Hermite Trigonometric Interpolation

Swarnima Bahadur ${ }^{1}$ Ravindra Kumar Katheriya ${ }^{2}$
Department of Mathematics \& Astronomy, University of Lucknow, Lucknow, India
swarnimabahadur@ymail.com ${ }^{1}$
ravindra.katheriya104@gmail.com ${ }^{2}$

Abstract

In this paper, we consider the explicit representation of Hermite interpolation by trigonometric polynomial $R_{n}(x)$ of order n on the zeros of $\sin m x$ at the points $x_{k}=\frac{2 \pi k}{n}$, where, $k=0,1,2, \ldots \ldots ., n-1$ and n is even $(n=2 m)$. We discuss about the convergence for the same.

Subject Classification: 42A15,42A20.
Keywords: Hermite Interpolation, Trigonometric polynomial, Explicit representation, Estimation, Convergence.

1 Introduction

In this paper, we deal with the Hermite Interpolation by the trigonometric polynomial. Let $R_{n}(x)$ of order n be a unique trigonometric polynomial, when nodes are taken to be $x_{k}=\frac{2 \pi k}{n}, k=0,1,2 \ldots \ldots . n-1$, satisfying the given conditions

$$
R_{n}\left(x_{k}\right)=a_{k}, \quad \quad R_{n}^{\prime}\left(x_{k}\right)=b_{k}
$$

where, a_{k} and b_{k} are arbitrary real numbers. Here we determine the explicit representation of trigonometric polynomial $R_{n}(x)$ and discuss its convergence.

In 1960, O.Kiš[6] studied the $(0,2)$ case. A. Sharma and A.K. Varma[3] generalized the above case by the Trigonometric $(0, m)$ interpolation in 1965 , where, $m \geq 2$. Several other mathematicians have done many works with the higher order derivatives of the function. In 1973, A.K. Varma[2] discussed the Hermite-Birkhoff trigonometric interpolation by $(0,1,2, M)$ case. On inspired by this, we have taken the case $(0,1)$.

2 Statement of the main theorem:

We are interested in the trigonometric polynomial $R_{n}(x)$ of suitable order such that

$$
\begin{equation*}
R_{n}\left(x_{k}\right)=a_{k}, \quad R_{n}^{\prime}\left(x_{k}\right)=b_{k}, \tag{2.1}
\end{equation*}
$$

where, $x_{k}=\frac{2 \pi k}{n}, k=0,1,2 \ldots \ldots . n-1$. This is called the case of Hermite Trigonometric Interpolation, when n is even $(=2 m)$. We require the trigonometric polynomial $R_{n}(x)$ to have the form

$$
\begin{equation*}
d_{0}+\sum_{k=1}^{2 m-1}\left(d_{k} \cos k x+e_{k} \sin k x\right)+d_{2 m} \cos 2 m x \tag{2.2}
\end{equation*}
$$

We shall prove the following.
Theorem 2.1. The trigonometric polynomial $R_{n}(x)$ satisfying (2.1) having form (2.2) is given by

$$
\begin{equation*}
R_{n}(x)=\sum_{k=0}^{n-1} a_{k} U\left(x-x_{k}\right)+\sum_{k=0}^{n-1} b_{k} V\left(x-x_{k}\right) \tag{2.3}
\end{equation*}
$$

where,

$$
\begin{align*}
& U(x)=\sum_{j=1}^{2 m-1}\left(\frac{2}{n}-\frac{2 j}{n^{2}}\right) \cos j x+\frac{1}{n} \tag{2.4}\\
& V(x)=\frac{2}{n^{2}} \sum_{j=1}^{2 m-1} \sin j x+\frac{1}{n^{2}} \sin 2 m x \tag{2.5}
\end{align*}
$$

Theorem 2.2. Let $f(x)$ be a 2π-periodic continuous function with $f(x) \in \operatorname{Lip} \alpha, \alpha>0$, then

$$
\begin{equation*}
R_{n}(x)=\sum_{k=0}^{n-1} f\left(x_{k}\right) U\left(x-x_{k}\right)+\sum_{k=0}^{n-1} b_{k} V\left(x-x_{k}\right) \tag{2.6}
\end{equation*}
$$

converges uniformly to $f(x)$ on every closed finite interval on the x-axis, where, $b_{k}^{\prime} s$ are arbitrary real numbers, such that

$$
\begin{equation*}
\left|b_{k}\right|=O\left(\frac{n}{\log n}\right), \quad k=0,1,2 \ldots \ldots n-1 \tag{2.7}
\end{equation*}
$$

