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Ricci Solitons on submanifolds of (LCS)n-Manifolds.
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Abstract

The present paper deals with the study of Ricci solitons on invari-
ant and anti-invariant submanifolds of (LCS)n-manifolds with respect to
Riemannian connection as well as quarter symmetric metric connection.
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1 Introduction

In 1982, Hamilton [7] introduced the notion of Ricci flow to find a canonical metric on a
smooth manifold. Then Ricci flow has become a powerful tool for the study of Riemannian
manifolds, especially for manifolds with positive curvature. Perelman [22] used Ricci flow
and its surgery to prove Poincare conjecture. The Ricci flow is an evolution equation for
metrics on a Riemannian manifold defined as follows:

∂

∂t
gij(t) = −2Rij .

A Ricci soliton emerges as the limit of the solutions of the Ricci flow. A solution to the
Ricci flow is called Ricci soliton if it moves only by a one parameter group of diffeomorphism
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and scaling. A Ricci soliton (g, V, λ) on a Riemannian manifold (M, g) is a generalization
of an Einstein metric such that [8]

(1.1) £V g + 2S + 2λg = 0,

where S is the Ricci tensor, £V is the Lie derivative operator along the vector field V on
M and λ is a real number. The Ricci soliton is said to be shrinking, steady and expanding
according as λ is negative, zero and positive respectively.

During the last two decades, the geometry of Ricci solitons has been the focus of atten-
tion of many mathematicians. In particular, it has become more important after Perelman
applied Ricci solitons to solve the long standing Poincare conjecture posed in 1904. In [29]
Sharma studied the Ricci solitons in contact geometry. Thereafter, Ricci solitons in contact
metric manifolds have been studied by various authors such as Bejan and Crasmareanu [1],
Hui et al. ([2],[13]-[15], [17]), Chen and Deshmukh [3], Deshmukh et al. [4], He and Zhu
[10], Tripathi [30] and many others.

In 2003, Shaikh [23] introduced the notion of Lorentzian concircular structure man-
ifolds (briefly, (LCS)n-manifolds), with an example, which generalizes the notion of LP-
Sasakian manifolds introduced by Matsumoto [19] and also by Mihai and Rosca [20]. Then
Shaikh and Baishya ([25], [26]) investigated the applications of (LCS)n-manifolds to the
general theory of relativity and cosmology. The (LCS)n-manifolds is also studied by Hui
[11], Hui and Atceken [12], Shaikh and his co-authors ([24]-[28]) and many others.

In modern analysis, the geometry of submanifolds has become a subject of growing in-
terest for its significant applications in applied mathematics and theoretical physics. The
present paper deals with the study of Ricci solitons on submanifolds of (LCS)n-manifolds.
The paper is organized as follows. Section 2 is concerned with some preliminaries. Section
3 is devoted to the study of Ricci solitons on invariant and anti-invariant submanifolds of
(LCS)n-manifolds.

In 1924, Friedman and Schouten [5] introduced the notion of semi-symmetric linear
connection on a differentiable manifold. In 1932, Hayden [9] introduced the idea of metric
connection with torsion on a Riemannian manifold. In 1970, Yano [31] studied some curva-
ture tensors and conditions for semi-symmetric connections in Riemannian manifolds. In
1975, Golab [6] defined and studied quarter symmetric linear connection on a differentiable
manifold. A linear connection ∇ in an n-dimensional Riemannian manifold is said to be a
quarter symmetric connection [6] if torsion tensor T is of the form

(1.2) T (X,Y ) = ∇XY −∇YX − [X,Y ] = A(Y )K(X)−A(X)K(Y )

where A is an 1-form and K is a tensor of type (1,1). If a quarter symmetric linear
connection ∇ satisfies the condition

(∇Xg)(Y, Z) = 0

for all X, Y , Z ∈ χ(M), where χ(M) is a Lie algebra of vector fields on the manifold M ,
then ∇ is said to be a quarter symmetric metric connection. For a contact metric manifold
admitting quarter symmetric connection, we can take A = η and K = φ and hence (1.2)
takes in the form:

(1.3) T (X,Y ) = η(Y )φX − η(X)φY.
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The relation between Levi-Civita connection ∇ and quarter symmetric metric connection
∇ of a contact metric manifold is given by

(1.4) ∇XY = ∇XY − η(X)φY.

