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Abstract

The present paper deals with the study of Ricci solitons on invari-
ant and anti-invariant submanifolds of (LC'S),-manifolds with respect to
Riemannian connection as well as quarter symmetric metric connection.
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1 Introduction

In 1982, Hamilton [7] introduced the notion of Ricci flow to find a canonical metric on a
smooth manifold. Then Ricci flow has become a powerful tool for the study of Riemannian
manifolds, especially for manifolds with positive curvature. Perelman [22] used Ricci flow
and its surgery to prove Poincare conjecture. The Ricci flow is an evolution equation for
metrics on a Riemannian manifold defined as follows:

0
agij
A Ricci soliton emerges as the limit of the solutions of the Ricci flow. A solution to the
Ricci flow is called Ricci soliton if it moves only by a one parameter group of diffeomorphism

(t) = —2R;;.

! corresponding author



o4 Hui, Prasad and Pal: Ricci Solitons on submanifolds of (LC'S),,-Manifolds

and scaling. A Ricci soliton (g, V, A) on a Riemannian manifold (M, g) is a generalization
of an Einstein metric such that [8]

(1.1) £yg+2S +2\g =0,

where S is the Ricci tensor, £y is the Lie derivative operator along the vector field V' on
M and X is a real number. The Ricci soliton is said to be shrinking, steady and expanding
according as A is negative, zero and positive respectively.

During the last two decades, the geometry of Ricci solitons has been the focus of atten-
tion of many mathematicians. In particular, it has become more important after Perelman
applied Ricci solitons to solve the long standing Poincare conjecture posed in 1904. In [29]
Sharma studied the Ricci solitons in contact geometry. Thereafter, Ricci solitons in contact
metric manifolds have been studied by various authors such as Bejan and Crasmareanu [1],
Hui et al. ([2],[13]-[15], [17]), Chen and Deshmukh [3], Deshmukh et al. [4], He and Zhu
[10], Tripathi [30] and many others.

In 2003, Shaikh [23] introduced the notion of Lorentzian concircular structure man-
ifolds (briefly, (LCS),-manifolds), with an example, which generalizes the notion of LP-
Sasakian manifolds introduced by Matsumoto [19] and also by Mihai and Rosca [20]. Then
Shaikh and Baishya ([25], [26]) investigated the applications of (LC'S),-manifolds to the
general theory of relativity and cosmology. The (LC'S),-manifolds is also studied by Hui
[11], Hui and Atceken [12], Shaikh and his co-authors ([24]-[28]) and many others.

In modern analysis, the geometry of submanifolds has become a subject of growing in-
terest for its significant applications in applied mathematics and theoretical physics. The
present paper deals with the study of Ricci solitons on submanifolds of (LC'S),-manifolds.
The paper is organized as follows. Section 2 is concerned with some preliminaries. Section
3 is devoted to the study of Ricci solitons on invariant and anti-invariant submanifolds of
(LCS),-manifolds.

In 1924, Friedman and Schouten [5] introduced the notion of semi-symmetric linear
connection on a differentiable manifold. In 1932, Hayden [9] introduced the idea of metric
connection with torsion on a Riemannian manifold. In 1970, Yano [31] studied some curva-
ture tensors and conditions for semi-symmetric connections in Riemannian manifolds. In
1975, Golab [6] defined and studied quarter symmetric linear connection on a differentiable
manifold. A linear connection V in an n-dimensional Riemannian manifold is said to be a
quarter symmetric connection [6] if torsion tensor 7T is of the form

(1.2) T(X,Y)=VxY - VyX — [X,Y] = AY)K(X) - A(X)K(Y)
where A is an 1-form and K is a tensor of type (1,1). If a quarter symmetric linear
connection V satisfies the condition

(Vxg)(Y,Z) =0

forall X, Y, Z € x(M), where x(M) is a Lie algebra of vector fields on the manifold M,
then V is said to be a quarter symmetric metric connection. For a contact metric manifold
admitting quarter symmetric connection, we can take A = n and K = ¢ and hence (1.2)
takes in the form:

(1.3) T(X,Y) =n(Y)pX —n(X)eY.
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The relation between Levi-Civita connection V and quarter symmetric metric connection
V of a contact metric manifold is given by

(1.4) VxY = VY — n(X)eY.

Recently Hui, Piscoran and Pal [16] studied invariant submanifolds of (LC'S),,-manifolds
with respect to quarter symmetric metric connection. Ricci solitons on invariant and anti-
invariant submanifolds of (LCS),-manifolds with respect to quarter symmetric metric
connections are studied in section 4 of the paper.

