 1.5, b̄ = 0.20.
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Fig. 4: Variation of change-in-entropy (∆S/Γ)η with distance (ξ/λ1) for different values of M1 and b̄. 1:
M1 = 1.1, b̄ = 0; 2: M1 = 1.3, b̄ = 0; 3: M1 = 1.5, b̄ = 0; 4: M1 = 1.1, b̄ = 0.10; 5: M1 = 1.3,
b̄ = 0.10; 6: M1 = 1.5, b̄ = 0.10; 7: M1 = 1.1, b̄ = 0.20; 8: M1 = 1.3, b̄ = 0.20; 9: M1 = 1.5,
b̄ = 0.20.
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broken curve) and non-ideal gas 2: (b̄ = 0.10, solid curve), 3: (b̄ = 0.20, solid curve)
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therefore, pressure p/p1, temperature T/T1 and change-in-entropy (∆S/Γ)η. The inflection
point (0, ηin) for the velocity profile η is chosen as maximum value of ηin between the two
uniform state. For numerical computation, we have taken ρ1 = 1.225 kg/m3, p1 = 101325
Pascal, γ = 1.4 for air at 200C, 1.66 for monatomic gases like He, Ne, Xe at 200C and
µ = 15 × 10−6 and 17.20 × 10−6 Pas s for air at sea level and M1 = 1.1, 1.3 and 1.5. The
ratio of adiabatic compressibility β1 at ξ = −∞ and β2 at ξ =∞ can be obtained as

β2

β1
=

p1 η
2
1

(Aη3
1 +Bη2

1 + Cη1 +D) + p1 η2
1(1 + γ δM2

1 (1− η1))
,

and is computed in Table 1. In shock wave analysis, the strength of shock wave is given
by the quantity Z = (p2 − p1)/p1. Now using Eqs. (3.6), (3.7) and (4.1) we get

Z =
1 + 2b̄

1 + b̄
γM2

1 (1− η2),

which is calculated in Table 3. The Figures 1 − 5 gives the profile for the gas velocity η,
pressure (p/p1), temperature (T/T1), the change-in-entropy (∆S/Γ)η) and viscous stress
(τ) with respect to the position ξ/λ1 from equations (4.6) and (4.8-5.1) respectively between
the boundary ξ = −∞ to ξ = +∞. It is evident from the figures 1 − 4 that as we move
from the boundary state at ξ = −∞ towards ξ = +∞, the gas velocity η decreases while
pressure (p/p1), (T/T1), the change-in-entropy (∆S/Γ) increases. The viscous stress τ first
decreases up to a minima at inflection point (ξ = 0) and then increase as ξ increases from
−∞ to +∞ (see Fig. 5). The distribution of flow variables are similar to those obtained
by [14, 18, 19]. The ratio of adiabatic compressibility β2/β1 at uniform states, the shock
thickness ∆ξ and inverse shock thickness λ1/∆ξ with respect to Mach number M1, and
non-idealness parameter b̄ have been given in Table 1 − 2. The shock strength has been
given in Table 3 as a function of non-idealness of the gas (b̄), adiabatic index (γ) and Mach
number M1. The strength of shock wave increase with increase in adiabatic index. The
shock thickness increases with increase in the viscosity of the gas.

The effects of an increase in the value of non-idealness parameter (b̄) of gas are :

(i) to increase the ratio of adiabatic compressibility (β2/β1) for M1 = 1.1 and 1.25 and to
decreases for M1 > 1.25 (see Table 1);

(ii) to decrease the shock thickness (see Table 1),

(iii) to increase the strength of shock wave (Z)(see Table 3),

(iv) to increase the gas velocity for any fixed value of ξ/λ1 and M1, (Fig. 1)

(v) to increase the pressure (p/p1) (see Fig. 2), temperature (T/T1) (see Fig. 3), change-
in-entropy (∆S/Γ)η) (see Fig. 4), and viscous stress τ (see Fig. 5) for any fixed value
of ξ/λ1 and M1. It is observed that effect of b̄ is more significant for flow behind the
shock and higher value of Mach number M1.