3 Proof of Theorem (2.1):

Here we shall discuss the method of determining $U(x)$ and $V(x)$ which satisfies the given conditions

$$
U\left(x_{k}\right)=\left\{\begin{array}{ll}
1, & \text { for } k=0 \tag{3.1}\\
0, & \text { for } 1 \leq|k| \leq n-1
\end{array}, \quad U^{\prime}\left(x_{k}\right)=0\right.
$$

$$
V\left(x_{k}\right)=0, \quad V^{\prime}\left(x_{k}\right)= \begin{cases}1, & \text { for } k=0 \tag{3.2}\\ 0, & \text { for } 1 \leq|k| \leq n-1\end{cases}
$$

respectively. We shall give full method of determining explicit form of $V(x)$. Similarly, one can obtain the explicit form of $U(x)$ owing to condition (3.1). For avoiding the repeatation we are omitting the method of determining $U(x)$.

Let $V(x)=g(x) \sin m x$, and $V(x)$ satisfies the given condition (3.2). where, $g(x)$ is a trigonometric polynomial of order $\leq m$.
Now,

$$
\begin{equation*}
V^{\prime}(x)=g^{\prime}(x) \sin m x+g(x) m \cos m x \tag{3.3}
\end{equation*}
$$

and satisfying the given condition (3.2), which gives

$$
m(-1)^{k} g\left(x_{k}\right)= \begin{cases}1, & \text { for } k=0 \tag{3.4}\\ 0, & \text { for } 1 \leq|k| \leq n-1\end{cases}
$$

Hence,

$$
\begin{equation*}
m g(x)=\frac{1}{2 m} \sin m x \cot \frac{x}{2}+a \sin m x \tag{3.5}
\end{equation*}
$$

where, a is arbitrary constant and

$$
\sin m x \cot \frac{x}{2}=1+2 \sum_{j=1}^{m-1} \cos j x+\cos m x, \quad n=2 m
$$

is the trigonometric series. Hence,

$$
\begin{equation*}
g(x)=\frac{2}{n^{2}}\left\{1+2 \sum_{j=1}^{m-1} \cos j x+\cos m x\right\}+\frac{a}{n} \sin m x \tag{3.6}
\end{equation*}
$$

Since, $V(x)=g(x) \sin m x$. Then

$$
\begin{equation*}
V(x)=\frac{2}{n^{2}} \sum_{j=1}^{2 m-1} \sin j x+\frac{1}{n^{2}} \sin 2 m x+\frac{a}{n} \sin ^{2} m x \tag{3.7}
\end{equation*}
$$

where, a is arbitrary constant. Since, $V\left(x-x_{k}\right)$ has no term having $\cos 2 m x$. Hence $a=0$.

4 Estimates of the fundamental polynomials:

Lemma 4.1. The $V(x)$ defined in (2.5). Then

$$
\begin{equation*}
\sum_{k=0}^{n-1}\left|V\left(x-x_{k}\right)\right| \leq C_{1} n^{-1} \log n \tag{4.1}
\end{equation*}
$$

where, C_{1} is a numerical constant.
Proof. We have $V(x)$ in (2.5). Then

$$
\begin{equation*}
\sum_{k=0}^{n-1}\left|V\left(x-x_{k}\right)\right|=\sum_{k=0}^{n-1}\left|\frac{2}{n^{2}} \sum_{j=1}^{2 m-1} \sin j\left(x-x_{k}\right)+\frac{1}{n^{2}} \sin 2 m\left(x-x_{k}\right)\right| \tag{4.2}
\end{equation*}
$$

Since,

$$
\begin{equation*}
\sum_{k=0}^{n-1}\left|V\left(x-x_{k}\right)\right| \leq \sum_{k=0}^{n-1}\left|\frac{2}{n^{2}} \sum_{j=1}^{2 m-1} \sin j\left(x-x_{k}\right)\right|+\left|\frac{1}{n^{2}} \sin 2 m\left(x-x_{k}\right)\right| \tag{4.3}
\end{equation*}
$$

By using the well known inequality (Jackson [5], page 120)

$$
\begin{equation*}
\sum_{k=0}^{n-1} \max _{p}\left|\sum_{j=o}^{p} \sin j\left(x-x_{k}\right)\right| \leq 4 \log n \tag{4.4}
\end{equation*}
$$