Recently Hui, Piscoran and Pal [16] studied invariant submanifolds of (LCS)n-manifolds
with respect to quarter symmetric metric connection. Ricci solitons on invariant and anti-
invariant submanifolds of (LCS)n-manifolds with respect to quarter symmetric metric
connections are studied in section 4 of the paper.

2 preliminaries

An n-dimensional Lorentzian manifold M̃ is a smooth connected paracompact Hausdorff

manifold with a Lorentzian metric g, that is, M̃ admits a smooth symmetric tensor field

g of type (0,2) such that for each point p ∈ M̃ , the tensor gp : TpM̃ × TpM̃ → R is a

non-degenerate inner product of signature (−,+, · · · ,+), where TpM̃ denotes the tangent

vector space of M̃ at p and R is the real number space. A non-zero vector v ∈ TpM̃ is said
to be timelike (resp., non-spacelike, null, spacelike) if it satisfies gp(v, v) < 0 (resp, ≤ 0, =
0, > 0) [21].

Definition 2.1. In a Lorentzian manifold (M̃, g) a vector field P defined by

g(X,P ) = A(X)

for any X ∈ Γ(TM̃), is said to be a concircular vector field [32] if

(∇̃XA)(Y ) = α{g(X,Y ) + ω(X)A(Y )},

where α is a non-zero scalar and ω is a closed 1-form and ∇̃ denotes the operator of
covariant differentiation with respect to the Lorentzian metric g.

Let M̃ be an n-dimensional Lorentzian manifold admitting a unit timelike concircular
vector field ξ, called the characteristic vector field of the manifold. Then we have

(2.1) g(ξ, ξ) = −1.

Since ξ is a unit concircular vector field, it follows that there exists a non-zero 1-form η
such that for

(2.2) g(X, ξ) = η(X),

the equation of the following form holds

(2.3) (∇̃Xη)(Y ) = α{g(X,Y ) + η(X)η(Y )}, (α 6= 0)
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(2.4) ∇̃Xξ = α{X + η(X)ξ}, α 6= 0,

for all vector fields X, Y , where ∇̃ denotes the operator of covariant differentiation with
respect to the Lorentzian metric g and α is a non-zero scalar function satisfies

(2.5) ∇̃Xα = (Xα) = dα(X) = ρη(X),

ρ being a certain scalar function given by ρ = −(ξα). Let us take

(2.6) φX =
1

α
∇̃Xξ,

then from (2.4) and (2.6) we have

(2.7) φX = X + η(X)ξ,

(2.8) g(φX, Y ) = g(X,φY ),

from which it follows that φ is a symmetric (1,1) tensor and called the structure tensor of

the manifold. Thus the Lorentzian manifold M̃ together with the unit timelike concircular
vector field ξ, its associated 1-form η and an (1,1) tensor field φ is said to be a Lorentzian
concircular structure manifold (briefly, (LCS)n-manifold), [23]. Especially, if we take α =
1, then we can obtain the LP-Sasakian structure of Matsumoto [19]. In a (LCS)n-manifold
(n > 2), the following relations hold [23]:

