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Abstract

For an arbitrary x = (x1, . . . , xn) ∈ Rn with xi > 0 for all i, consider
the n-dimensional polytope

Πn(x) = {(y1, . . . , yn) ∈ Rn : yi ≥ 0 and

i∑
j=1

yj ≤
i∑

j=1

xj for all 1 ≤ i ≤ n}.

The volume Vn(x) = vol(Πn(x)) of the polytope Πn(x) has many com-
binatorial interpretations. In fact, Vn(x) is a polynomial expression in
x1, . . . , xn, given by a Steck determinant [2]. If x1, . . . , xn are all posi-
tive integers, then Vn(x) can also be expressed in terms of the number
of λ-parking functions for λ = (λ1, . . . , λn) with λi = x1 + . . . + xn−i+1

for all 1 ≤ i ≤ n. For specific values of x = (x1, . . . , xn), many formula
for the volume Vn(x) have been derived using various techniques. In this
paper, these expressions for Vn(x) are deduced simply by evaluating the
corresponding Steck determinants.
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1 Introduction

For n ≥ 1, Pitman and Stanley [2] considered the n-dimensional polytope

Πn(x) =

(y1, . . . , yn) ∈ Rn : yi ≥ 0 and

i∑
j=1

yj ≤
i∑

j=1

xj for all 1 ≤ i ≤ n

 .

for arbitrary x = (x1, . . . , xn) with xi > 0 for all 1 ≤ i ≤ n, and showed that the n-
dimensional volume Vn(x) = vol(Πn(x)) of the polytope Πn(x) is a homogeneous polyno-
mial in x1, . . . , xn of degree n. More precisely, they showed that

Vn(x) =
∑
a∈Kn

n∏
i=1

xi
ai

ai!
=

1

n!

∑
a∈Kn

(
n

a1, . . . , an

)
xa11 · · ·x

an
n ,
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where Kn consists of all n-tuples a = (a1, . . . , an) ∈ Nn of non-negative integers such that∑j
i=1 ai ≥ j for all 1 ≤ j ≤ n− 1 and |a| =

∑n
i=1 ai = n. It can be easily shown that the

cardinality |Kn| of Kn is the nth Catalan number Cn = 1
n+1

(
2n
n

)
.

Another interpretation of Vn(x) is obtained by considering uniform order statistics. The
cumulative distribution function of the random vector of order statistics of n independent
random variables with uniform distribution on an interval is given by a determinant formula
of Steck [4]. We have,

(1.1) Vn(x) = det Λ

 n∑
j=1

xj ,

n−1∑
j=1

xj , . . . , x1 + x2, x1

 ,

where the matrix Λ(λ1, . . . , λn) = [mij ]n×n is given by mij =

{
λj−i+1
n−i+1

(j−i+1)! i ≤ j + 1,

0 i > j + 1,
for

λ = (λ1, . . . , λn). The determinant det Λ(λ1, . . . , λn) of the matrix Λ(λ1, . . . , λn) is called
a Steck determinant.

Pitman and Stanley [2] obtained the volume Vn(x) = Vn(x1, . . . , xn) for some spe-
cific values of x = (x1, . . . , xn) using some well-known results in the theory of empirical
distributions. They proved the following results in section 2 of [2].

Theorem 1.1. For a, b ≥ 0,

Vn(a, b, . . . , b) =
a(a+ nb)n−1

n!
.

Theorem 1.2. For n ≥ 3 and a, b, c ≥ 0,

Vn(a,

n−2 places︷ ︸︸ ︷
b, . . . , b , c) =

a(a+ nb)n−1 + na(c− b)(a+ (n− 1)b)n−2

n!
.

Theorem 1.3. For n ≥ 3, 1 ≤ m ≤ n− 2 and a, b, c ≥ 0,

Vn(a,

n−m−1 places︷ ︸︸ ︷
b, . . . , b , c,

m−1 places︷ ︸︸ ︷
0, . . . , 0 ) = a

m∑
j=0

(c− (m+ 1− j)b)j (a+ (n− j)b)n−j−1

j!(n− j)!
.

