GANITA, Vol. 68(1), 2018, 33-38 33

Steck Determinants and Parking Functions
Chanchal Kumar

IISER Mohali, Knowledge City,
Sector 81, SAS Nagar, Punjab, India.

chanchal@iisermohali.ac.in

Abstract

For an arbitrary x = (z1,...,x,) € R™ with z; > 0 for all 4, consider
the n-dimensional polytope

I, (x) = {(y1,---,Yn) E R" : y; > 0and Zyj < ij for all1 <i < n}.

J=1 Jj=1

The volume V,,(x) = vol(IL,(x)) of the polytope II,,(x) has many com-
binatorial interpretations. In fact, V,(x) is a polynomial expression in
Z1,...,2n, given by a Steck determinant [2]. If xy,..., 2, are all posi-
tive integers, then V,,(x) can also be expressed in terms of the number
of A-parking functions for A = (A\,...,\,) with \; =21 + ... + @11
for all 1 < ¢ < n. For specific values of x = (z1,...,2,), many formula
for the volume V,,(x) have been derived using various techniques. In this
paper, these expressions for V,,(x) are deduced simply by evaluating the
corresponding Steck determinants.
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1 Introduction

For n > 1, Pitman and Stanley [2] considered the n-dimensional polytope

II,(x) = < (y1,.-.,yn) € R" 1 y; > 0 and Zngz:xj forall1<i<n

j=1 j=1
for arbitrary x = (x1,...,2,) with z; > 0 for all 1 < ¢ < n, and showed that the n-
dimensional volume V,,(x) = vol(Il,,(x)) of the polytope II,(x) is a homogeneous polyno-
mial in x1,...,x, of degree n. More precisely, they showed that

v i - xiai_ 1 n ay an
w0 =3 o= 2 (o g, )

ack, i=1 ’ Tack,
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where K, consists of all n-tuples a = (a1,...,ay) € N of non-negative integers such that
S ja;>jforalll <j<n-—1and|a] =) ",a; =n. It can be easily shown that the
cardinality |K,| of K, is the n'* Catalan number C,, = n%rl (277:)

Another interpretation of V,,(x) is obtained by considering uniform order statistics. The
cumulative distribution function of the random vector of order statistics of n independent

random variables with uniform distribution on an interval is given by a determinant formula
of Steck [4]. We have,

n n—1
(1.1) Vn(x) =det A ij,ij,...,xl—l—xg,xl ,
=1 j=1

j—i+1
| _ - _ {A Pi<j+1,
where the matrix A(Ai,..., ) = [Myjlnxn is given by m;; = ¢ G—i+D! for
0 1> j+1,
A= (A1,...,An). The determinant det A(A1,...,\,) of the matrix A(\y,...,\,) is called
a Steck determinant.
Pitman and Stanley [2] obtained the volume V,,(x) = V,,(z1,...,z,) for some spe-
cific values of x = (z1,...,x,) using some well-known results in the theory of empirical
distributions. They proved the following results in section 2 of [2].

Theorem 1.1. Fora,b >0,

a(a + nb)"~!
n! ’

Theorem 1.2. Forn > 3 and a,b,c > 0,

n—2 places
Vi (a, m o) = a(a +nb)" ! +na(c—b)(a+ (n — 1)b)”_2'

n!

Theorem 1.3. Forn>3,1<m <n-—2 anda,b,c>0,

n—m—1 places m—1 places . .
—— —N— i — 1—4)b) — pyri-l
Vi(a, b-...b e o,...,O):aZ(C (m + ],),(21(6‘7;,(” T
; jln —j4)!

j=0

We now proceed to show a relationship between V,,(x) and the number of A-parking
functions of length n. A sequence p = (pi1,...,pn) of non-negative integers is called an
(ordinary) parking function of length n if the nondecreasing rearrangement q = (q1, . .., ¢n)
of p satisfies ¢; < i forall 1 <i <n. Let A= (A1,...,An) € N* with Ay > ... > \,. A
sequence p = (p1,...,pn) of non-negative integers is called a \-parking function of length
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n if the nondecreasing rearrangement q = (qi,...,qy) of p satisfies ¢; < A,—;y1 for all
1 <i < n. Clearly, (ordinary) parking functions of length n are A-parking functions for
A= (n,n—1,...,2,1). Let P,(\) be the set of A-parking functions of length n. Then
|P,(A)] = nldet A(A1,...,\n) (see [2], Theorem 11). The number of (ordinary) parking
function of length n equals (n41)""1. If X = (A1,..., \,) € N"is in arithmetic progression,
that is, \; = a + (n — )b for 1 < i < n, then in view of Theorem 1.1 and formula 1.1,
the number of A\-parking functions equals a(a + nb)"~!. For an (oriented) graph G on
the vertex set {0,1,...,n} rooted at 0, Postnikov and Shapiro [3] defined a notion of
G-parking functions. They showed that the number of G-parking functions is same as the
number of rooted oriented-spanning trees of G. Hence, another proof of Theorem 1.1 is
given in Example 4.2 of [3]. A purely combinatorial proof of Theorem 1.1 is given by C.
H. Yan [5]. Our aim in this paper is to demonstrate that these three results can be easily
deduced from the properties of Steck determinants.