(2.9) η(ξ) = −1, φξ = 0, η(φX) = 0, g(φX, φY ) = g(X,Y ) + η(X)η(Y ),

(2.10) φ2X = X + η(X)ξ,

(2.11) S̃(X, ξ) = (n− 1)(α2 − ρ)η(X),

(2.12) R̃(X,Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ],

(2.13) R̃(ξ, Y )Z = (α2 − ρ)[g(Y,Z)ξ − η(Z)Y ],

(2.14) (∇̃Xφ)Y = α{g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X},

(2.15) (Xρ) = dρ(X) = βη(X),

(2.16) R̃(X,Y )Z = φR̃(X,Y )Z + (α2 − ρ){g(Y,Z)η(X)− g(X,Z)η(Y )}ξ
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for all X, Y, Z ∈ Γ(TM̃) and β = −(ξρ) is a scalar function, where R̃ is the curvature

tensor and S̃ is the Ricci tensor of the manifold.
Let M be a submanifold of dimension m of a (LCS)n-manifold M̃ (m < n) with induced

metric g. Also let ∇ and ∇⊥ be the induced connection on the tangent bundle TM and
the normal bundle T⊥M of M respectively. Then the Gauss and Weingarten formulae are
given by

(2.17) ∇̃XY = ∇XY + h(X,Y )

and

(2.18) ∇̃XV = −AVX +∇⊥
XV

for all X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where h and AV are second fundamental form
and the shape operator (corresponding to the normal vector field V ) respectively for the

immersion of M into M̃ . The second fundamental form h and the shape operator AV are
related by [33]

(2.19) g(h(X,Y ), V ) = g(AVX,Y ),

for any X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M). We note that h(X,Y ) is bilinear and since
∇fXY = f∇XY for any smooth function f on a manifold, we have

(2.20) h(fX, Y ) = fh(X,Y ).

The mean curvature vector H on M is given by H = 1
m

m∑
i=1

h(ei, ei), where {e1, e2, · · · ,

em} is a local orthonormal frame of vector fields on M . A submanifold M of a (LCS)n-

manifold M̃ is said to be totally umbilical if

(2.21) h(X,Y ) = g(X,Y )H

for any vector fields X, Y ∈ TM . Moreover if h(X,Y ) = 0 for all X, Y ∈ TM , then M

is said to be totally geodesic and if H = 0 then M is minimal in M̃ .
Analogous to almost Hermitian manifolds, the invariant and anti-invariant submanifols

are depend on the behaviour of almost contact metric structure φ.

A submanifold M of an almost contact metric manifold M̃ is said to be invariant if the
structure vector field ξ is tangent to M at every point of M and φX is tangent to M for
every vector field X tangent to M at evey point of M . i.e. φ(TM) ⊂ TM at evey point of
M .

On the other hand, M is said to be anti-invariant if for any X tangent to M , φX is
normal to M , i.e., φ(TM) ⊂ T⊥M at every point of M , where T⊥M is the normal bundle
of M .

Let ∇̃ be a linear connection and ∇̃ be the Levi-Civita connection of a (LCS)n-manifold

M̃ such that

(2.22) ∇̃XY = ∇̃XY + U(X,Y ),
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where U is a (1,1) type tensor and X, Y ∈ Γ(TM̃). For ∇̃ to be a quarter symmetric

metric connection on M̃ , we have

(2.23) U(X,Y ) =
1

2
[T (X,Y ) + T ′(X,Y ) + T ′(Y,X)],

where

(2.24) g(T ′(X,Y ), Z) = g(T (Z,X), Y ).

From (1.3) and (2.24) we get

(2.25) T ′(X,Y ) = η(X)φY − g(Y, φX)ξ.

So,

(2.26) U(X,Y ) = η(Y )φX − g(Y, φX)ξ.

Therefore a quarter symmetric metric connection ∇̃ in a (LCS)n-manifold M̃ is given by

(2.27) ∇̃XY = ∇̃XY + η(Y )φX − g(φX, Y )ξ.

