Steck Determinants and Parking Functions

Chanchal Kumar
IISER Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab, India.
chanchal@iisermohali.ac.in

Abstract

For an arbitrary $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ with $x_{i}>0$ for all i, consider the n-dimensional polytope $\Pi_{n}(\mathbf{x})=\left\{\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}: y_{i} \geq 0\right.$ and $\sum_{j=1}^{i} y_{j} \leq \sum_{j=1}^{i} x_{j}$ for all $\left.1 \leq i \leq n\right\}$. The volume $V_{n}(\mathbf{x})=\operatorname{vol}\left(\Pi_{n}(\mathbf{x})\right)$ of the polytope $\Pi_{n}(\mathbf{x})$ has many combinatorial interpretations. In fact, $V_{n}(\mathbf{x})$ is a polynomial expression in x_{1}, \ldots, x_{n}, given by a Steck determinant [2]. If x_{1}, \ldots, x_{n} are all positive integers, then $V_{n}(\mathbf{x})$ can also be expressed in terms of the number of λ-parking functions for $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{i}=x_{1}+\ldots+x_{n-i+1}$ for all $1 \leq i \leq n$. For specific values of $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, many formula for the volume $V_{n}(\mathbf{x})$ have been derived using various techniques. In this paper, these expressions for $V_{n}(\mathrm{x})$ are deduced simply by evaluating the corresponding Steck determinants.

Subject Classification: [2010] 05E40, 13D02

Keywords: Steck determinants; λ-parking functions.

1 Introduction

For $n \geq 1$, Pitman and Stanley [2] considered the n-dimensional polytope

$$
\Pi_{n}(\mathbf{x})=\left\{\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}: y_{i} \geq 0 \text { and } \sum_{j=1}^{i} y_{j} \leq \sum_{j=1}^{i} x_{j} \text { for all } 1 \leq i \leq n\right\} .
$$

for arbitrary $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ with $x_{i}>0$ for all $1 \leq i \leq n$, and showed that the n dimensional volume $V_{n}(\mathbf{x})=\operatorname{vol}\left(\Pi_{n}(\mathbf{x})\right)$ of the polytope $\Pi_{n}(\mathbf{x})$ is a homogeneous polynomial in x_{1}, \ldots, x_{n} of degree n. More precisely, they showed that

$$
V_{n}(\mathbf{x})=\sum_{\mathbf{a} \in K_{n}} \prod_{i=1}^{n} \frac{x_{i}^{a_{i}}}{a_{i}!}=\frac{1}{n!} \sum_{\mathbf{a} \in K_{n}}\binom{n}{a_{1}, \ldots, a_{n}} x_{1}^{a_{1}} \cdots x_{n}^{a_{n}},
$$

where K_{n} consists of all n-tuples $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ of non-negative integers such that $\sum_{i=1}^{j} a_{i} \geq j$ for all $1 \leq j \leq n-1$ and $|\mathbf{a}|=\sum_{i=1}^{n} a_{i}=n$. It can be easily shown that the cardinality $\left|K_{n}\right|$ of K_{n} is the $n^{t h}$ Catalan number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.

Another interpretation of $V_{n}(\mathbf{x})$ is obtained by considering uniform order statistics. The cumulative distribution function of the random vector of order statistics of n independent random variables with uniform distribution on an interval is given by a determinant formula of Steck [4]. We have,

$$
\begin{equation*}
V_{n}(\mathbf{x})=\operatorname{det} \Lambda\left(\sum_{j=1}^{n} x_{j}, \sum_{j=1}^{n-1} x_{j}, \ldots, x_{1}+x_{2}, x_{1}\right) \tag{1.1}
\end{equation*}
$$

where the matrix $\Lambda\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left[m_{i j}\right]_{n \times n}$ is given by $m_{i j}=\left\{\begin{array}{ll}\frac{\lambda_{n-i+1}^{j-i+1}}{(j-i+1)!} & i \leq j+1, \\ 0 & i>j+1,\end{array}\right.$ for $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. The determinant $\operatorname{det} \Lambda\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of the matrix $\Lambda\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is called a Steck determinant.