2 preliminaries

An n-dimensional Lorentzian manifold M is a smooth connected paracompact Hausdorff
manifold with a Lorentzian metric g, that is, M admits a smooth symmetric tensor field
g of type (0,2) such that for each point p € M, the tensor g, : TPM X TPM — Risa
non-degenerate inner product of signature (—,+,--- ,+), where TpM denotes the tangent
vector space of M at p and R is the real number space. A non-zero vector v € TpM is said

to be timelike (resp., non-spacelike, null, spacelike) if it satisfies g,(v,v) < 0 (resp, < 0, =
0, > 0) [21].
Definition 2.1. In a Lorentzian manifold (M,g) a vector field P defined by
9(X, P) = A(X)
for any X € I‘(T]TI), is said to be a concircular vector field [32] if
(VxA)(Y) = a{g(X,Y) + w(X)A(Y)},

where a is a non-zero scalar and w is a closed 1-form and V denotes the operator of
covariant differentiation with respect to the Lorentzian metric g.

Let M be an n-dimensional Lorentzian manifold admitting a unit timelike concircular
vector field &, called the characteristic vector field of the manifold. Then we have

(2.1) 9(&,§) = —1.

Since £ is a unit concircular vector field, it follows that there exists a non-zero 1-form 7
such that for

(2.2) 9(X, &) = n(X),

the equation of the following form holds

(2.3) (Vxm)(Y) = afg(X,Y) +n(X)n(Y)},  (a#0)



56 Hui, Prasad and Pal: Ricci Solitons on submanifolds of (LC'S),,-Manifolds

(2.4) Vxé=a{X +n(X)E}, a#0,

for all vector fields X, Y, where V denotes the operator of covariant differentiation with
respect to the Lorentzian metric g and « is a non-zero scalar function satisfies

(2.5) Vxa = (Xa) = do(X) = pn(X),

p being a certain scalar function given by p = —(€«). Let us take
1~

(2.6) ¢X = —Vix¢,

then from (2.4) and (2.6) we have

(2.7) X = X +n(X)E,

(2.8) 9(6X,Y) = g(X, ¢Y),

from which it follows that ¢ is a symmetric (1,1) tensor and called the structure tensor of

the manifold. Thus the Lorentzian manifold M together with the unit timelike concircular
vector field &, its associated 1-form 1 and an (1,1) tensor field ¢ is said to be a Lorentzian
concircular structure manifold (briefly, (LC'S),-manifold), [23]. Especially, if we take o =
1, then we can obtain the LP-Sasakian structure of Matsumoto [19]. In a (LC'S),-manifold
(n > 2), the following relations hold [23]:

(2.9) nE) =-1 ¢¢=0, n(¢X)=0, g(¢X,¢Y)=g(X,Y)+n(X)n(Y),
(2.10) $*X = X +n(X)E,

(2.11) S(X.€) = (n—1)(@® = p)n(X),

(2.12) R(X,Y)¢ = (a® = p)ln(Y)X = n(X)Y],

(2.13) R(&Y)Z = (o® = p)g(Y. 2)¢ = n(2)Y],

(2.14) (Vx0)Y = a{g(X, V)¢ + 20(X)n(Y)E +n(Y)X},

(2.15) (Xp) = dp(X) = pn(X),

(2.16) R(X,Y)Z = ¢R(X,Y)Z + (a® = p){g(Y, Z)n(X) — 9(X, Z)n(Y)}¢
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forall X, Y, Z € I(T M ) and 3 = —(£p) is a scalar function, where R is the curvature
tensor and S is the Ricci tensor of the manifold. L

Let M be a submanifold of dimension m of a (LC'S),,-manifold M (m < n) with induced
metric g. Also let V and V+ be the induced connection on the tangent bundle TM and
the normal bundle T+M of M respectively. Then the Gauss and Weingarten formulae are
given by

(2.17) VxY = VxY +h(X,Y)
and
(2.18) VxV = —AyX + V%V

for all X, Y € I'(TM) and V € T'(T+M), where h and Ay are second fundamental form
and the shape operator (corresponding to the normal vector field V') respectively for the

immersion of M into M. The second fundamental form h and the shape operator Ay are
related by [33]

(2.19) g(h(X,Y),V) = g(Av X, Y),

for any X, Y € T(TM) and V € I'(T+M). We note that h(X,Y) is bilinear and since
VixY = fVxY for any smooth function f on a manifold, we have

(2.20) WfX,Y) = fh(X,Y).

m
The mean curvature vector H on M is given by H = % Z h(e;i,e;), where {ej,e9,- -+,
i=1
em} is a local orthonormal frame of vector fields on M. A submanifold M of a (LCS),-
manifold M is said to be totally umbilical if

(2.21) WX,Y)=g(X,Y)H

for any vector fields X, Y € TM. Moreover if h(X,Y) =0 for all X, Y € TM, then M

is said to be totally geodesic and if H = 0 then M is minimal in M.