We now proceed to show a relationship between Vn(x) and the number of λ-parking
functions of length n. A sequence p = (p1, . . . , pn) of non-negative integers is called an
(ordinary) parking function of length n if the nondecreasing rearrangement q = (q1, . . . , qn)
of p satisfies qi < i for all 1 ≤ i ≤ n. Let λ = (λ1, . . . , λn) ∈ Nn with λ1 ≥ . . . ≥ λn. A
sequence p = (p1, . . . , pn) of non-negative integers is called a λ-parking function of length
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n if the nondecreasing rearrangement q = (q1, . . . , qn) of p satisfies qi < λn−i+1 for all
1 ≤ i ≤ n. Clearly, (ordinary) parking functions of length n are λ-parking functions for
λ = (n, n − 1, . . . , 2, 1). Let Pn(λ) be the set of λ-parking functions of length n. Then
|Pn(λ)| = n! det Λ(λ1, . . . , λn) (see [2], Theorem 11). The number of (ordinary) parking
function of length n equals (n+1)n−1. If λ = (λ1, . . . , λn) ∈ Nn is in arithmetic progression,
that is, λi = a + (n − i)b for 1 ≤ i ≤ n, then in view of Theorem 1.1 and formula 1.1,
the number of λ-parking functions equals a(a + nb)n−1. For an (oriented) graph G on
the vertex set {0, 1, . . . , n} rooted at 0, Postnikov and Shapiro [3] defined a notion of
G-parking functions. They showed that the number of G-parking functions is same as the
number of rooted oriented-spanning trees of G. Hence, another proof of Theorem 1.1 is
given in Example 4.2 of [3]. A purely combinatorial proof of Theorem 1.1 is given by C.
H. Yan [5]. Our aim in this paper is to demonstrate that these three results can be easily
deduced from the properties of Steck determinants.

2 Properties of Steck Determinants

Let n ≥ 1 be a positive integer. Suppose λn = x is a variable and λi = x + (n − i)b for
1 ≤ i ≤ n with b ≥ 0. Consider the Steck determinant

det Λ(λ1, . . . , λn) = det



x
1

x2

2!
x3

3! . . . xn−1

(n−1)!
xn

n!

1 x+b
1

(x+b)2

2! . . . (x+b)n−2

(n−2)!
(x+b)n−1

(n−1)!

0 1 x+2b
1 . . . (x+2b)n−3

(n−3)!
(x+2b)n−2

(n−2)!
...

...
...

. . .
...

...

0 0 0 . . . x+(n−2)b
1

(x+(n−2)b)2
2!

0 0 0 . . . 1 x+(n−1)b
1


.

Let fn(x) = det Λ(λ1, . . . , λn). Clearly, fn(x) is a polynomial in x (of degree at most n).
Let Ci be the ith column of Λ(λ1, . . . , λn). Then fn(x) = det[C1, . . . , Cn].

Proposition 2.1. The derivative f ′n(x) of the polynomial fn(x) is given by f ′n(x) =
fn−1(x+ b) for n > 1. Also, fn(0) = 0.

Proof. Since fn(x) = det[C1, . . . , Cn], the derivative f ′n(x) of fn(x) with respect to x is
given by

f ′n(x) =

n∑
i=1

det[C1, . . . , C
′
i, . . . , Cn],

where C ′i is the derivative of Ci with respect to x. For i ≥ 2, C ′i = Ci−1. There-
fore, det[C1, . . . , C

′
i, . . . , Cn] = 0 for i ≥ 2. Hence f ′n(x) = det[C ′1, C2, . . . , Cn]. As

C ′1 =


1
0
...
0

 = e1, on expanding the det[C ′1, C2, . . . , Cn] along the first column, we get
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f ′n(x) = det Λ(λ1, . . . , λn−1), where Λ(λ1, . . . , λn−1) is the matrix obtained from the n× n
matrix Λ(λ1, . . . , λn) by deleting the first row and the first column. Clearly, f ′n(x) =
fn−1(x+ b). The second part is obvious.

Proposition 2.2.

fn(x) =
x(x+ nb)n−1

n!
.