Let R̃ and R̃ be the curvature tensors of a (LCS)n-manifold M̃ with respect to the

quarter symmetric metric connection ∇̃ and the Levi-Civita connection ∇̃ respectively.
Then we have

R̃(X,Y )Z = R̃(X,Y )Z + (2α− 1) [g(φX,Z)φY − g(φY,Z)φX](2.28)

+α [η(Y )X − η(X)Y ] η(Z)

+α [g(Y,Z)η(X)− g(X,Z)η(Y )] ξ,

where R̃(X,Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z and X, Y, Z ∈ χ(M̃).
By suitable contraction we have from (2.28) that

S̃(Y,Z) = S̃(Y,Z) + (α− 1)g(Y, Z) + (nα− 1)η(Y )η(Z)(2.29)

−(2α− 1)ag(φY,Z),

where S̃ and S̃ are the Ricci tensors of M̃ with respect to ∇̃ and ∇̃ respectively and
a = traceφ.

3 Ricci solitons on submanifolds of (LCS)n-Manifolds

Let us take (g, ξ, λ) be a Ricci soliton on a submanifold M of a (LCS)n-manifold M̃ . Then
we have

(3.1) (£ξg)(Y,Z) + 2S(Y,Z) + 2λg(Y,Z) = 0.
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From (2.6) and (2.17) we get

(3.2) αφX = ∇̃Xξ = ∇Xξ + h(X, ξ).

If M is invariant in M̃ , then φX, ξ ∈ TM and therefore equating tangential and normal
components of (3.2) we get

(3.3) ∇Xξ = αφX and h(X, ξ) = 0.

From (2.1), (2.2), (2.7) and (3.3) we get

(£ξg)(Y, Z) = g(∇Y ξ, Z) + g(Y,∇Zξ)(3.4)

= 2α[g(Y,Z) + η(Y )η(Z)].

In view of (3.4), (3.1) yields

(3.5) S(Y, Z) = −(α+ λ)g(Y,Z)− αη(Y )η(Z),

which implies that M is η-Einstein. Also from (2.20) and (3.3) we get η(X)H = 0, i.e.,
H = 0, since η(X) 6= 0.

Consequently M is minimal in M̃ . Thus we can state the following:

Theorem 3.1. If (g, ξ, λ) is a Ricci soliton on an invariant submanifold M of a (LCS)n-

manifold M̃ , then M is η-Einstein and also M is minimal in M̃ .

From (3.3) and using the formula

R(X,Y )ξ = ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ

we get
R(X,Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ]

from which it follows that

(3.6) S(X, ξ) = (m− 1)(α2 − ρ)η(X) for all X.

Putting Z = ξ in (3.5) and using (2.2) and (3.6) we get λ = −(m− 1)(α2 − ρ). This leads
to the following:

Theorem 3.2. A Ricci soliton (g, ξ, λ) on an invariant submanifold of a (LCS)n-manifold
is shrinking, steady and expanding according as α2 − ρ < 0, α2 − ρ = 0 and α2 − ρ > 0
respectively.

Again, if M is anti-invariant in M̃ , then for any X ∈ TM , φX ∈ T⊥M and hence from
(3.2) we get ∇Xξ = 0 and h(X, ξ) = αφX. Then

(£ξg)(Y,Z) = g(∇Y ξ, Z) + (Y,∇Zξ) = 0,

which means that ξ is a Killing vector field and consequently (3.1) yields

S(Y, Z) = −λg(Y,Z),

which implies that M is Einstein. Thus we can state the following:
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Theorem 3.3. If (g, ξ, λ) is a Ricci soliton on an anti-invariant submanifold M of a

(LCS)n-manifold M̃ , then M is Einstein and ξ is Killing vector field.

Also, from ∇Xξ = 0 we get R(X,Y )ξ = 0 and hence S(Y, ξ) = 0. Again, we have
S(Y, ξ) = −λη(Y ). Therefore λ = 0 and hence the Ricci soliton (g, ξ, λ) is always steady.
This leads to the following:

Theorem 3.4. A Ricci soliton (g, ξ, λ) on an anti-invariant submanifold M of a (LCS)n-

manifold M̃ is always steady.