2 Properties of Steck Determinants

Let n > 1 be a positive integer. Suppose A, = z is a variable and \; = z + (n — )b for
1 < ¢ <n with b > 0. Consider the Steck determinant

- 2

t g gz o =
1 zfb  (z+b)? (z4b)" 2 (z4b)"~!
1 2! (n—2)! (n—1)!
0 1 T+2b (z+20)" =3 (z+2b)" 2
det A(Aq, ..., \p) = det 1 T (n=3)! (n—2)!
0 0 0 ... zHn=2b (o2
z+(n=1)b
0 0 0o ... 1 # |

Let fn(x) = det A(A1,...,A\y). Clearly, fn(x) is a polynomial in = (of degree at most n).
Let C; be the i column of A(A1,...,\,). Then f,(z) = det[Cy,...,Cyl.

Proposition 2.1. The derivative f](x) of the polynomial f,(z) is given by fl(x) =
fn—1(x +b) forn > 1. Also, fn(0)=0.

Proof. Since fn(x) = det[C1,...,Cy], the derivative f)(z) of fn(x) with respect to z is
given by

fol@)=> det[Ch,...,C},...,Cnl,
=1

C! = Cj—1. There-

where C/ is the derivative of C; with respect to z. For i > 2,
= det[C],Cy,...,Cy]. As

fore, det[C,...,Cl,...,Cy] = 0 for i > 2. Hence f/(z)
1

0
C7 = |.| = e1, on expanding the det[C{,Cy,...,C,] along the first column, we get
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fl(x) =det A(A1, ..., A\p—1), where A(Aq, ..., \,—1) is the matrix obtained from the n x n
matrix A(A1,...,\,) by deleting the first row and the first column. Clearly, f/(z) =
fn—1(x +b). The second part is obvious. O

Proposition 2.2.

z(x 4+ nb)" 1
ful(z) = n!
Proof. Proof is by induction on n. Clearly, f1(z) = z and fo(z) = m(”";%). Assume that
fm(z) = WJFZ*?)WA is valid for 1 < m < n. Then
b _ (z+b)(z+nb)"?

On integration, we get

n—1 n

fol) = (z+b)(+nb)""  (z+nb) el

(n—1)(n—1)! (n—1)n(n—1)!

where C' is a constant of integration. As f,(0) = 0, we get C' = 0. Hence, we obtain
fnlx) = M, as desired. O

n!

We now prove theorems stated in the introduction.

Proof of Theorem 1.1: Since Vj,(a,b,...,b) = f,(a), Theorem 1.1 trivially follows from
Proposition 2.2. ]

Proof of Theorem 1.2: Let \; = a+ (n —4)b for 1 <1i <n. Then
Vi(a,b,...,b,c) =det A\ + (¢ — b), Ao, ..., \y) = det[Ch, ..., Chl.

If C; is the i*" column of the matrix A(Aq, ..., \,), then we see that Ci=Cifor1 <i<n—1
0

and C,, = C,, + 0 = Cy, + (¢ — b)en. As determinant is linear on columns, we see

c—b
that V,,(a,b,...,b,c) equals
detA()‘la R >\n) + (C - b) detA()‘Qa R )\n) = fn(a) + (C - b)fnfl(a)'
Thus Theorem 1.2 follows from Proposition 2.2. O

Proof of Theorem 1.3: Proof is by induction on n + m. If m = 1, then it follows from
Theorem 1.2. Thus we assume that m > 1. Let \; =z 4+ (n—i)bform+1<i<mn
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and \j =z +(n—m—1)b+cfor 1 <j < m. Let g,(x) = det A(A1,...,\;). Then as
in Proposition 2.1, we see that the derivative g}, (x) = gn—1(z + b). Since gn—1(xz +b) =
det A(A1,...,A\n—1) is a Steck determinant of order n — 1, by induction assumption, we
have

gn—1(z) = W Z

(n_1>(c—(m+1—3)b) (o4 (n—1— j)byni-2.
7=0

J

Thus,

oz +b " /n—1
gn(x)_(n_1| ]

)(a—<m+1—y>b>f‘<x+<n—.7>b>” i,

On integration, we obtain

. z+b (n-1 B . (x—l—(n—l—g)b)”f1
galz) = Z( .)(a (m+1— )by L

I T A W B 13
-40< >( = —i-n ¢

where C' is a constant of integration. As g,(0) = 0, we get C' = 0. Hence,

9n( an()C— (m+1—5§)b) (z+ (n— )b,

Now Theorem 1.3 follows by substituting * = a in g, (z). O
By an enumeration of A-parking functions of length n for A = (a,...,a,b), it is shown
that
n __ —p)"
det A(a,...,a,b) = W
n!

for positive integers b < a (see [1], Corollary 1.1). Let h,(x) = det A(\1,...,A,), where
Ay =xand \; = 2+ (a—b) for 1 < i < n—1. Then we see that derivative h] (z) =

det(A1,..., A\p—1) = % Thus hy,(x) = M + C, where C is a constant of

integration. As h,(0) = 0, we must have C' = — (b b) . Thus

) = EHED (b

On substituting = = b in h,(z), we get det A(a, ..., a,b) = hy,(b) as desired.
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