The lemma follows.
Lemma 4.2. The fundamental polynomial $U\left(x-x_{k}\right)$ defined in (2.4). Then

$$
\begin{equation*}
\sum_{k=0}^{n-1}\left|U\left(x-x_{k}\right)\right| \leq C_{2} \log n \tag{4.5}
\end{equation*}
$$

where, C_{2} is a numerical constant.
Proof. The fundamental polynomial $U(x)$ is given in (2.4).
Then

$$
\begin{gather*}
\sum_{k=0}^{n-1}\left|U\left(x-x_{k}\right)\right|=\sum_{k=0}^{n-1}\left|\sum_{j=1}^{2 m-1}\left(\frac{2}{n}-\frac{2 j}{n^{2}}\right) \cos j\left(x-x_{k}\right)+\frac{1}{n}\right| \tag{4.6}\\
\sum_{k=0}^{n-1}\left|U\left(x-x_{k}\right)\right| \leq \sum_{k=0}^{n-1} \max _{1 \leq p \leq 2 m-1}\left|\sum_{j=0}^{p} a_{j} \cos j\left(x-x_{k}\right)\right|+\sum_{k=0}^{n-1} \max \left|\frac{1}{n}\right| \tag{4.7}
\end{gather*}
$$

where,

$$
A_{j}=\left(\frac{2}{n}-\frac{2 j}{n^{2}}\right)
$$

A_{j} is a decreasing function, when $n \leq j$. So that $\max A_{j}=\frac{2}{n}$. On using Jackson Theorem ([5], page 120), we get required result.

5 Proof of theorem (2.2):

In order to prove the theorem (2.2), we need the following results.
Remark: If $f(x)$ is a continuous 2π-periodic function and satisfying $f(x) \in \operatorname{Lip\alpha }, 0<$ $\alpha \leq 1$, Then there exist a trigonometric polynomial $T_{n}(x)$ of order $\leq n$ satisfying Jackson condition[5]

$$
\begin{equation*}
\left|f(x)-T_{n}(x)\right|=O\left(n^{-\alpha}\right) \tag{5.1}
\end{equation*}
$$

also the condition due to $\mathbf{O} . \mathbf{K i s ̌}[6]$

$$
\begin{equation*}
\left|T_{n}^{(p)}(x)\right|=O\left(n^{p-\alpha}\right), p=1 . \tag{5.2}
\end{equation*}
$$

A trigonometric polynomial $T_{n}(x)$ of order n, which satisfies (5.1), (5.2) By the uniqueness theorem we have

$$
\begin{align*}
\left|f(x)-R_{n}(x)\right| & \leq\left|f(x)-T_{n}(x)\right|+\mid \sum_{k=0}^{n-1}\left(T_{n}\left(x_{k}\right)-f\left(x_{k}\right)\right) U\left(x-x_{k}\right) \\
& +\sum_{k=0}^{n-1}\left(T_{n}^{\prime}\left(x_{k}\right)-b_{k}\right) V\left(x-x_{k}\right) \mid \\
& \leq \sum_{r=1}^{2} S_{r}+\left|f(x)-T_{n}(x)\right| . \tag{5.3}
\end{align*}
$$

By using the (4.5) and (5.1), we have

$$
\begin{equation*}
S_{1}=O(1) \tag{5.4}
\end{equation*}
$$

as $0<\alpha \leq 1$.
By using (2.7), (4.1), (5.2), we get

$$
\begin{equation*}
S_{2}=O(1), \tag{5.5}
\end{equation*}
$$

as $0<\alpha \leq 1$.
By using (5.1), (5.4) and (5.5) in (5.3),the theorem as follows.

References

[1] A.K.Varma, Some remarks on trigonometric interpolation; Israel Jour. of Math. Vol.7, 1969, p.p. 177-185.
[2] A.K.Varma, Hermite-Birkhoff trigonometric interpolation in the ($0,1,2, \mathrm{M}$) case; Journal of the Australian Mathematical Society 1973, p.p. 228-242.
[3] A.Sharma and A.K.Varma,Trigonometric interpolation; Duke Math.Jour. 32(2),1965,p.p. 341-358.
[4] A.Zygmund, Trigonometric series; Vol.I and Vol.II,Cambridge 1959.
[5] D. Jackson, The theory of approximation; Amer. Math. Soc. Colloquium Pub.,Vol.II,1930.
[6] O.Kiš, On Trigonometric (0,2) interpolation (Russian); Acta Math. Acad. Sci. Hung.11, 1960, p.p. 256-276.