4 Ricci solitons on submanifolds of (LCS)n-Manifolds with respect to
quarter symmetric metric connection

We now consider (g, ξ, λ) is a Ricci soliton on a submanifold M of a (LCS)n-manifold M̃
with respect to quarter symmetric metric connection, where ∇ is the induced connection

on M from the connection ∇̃. Then we have

(4.1) (£ξg)(Y,Z) + 2S(Y,Z) + 2λg(Y,Z) = 0.

Let h be the second fundamental form of M with respect to induced connection ∇.
Then we have

(4.2) ∇̃XY = ∇XY + h(X,Y )

and hence by virtue of (2.17) and (2.27) we get

(4.3) ∇XY + h(X,Y ) = ∇XY + h(X,Y ) + η(Y )φX − g(φX, Y )ξ.

If M is invariant submanifold of M̃ then φX, ξ ∈ TM for any X ∈ TM and therefore
equating tangential part from (4.1) we get

(4.4) ∇XY = ∇XY + η(Y )φX − g(φX, Y )ξ,

which means M admits quarter symmetric metric connection.
Also from (4.4) we get ∇Xξ = (α− 1)φX and hence

(£ξg)(Y, Z) = g(∇Y ξ, Z) + g(Y,∇Zξ)(4.5)

= 2(α− 1)[g(Y,Z) + η(Y )η(Z)].

If R be the curvature tensor of submanifold M with respect to induced connection ∇ of

a (LCS)n-manifold M̃ with respect to quarter symmetric metric connection ∇̃. Then we
have,

R(X,Y )Z = R(X,Y )Z + (2α− 1) [g(φX,Z)φY − g(φY,Z)φX](4.6)

+α [η(Y )X − η(X)Y ] η(Z)

+α [g(Y,Z)η(X)− g(X,Z)η(Y )] ξ,
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where R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. Taking suitable contraction of above
equation, we get

(4.7) S(Y, Z) = S(Y,Z) + [α(1− 2a) + a]g(Y,Z) + [α(m− 2a) + a− 1]η(Y )η(Z).

Using (4.5) and (4.7) in (4.1), we get

(4.8) S(Y,Z) = [2α(a− 1) + 1− a− λ]g(Y,Z) + [α(2a−m− 1) + 2− a]η(Y )η(Z),

which implies that M is η-Einstein.

Theorem 4.1. Let (g, ξ, λ) be a Ricci soliton on an invariant submaniold M of a (LCS)n-

manifold M̃ with respect to quarter symmetric metric connection ∇̃. Let ∇ be the induced

connection on M from the connection ∇̃. Then M is η-Einstein with respect to Levi-Civita
connection.

Again, if M is an anti-invariant submanifold of M̃ with respect to quarter symmetric
metric connection, then from (4.3) we get ∇Xξ = 0. Consequently we get

(4.9) (£ξg)(Y, Z) = 0.

In view of (4.9), (4.1) yields
S(Y,Z) = −λg(Y,Z),

which implies that M is η-Einstein with respect to Riemannian connection by virtue of
(4.7). Thus we can state the following:

Theorem 4.2. Let (g, ξ, λ) be a Ricci soliton on an anti-invariant submaniold M̃ of a

(LCS)n-manifold M̃ with respect to quarter symmetric metric connection ∇̃. Then M is
η-Einstein with respect to induced Riemannian connection.

5 Conclusion

In this paper, we have studied invariant and anti-invariant submanifolds of (LCS)n-manifold

M̃ whose metric are Ricci solitons. From Theorem 3.1, Theorem 3.3, Theorem 4.1 and The-
orem 4.2, we can state the following:
Theorem 5.1. Let (g, ξ, λ) be a Ricci soliton on a submanifold M of a (LCS)n-manifold

M̃ . Then the following holds:

nature of submanifold M connection of M̃ M
invariant Riemannian η-Einstein

anti-invariant Riemannian Einstein
invariant quarter symmetric metric η-Einstein

anti-invariant quarter symmetric metric η-Einstein
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