Analogous to almost Hermitian manifolds, the invariant and anti-invariant submanifols
are depend on the behaviour of almost contact metric structure ¢.

A submanifold M of an almost contact metric manifold M is said to be invariant if the
structure vector field £ is tangent to M at every point of M and ¢X is tangent to M for
every vector field X tangent to M at evey point of M. i.e. ¢(T'M) C TM at evey point of
M.

On the other hand, M is said to be anti-invariant if for any X tangent to M, ¢X is
normal to M, i.e., (T M) C T+M at every point of M, where T M is the normal bundle
of M.

Let ¥ be a linear connection and ¥ be the Levi-Civita connection of (LCS),-manifold
M such that

(2.22) VxY = VyY + U(X,Y),
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where U is a (1,1) type tensor and X, Y € F(T]T/[/). For V to be a quarter symmetric
metric connection on M, we have

(2.23) UX,Y) = %[T(X, V) + T'(X,Y) + T'(Y, X)),
where
(2.24) o(T'(X,Y), Z) = g(T(Z, X),Y).

From (1.3) and (2.24) we get

(2.25) T'(X,Y) = n(X)pY — g(Y, pX)E.
So,
(2.26) UX,Y) =n(Y)pX — g(Y, pX)<.

Therefore a quarter symmetric metric connection Vina (LCS),-manifold M is given by
(2.27) VxY =VxV +n(Y)pX — g(¢X,Y)E.

Let R and R be the curvature tensors of a (LCS)y-manifold M with respect to the

quarter symmetric metric connection V and the Levi-Civita connection V respectively.
Then we have

(228)  RX,Y)Z = R(X,Y)Z+(20—1)[g(6X,2)6Y — g6V, 2)6X]
+a (V)X —n(X)Y]n(Z)
+alg(Y, 2)n(X) = g(X, Z)n(Y)]¢,
where R(X,Y)Z = VxVyZ = VyVxZ - Vixy|Z and X, Y, Z € x(M).
By suitable contraction we have from (2.28) that

(2.29) SY,2) = S, Z)+(a=1)g(Y,Z) + (na = 1)n(Y)n(2)
—(2a = 1)ag(¢Y, 2),

where S and S are the Ricci tensors of M with respect to V and V respectively and
a = traceg.

3 Ricci solitons on submanifolds of (LC'S),-Manifolds

Let us take (g, £, \) be a Ricci soliton on a submanifold M of a (LCS),-manifold M. Then
we have

(3.1) (£69)(Y. 2) +25(Y. Z) + 22g(Y, Z) = 0.
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From (2.6) and (2.17) we get
(3.2) apX = Vx& = Vx&+h(X,8).

If M is invariant in M. , then ¢ X, & € T'M and therefore equating tangential and normal
components of (3.2) we get

(3.3) Vx€=apX and h(X,§) =0.
From (2.1), (2.2), (2.7) and (3.3) we get
(3.4) (£eg)(Y.Z) = g(Vy& Z) +g(Y,Vz8)

=2a[g(Y, Z) +n(Y)n(Z)].
In view of (3.4), (3.1) yields
(3.5) S(Y,Z) = —(a+Ng(Y,Z) —an(Y)n(Z),

which implies that M is n-Einstein. Also from (2.20) and (3.3) we get n(X)H = 0, i.e.,
H =0, since n(X) # 0.

Consequently M is minimal in M. Thus we can state the following:

Theorem 3.1. If (g,&, \) is a Ricci soliton on an invariant submanifold M of a (LC'S),,-
manifold M, then M is n-Finstein and also M is minimal in M.

From (3.3) and using the formula
R(X,Y){=VxVy&—VyVx{—Vixy)§

we get
R(X,Y)¢ = (a® = p)[n(Y)X — n(X)Y]

from which it follows that
(3.6) S(X,€) = (m—1)(a* - p)n(X) for all X.

Putting Z = ¢ in (3.5) and using (2.2) and (3.6) we get A = —(m — 1)(a® — p). This leads
to the following:

Theorem 3.2. A Ricci soliton (g,&,\) on an invariant submanifold of a (LC'S),,-manifold
is shrinking, steady and expanding according as o®> —p < 0, o> —p =0 and o®> —p > 0
respectively.