The reason for the above effects of non-idealness parameter b̄ is decrease in the ratio of
adiabatic compressibility β2/β1.

The effects of an increase in the value of Mach number M1 are :
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(i) to decrease the thickness of the shock front (see Table 1-2),

(ii) to increase the strength of the shock wave (see Table 3),

(iii) to decrease the gas velocity (η) in the right of inflection point (ξ = 0) (see Fig. 1).

(iv) to increase the value of pressure distribution (p/p1), temperature (T/T1) and change-
in-entropy (∆S/Γ)η) in right of inflection point (ξ = 0). (see Figs. 1− 4).

(v) to decrease the ratio of adiabatic compressibility (β2/β1). It is observed that (β2/β1)
is less than one for all value of Mach number M1 > 1 (see Table 1).

It is seen that the variation in flow variables are significant for large values of Mach number
M1 and ξ > 0. The transition zone reduces into the sharp discontinuity for M1 > 1.5. The
effect of M1 is more significant in −1 < ξ <∞. The reason behind above effects of Mach
number M1 is decrease in ratio of adiabatic compressibility (β2/β1) with M1.

The inverse shock thickness can be used as a measurement for the local Knudsen number
to decide the validity of continuum model in the study of shock wave structure. The
continuum model must be replaced by kinetic model when local Knudsen number exceed
0.20 (Bird 1998 [25]). Table 1 and Fig. 6 gives the variation of inverse shock thickness with
Mach number M1, non-idealness parameter b̄ and γ. Taking the limit of 0.20 for inverse
shock thickness, we can conclude that the continuum model may be valid for the study of
structure of shock wave:

(i) in monatomic ideal gas (γ = 1.66, b̄ = 0) upto M1 = 1.3 ;

(ii) in diatomic ideal gas (γ = 1.4, b̄ = 0) upto M1 = 1.325;

(iii) in diatomic non-ideal gas (γ = 1.4, b̄ = 0.10) upto M1 = 1.30 ;

(iv) in monatomic (γ = 1.66) and diatomic (γ = 1.4) non-ideal gas (b̄ = 0.20) upto Mach
number M1 = 1.275;

The above observation show that in study of structure of shock wave, the limit of applicabil-
ity of continuum model decrease with increase in non-idealness of the gas and multiplicity
of the gas molecules.

It is found that the thickness of shock front in unsteady flow given by ∆ξ = ∆x− c∆t
is less than the shock thickness ∆ξ = ∆x in case of steady flow, Anand and Yadav [19].

7 Conclusion

This paper investigate the structure of a moving shock wave in a unsteady flow of a non-
ideal gas under the effect of viscosity by the method of travelling wave solution. The exact
solution for the velocity, pressure, temperature and change in entropy across a moving shock
wave under the two uniform boundary state at ξ = −∞ and ξ = +∞ is obtained. The study
shows that the one-dimensional unsteady flow of non-ideal gas under the effect of viscosity
and the structure of shock wave can be studied by means of travelling wave solution. It
also shows that the motion between two boundary state depends on the viscosity, Mach
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number, ratio of specific heats of the gas and given data at ξ = −∞. On the basis of this
work, one may draw the following conclusions:

• The thickness of the shock wave decreases with Mach number M1 and non-idealness
of the gas b̄ and increases with the viscosity of the gas.

• The thickness of shock front in unsteady flow is less than the shock thickness in
comparison of steady flow.

• The strength of shock wave increases with the increase in Mach number M1, adiabatic
index γ and non-idealness of gas b̄.

• The continuum hypothesis can be used for the study of shock structure for unsteady
non-ideal gas flow under the viscosity upto Mach numbers M1 = 1.25.

• The velocity decreases but pressure, temperature and change in entropy increase from
boundary state at −∞ to +∞.

• The viscous stress has point of minima at the inflection point of the velocity profile
between the two uniform states.

• The non-idealness of the gas has significant effect on the structure of shock wave.
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