Pitman and Stanley [2] obtained the volume $V_{n}(\mathbf{x})=V_{n}\left(x_{1}, \ldots, x_{n}\right)$ for some specific values of $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ using some well-known results in the theory of empirical distributions. They proved the following results in section 2 of [2].
Theorem 1.1. For $a, b \geq 0$,

$$
V_{n}(a, b, \ldots, b)=\frac{a(a+n b)^{n-1}}{n!}
$$

Theorem 1.2. For $n \geq 3$ and $a, b, c \geq 0$,

$$
V_{n}(a, \overbrace{b, \ldots, b}^{n-2 \text { places }}, c)=\frac{a(a+n b)^{n-1}+n a(c-b)(a+(n-1) b)^{n-2}}{n!} .
$$

Theorem 1.3. For $n \geq 3,1 \leq m \leq n-2$ and $a, b, c \geq 0$,

$$
V_{n}(a, \overbrace{b, \ldots, b}^{n-m-1}, c, \overbrace{0, \ldots, 0}^{m-1})=a \sum_{j=0}^{m} \frac{(c-(m+1-j) b)^{j}(a+(n-j) b)^{n-j-1}}{j!(n-j)!} .
$$

We now proceed to show a relationship between $V_{n}(\mathbf{x})$ and the number of λ-parking functions of length n. A sequence $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ of non-negative integers is called an (ordinary) parking function of length n if the nondecreasing rearrangement $\mathbf{q}=\left(q_{1}, \ldots, q_{n}\right)$ of \mathbf{p} satisfies $q_{i}<i$ for all $1 \leq i \leq n$. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{N}^{n}$ with $\lambda_{1} \geq \ldots \geq \lambda_{n}$. A sequence $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ of non-negative integers is called a λ-parking function of length
n if the nondecreasing rearrangement $\mathbf{q}=\left(q_{1}, \ldots, q_{n}\right)$ of \mathbf{p} satisfies $q_{i}<\lambda_{n-i+1}$ for all $1 \leq i \leq n$. Clearly, (ordinary) parking functions of length n are λ-parking functions for $\lambda=(n, n-1, \ldots, 2,1)$. Let $\mathbf{P}_{n}(\lambda)$ be the set of λ-parking functions of length n. Then $\left|\mathbf{P}_{n}(\lambda)\right|=n!\operatorname{det} \Lambda\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ (see [2], Theorem 11). The number of (ordinary) parking function of length n equals $(n+1)^{n-1}$. If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{N}^{n}$ is in arithmetic progression, that is, $\lambda_{i}=a+(n-i) b$ for $1 \leq i \leq n$, then in view of Theorem 1.1 and formula 1.1, the number of λ-parking functions equals $a(a+n b)^{n-1}$. For an (oriented) graph G on the vertex set $\{0,1, \ldots, n\}$ rooted at 0 , Postnikov and Shapiro [3] defined a notion of G-parking functions. They showed that the number of G-parking functions is same as the number of rooted oriented-spanning trees of G. Hence, another proof of Theorem 1.1 is given in Example 4.2 of [3]. A purely combinatorial proof of Theorem 1.1 is given by C. H. Yan [5]. Our aim in this paper is to demonstrate that these three results can be easily deduced from the properties of Steck determinants.

2 Properties of Steck Determinants

Let $n \geq 1$ be a positive integer. Suppose $\lambda_{n}=x$ is a variable and $\lambda_{i}=x+(n-i) b$ for $1 \leq i \leq n$ with $b \geq 0$. Consider the Steck determinant

$$
\operatorname{det} \Lambda\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\operatorname{det}\left[\begin{array}{cccccc}
\frac{x}{1} & \frac{x^{2}}{2!} & \frac{x^{3}}{3!} & \ldots & \frac{x^{n-1}}{(n-1)!} & \frac{x^{n}}{n!} \\
1 & \frac{x+b}{1} & \frac{(x+b)^{2}}{2!} & \ldots & \frac{(x+b)^{n-2}}{(n-2)!} & \frac{(x+b)^{n-1}}{(n-1)!} \\
0 & 1 & \frac{x+2 b}{1} & \ldots & \frac{(x+2 b)^{n-3}}{(n-3)!} & \frac{(x+2 b)^{n-2}}{(n-2)!} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & \frac{x+(n-2) b}{1} & \frac{(x+(n-2) b)^{2}}{2!} \\
0 & 0 & 0 & \cdots & 1 & \frac{x+(n-1) b}{1}
\end{array}\right] .
$$

Let $f_{n}(x)=\operatorname{det} \Lambda\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Clearly, $f_{n}(x)$ is a polynomial in x (of degree at most n). Let C_{i} be the $i^{\text {th }}$ column of $\Lambda\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Then $f_{n}(x)=\operatorname{det}\left[C_{1}, \ldots, C_{n}\right]$.