Again, if M is anti-invariant in M , then for any X € TM, $X € T*+M and hence from
(3.2) we get Vx& =0 and h(X,&) = apX. Then

(Leg)(Y, Z2) = g(Vy§, 2) + (Y, VzE) =0,
which means that £ is a Killing vector field and consequently (3.1) yields
S(Y,Z) =-xg(Y, 2),

which implies that M is Einstein. Thus we can state the following;:



60 Hui, Prasad and Pal: Ricci Solitons on submanifolds of (LC'S),,-Manifolds

Theorem 3.3. If (g,£,\) is a Ricci soliton on an anti-invariant submanifold M of a

(LCS)y,-manifold M, then M is Einstein and £ is Killing vector field.

Also, from Vx& = 0 we get R(X,Y)¢ = 0 and hence S(Y,¢) = 0. Again, we have
S(Y,€) = =An(Y). Therefore A\ = 0 and hence the Ricci soliton (g,&, ) is always steady.
This leads to the following;:

Theorem 3.4. A Ricci soliton (g,&, \) on an anti-invariant submanifold M of a (LCS)y,-
manifold M is always steady.

4 Ricci solitons on submanifolds of (LC'S),-Manifolds with respect to
quarter symmetric metric connection

We now consider (g,&, \) is a Ricci soliton on a submanifold M of a (LCS),-manifold M
with respect to quarter symmetric metric connection, where V is the induced connection

on M from the connection V. Then we have
(4.1) (fgg)(Y, Z)+28(Y,Z)+2X9(Y, Z) = 0.

Let h be the second fundamental form of M with respect to induced connection V.
Then we have

(4.2) VxY = VY +R(X,Y)
and hence by virtue of (2.17) and (2.27) we get
(4.3) VxY +h(X,Y)=VxY +h(X,Y) +n(Y)pX — g(¢X,Y)E.

If M is invariant submanifold of M then ¢X, £ € TM for any X € TM and therefore
equating tangential part from (4.1) we get

(4.4) VxY =VxY +n(Y)pX — g(¢X,Y)(,

which means M admits quarter symmetric metric connection.
Also from (4.4) we get Vx& = (v — 1)¢X and hence

(4.5) (£e9) (Y. Z) = g(Vv&, Z)+g(Y,VzE)
=2(a - D[g(Y,Z) + n(Y)n(Z)].

If R be the curvature tensor of submanifold M with respect to induced connection V of

a (LCS),-manifold M with respect to quarter symmetric metric connection V. Then we
have,

(4.6) R(X,Y)Z = R(X,Y)Z+ (20— 1)[g(¢X, 2)¢Y — g(¢Y, Z)$pX]
+an(Y)X —n(X)Y]n(Z)
+afg(Y, Z)n(X) — g(X, Z)n(Y)]¢,
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where R(X,Y)Z =VxVyZ —VyVxZ — W[X,y}Z. Taking suitable contraction of above
equation, we get

(4.7) S(Y,Z)=8(Y,Z) + [a(l — 2a) + alg(Y, Z) + [a(m — 2a) + a — 1|n(Y)n(Z).
Using (4.5) and (4.7) in (4.1), we get

(4.8) S, Z)=_2afa—1)+1—-a—-Ng(Y,Z)+ [a(2a —m — 1) +2 —a]n(Y)n(Z),
which implies that M is n-Einstein.

Theorem 4.1. Let (g,&, A) be a Ricci soliton on an invariant submaniold M of a (LCS),-

manifold M with respect to quarter symmetric metric connection V. Let V be the induced

connection on M from the connection V. Then M is n-Einstein with respect to Levi-Civita
connection.

Again, if M is an anti-invariant submanifold of M with respect to quarter symmetric
metric connection, then from (4.3) we get Vx& = 0. Consequently we get
(4.9) (£eg)(Y,Z) = 0.
In view of (4.9), (4.1) yields

which implies that M is n-Einstein with respect to Riemannian connection by virtue of
(4.7). Thus we can state the following:
Theorem 4.2. Let (g,£,\) be a Ricci soliton on an anti-invariant submaniold M of a

(LCS)y,-manifold M with respect to quarter symmetric metric connection V. Then M is
n-Finstein with respect to induced Riemannian connection.

5 Conclusion

In this paper, we have studied invariant and anti-invariant submanifolds of (LC'S),-manifold

M whose metric are Ricci solitons. From Theorem 3.1, Theorem 3.3, Theorem 4.1 and The-
orem 4.2, we can state the following:
Theorem 5.1. Let (g,&, A) be a Ricci soliton on a submanifold M of a (LC'S),-manifold

M. Then the following holds:

nature of submanifold M connection of M M
invariant Riemannian n-Einstein
anti-invariant Riemannian Einstein
invariant quarter symmetric metric | n-Einstein
anti-invariant quarter symmetric metric | n-Einstein
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