Proof. Proof is by induction on n. Clearly, f1(x) = x and f2(x) = x(x+2b)
2! . Assume that

fm(x) = x(x+mb)m−1

m! is valid for 1 ≤ m < n. Then

f ′n(x) = fn−1(x+ b) =
(x+ b)(x+ nb)n−2

(n− 1)!
.

On integration, we get

fn(x) =
(x+ b)(x+ nb)n−1

(n− 1)(n− 1)!
− (x+ nb)n

(n− 1)n(n− 1)!
+ C,

where C is a constant of integration. As fn(0) = 0, we get C = 0. Hence, we obtain

fn(x) = x(x+nb)n−1

n! , as desired.

We now prove theorems stated in the introduction.

Proof of Theorem 1.1: Since Vn(a, b, . . . , b) = fn(a), Theorem 1.1 trivially follows from
Proposition 2.2. �

Proof of Theorem 1.2: Let λi = a+ (n− i)b for 1 ≤ i ≤ n. Then

Vn(a, b, . . . , b, c) = det Λ(λ1 + (c− b), λ2, . . . , λn) = det[C̃1, . . . , C̃n].

If Ci is the ith column of the matrix Λ(λ1, . . . , λn), then we see that C̃i = Ci for 1 ≤ i ≤ n−1

and C̃n = Cn +


0
...
0

c− b

 = Cn + (c − b)en. As determinant is linear on columns, we see

that Vn(a, b, . . . , b, c) equals

det Λ(λ1, . . . , λn) + (c− b) det Λ(λ2, . . . , λn) = fn(a) + (c− b)fn−1(a).

Thus Theorem 1.2 follows from Proposition 2.2. �

Proof of Theorem 1.3: Proof is by induction on n + m. If m = 1, then it follows from
Theorem 1.2. Thus we assume that m > 1. Let λi = x + (n − i)b for m + 1 ≤ i ≤ n
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and λj = x + (n −m − 1)b + c for 1 ≤ j ≤ m. Let gn(x) = det Λ(λ1, . . . , λn). Then as
in Proposition 2.1, we see that the derivative g′n(x) = gn−1(x + b). Since gn−1(x + b) =
det Λ(λ1, . . . , λn−1) is a Steck determinant of order n − 1, by induction assumption, we
have

gn−1(x) =
x

(n− 1)!

m∑
j=0

(
n− 1

j

)
(c− (m+ 1− j)b)j(x+ (n− 1− j)b)n−j−2.

Thus,

g′n(x) =
x+ b

(n− 1)!

m∑
j=0

(
n− 1

j

)
(c− (m+ 1− j)b)j(x+ (n− j)b)n−j−2.

On integration, we obtain

gn(x) =
x+ b

(n− 1)!

m∑
j=0

(
n− 1

j

)
(c− (m+ 1− j)b)j (x+ (n− 1− j)b)n−j−1

n− j − 1

− 1

(n− 1)!

m∑
j=0

(
n− 1

j

)
(c− (m+ 1− j)b)j (x+ (n− 1− j)b)n−j

(n− j)(n− j − 1)
+ C,

where C is a constant of integration. As gn(0) = 0, we get C = 0. Hence,

gn(x) =
x

n!

m∑
j=0

(
n

j

)
(c− (m+ 1− j)b)j(x+ (n− j)b)n−j−1.

Now Theorem 1.3 follows by substituting x = a in gn(x). �

By an enumeration of λ-parking functions of length n for λ = (a, . . . , a, b), it is shown
that

det Λ(a, . . . , a, b) =
an − (a− b)n

n!

for positive integers b < a (see [1], Corollary 1.1). Let hn(x) = det Λ(λ1, . . . , λn), where
λn = x and λi = x + (a − b) for 1 ≤ i ≤ n − 1. Then we see that derivative h′n(x) =

det(λ1, . . . , λn−1) = (x+(a−b))n−1

(n−1)! . Thus hn(x) = (x+(a−b))n
n! + C, where C is a constant of

integration. As hn(0) = 0, we must have C = − (a−b)n
n! . Thus

hn(x) =
(x+ (a− b))n

n!
− (a− b)n

n!
.

On substituting x = b in hn(x), we get det Λ(a, . . . , a, b) = hn(b) as desired.
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