Proposition 2.1. The derivative $f_{n}^{\prime}(x)$ of the polynomial $f_{n}(x)$ is given by $f_{n}^{\prime}(x)=$ $f_{n-1}(x+b)$ for $n>1$. Also, $f_{n}(0)=0$.

Proof. Since $f_{n}(x)=\operatorname{det}\left[C_{1}, \ldots, C_{n}\right]$, the derivative $f_{n}^{\prime}(x)$ of $f_{n}(x)$ with respect to x is given by

$$
f_{n}^{\prime}(x)=\sum_{i=1}^{n} \operatorname{det}\left[C_{1}, \ldots, C_{i}^{\prime}, \ldots, C_{n}\right]
$$

where C_{i}^{\prime} is the derivative of C_{i} with respect to x. For $i \geq 2, C_{i}^{\prime}=C_{i-1}$. Therefore, $\operatorname{det}\left[C_{1}, \ldots, C_{i}^{\prime}, \ldots, C_{n}\right]=0$ for $i \geq 2$. Hence $f_{n}^{\prime}(x)=\operatorname{det}\left[C_{1}^{\prime}, C_{2}, \ldots, C_{n}\right]$. As $C_{1}^{\prime}=\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right]=\mathbf{e}_{\mathbf{1}}$, on expanding the $\operatorname{det}\left[C_{1}^{\prime}, C_{2}, \ldots, C_{n}\right]$ along the first column, we get
$f_{n}^{\prime}(x)=\operatorname{det} \Lambda\left(\lambda_{1}, \ldots, \lambda_{n-1}\right)$, where $\Lambda\left(\lambda_{1}, \ldots, \lambda_{n-1}\right)$ is the matrix obtained from the $n \times n$ matrix $\Lambda\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ by deleting the first row and the first column. Clearly, $f_{n}^{\prime}(x)=$ $f_{n-1}(x+b)$. The second part is obvious.

Proposition 2.2.

$$
f_{n}(x)=\frac{x(x+n b)^{n-1}}{n!}
$$

Proof. Proof is by induction on n. Clearly, $f_{1}(x)=x$ and $f_{2}(x)=\frac{x(x+2 b)}{2!}$. Assume that $f_{m}(x)=\frac{x(x+m b)^{m-1}}{m!}$ is valid for $1 \leq m<n$. Then

$$
f_{n}^{\prime}(x)=f_{n-1}(x+b)=\frac{(x+b)(x+n b)^{n-2}}{(n-1)!} .
$$

On integration, we get

$$
f_{n}(x)=\frac{(x+b)(x+n b)^{n-1}}{(n-1)(n-1)!}-\frac{(x+n b)^{n}}{(n-1) n(n-1)!}+C
$$

where C is a constant of integration. As $f_{n}(0)=0$, we get $C=0$. Hence, we obtain $f_{n}(x)=\frac{x(x+n b)^{n-1}}{n!}$, as desired.

We now prove theorems stated in the introduction.
Proof of Theorem 1.1: Since $V_{n}(a, b, \ldots, b)=f_{n}(a)$, Theorem 1.1 trivially follows from Proposition 2.2.

Proof of Theorem 1.2: Let $\lambda_{i}=a+(n-i) b$ for $1 \leq i \leq n$. Then

$$
V_{n}(a, b, \ldots, b, c)=\operatorname{det} \Lambda\left(\lambda_{1}+(c-b), \lambda_{2}, \ldots, \lambda_{n}\right)=\operatorname{det}\left[\tilde{C}_{1}, \ldots, \tilde{C}_{n}\right]
$$

If C_{i} is the $i^{\text {th }}$ column of the matrix $\Lambda\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, then we see that $\tilde{C}_{i}=C_{i}$ for $1 \leq i \leq n-1$ and $\tilde{C}_{n}=C_{n}+\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ c-b\end{array}\right]=C_{n}+(c-b) \mathbf{e}_{\mathbf{n}}$. As determinant is linear on columns, we see that $V_{n}(a, b, \ldots, b, c)$ equals

$$
\operatorname{det} \Lambda\left(\lambda_{1}, \ldots, \lambda_{n}\right)+(c-b) \operatorname{det} \Lambda\left(\lambda_{2}, \ldots, \lambda_{n}\right)=f_{n}(a)+(c-b) f_{n-1}(a)
$$

Thus Theorem 1.2 follows from Proposition 2.2.
Proof of Theorem 1.3: Proof is by induction on $n+m$. If $m=1$, then it follows from Theorem 1.2. Thus we assume that $m>1$. Let $\lambda_{i}=x+(n-i) b$ for $m+1 \leq i \leq n$
and $\lambda_{j}=x+(n-m-1) b+c$ for $1 \leq j \leq m$. Let $g_{n}(x)=\operatorname{det} \Lambda\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Then as in Proposition 2.1, we see that the derivative $g_{n}^{\prime}(x)=g_{n-1}(x+b)$. Since $g_{n-1}(x+b)=$ $\operatorname{det} \Lambda\left(\lambda_{1}, \ldots, \lambda_{n-1}\right)$ is a Steck determinant of order $n-1$, by induction assumption, we have

$$
g_{n-1}(x)=\frac{x}{(n-1)!} \sum_{j=0}^{m}\binom{n-1}{j}(c-(m+1-j) b)^{j}(x+(n-1-j) b)^{n-j-2}
$$

Thus,

$$
g_{n}^{\prime}(x)=\frac{x+b}{(n-1)!} \sum_{j=0}^{m}\binom{n-1}{j}(c-(m+1-j) b)^{j}(x+(n-j) b)^{n-j-2}
$$

On integration, we obtain

$$
\begin{aligned}
g_{n}(x)= & \frac{x+b}{(n-1)!} \sum_{j=0}^{m}\binom{n-1}{j}(c-(m+1-j) b)^{j} \frac{(x+(n-1-j) b)^{n-j-1}}{n-j-1} \\
& -\frac{1}{(n-1)!} \sum_{j=0}^{m}\binom{n-1}{j}(c-(m+1-j) b)^{j} \frac{(x+(n-1-j) b)^{n-j}}{(n-j)(n-j-1)}+C,
\end{aligned}
$$

where C is a constant of integration. As $g_{n}(0)=0$, we get $C=0$. Hence,

$$
g_{n}(x)=\frac{x}{n!} \sum_{j=0}^{m}\binom{n}{j}(c-(m+1-j) b)^{j}(x+(n-j) b)^{n-j-1}
$$

Now Theorem 1.3 follows by substituting $x=a$ in $g_{n}(x)$.
By an enumeration of λ-parking functions of length n for $\lambda=(a, \ldots, a, b)$, it is shown that

$$
\operatorname{det} \Lambda(a, \ldots, a, b)=\frac{a^{n}-(a-b)^{n}}{n!}
$$

for positive integers $b<a$ (see [1], Corollary 1.1). Let $h_{n}(x)=\operatorname{det} \Lambda\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, where $\lambda_{n}=x$ and $\lambda_{i}=x+(a-b)$ for $1 \leq i \leq n-1$. Then we see that derivative $h_{n}^{\prime}(x)=$ $\operatorname{det}\left(\lambda_{1}, \ldots, \lambda_{n-1}\right)=\frac{(x+(a-b))^{n-1}}{(n-1)!}$. Thus $h_{n}(x)=\frac{(x+(a-b))^{n}}{n!}+C$, where C is a constant of integration. As $h_{n}(0)=0$, we must have $C=-\frac{(a-b)^{n}}{n!}$. Thus

$$
h_{n}(x)=\frac{(x+(a-b))^{n}}{n!}-\frac{(a-b)^{n}}{n!}
$$

On substituting $x=b$ in $h_{n}(x)$, we get $\operatorname{det} \Lambda(a, \ldots, a, b)=h_{n}(b)$ as desired.

References

[1] Kumar A. and Kumar C., Some integer sequences and standard monomials, GANITA Vol. 67 (1), 2017, 33-40.
[2] Pitman J. and Stanley R., A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, Discrete and Computational Geometry 27(2002), 603-634.
[3] Postnikov A. and Shapiro B., Trees, parking functions, syzygies, and deformation of Monomial ideals, Trans. Amer. Math. Soc. 356 (2004), 3109-3142.
[4] Steck G. P., Rectangle probabilities for uniform order statistics and the probability that the empirical distribution function lies between two distribution functions, Ann. Math. Statist. 42 (1971), 1-11.
[5] Yan C. H., On the enumeration of generalized parking functions, Proceedings of the 31st Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Rotan, FL, 2000), Congressus Numerantium 147 (2000), 201-209.

