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Abstract

In this paper, we introduce the notion of a bi-slant pseudo-Riemannian
submersion from an indefinite almost Hermitian manifold onto a pseudo-
Riemannian manifold as a generalization of slant and semi-slant submer-
sions. We investigate the geometry of foliations determined by horizontal
and vertical distributions and provide a non-trivial example. We also
obtain a necessary and sufficient condition for submersions to be totally
geodesic and check the harmonicity of such submersions.
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1 Introduction

The theory of Riemannian submersions was independently introduced by O’ Neill [13] in
1966 and Gray [8] in 1967. Later such submersions have been studied by several geometers
([7], [12], [13], [16]). It is known that Riemannian submersions are related with physics
and have their applications in Kaluza-Klein theory ([5], [10]), Yang-Mills theory ([4], [22]),
the theory of robotics ([1]), supergravity and superstring theories ([10], [11]).

In 1976, B. Watson defined almost Hermitian submersions between almost Hermitian mani-
folds and proved that the base manifold and each fibre have the same kind of structure as the
total space, in most cases [21]. In 2010, Sahin introduced anti-invariant and semi-invariant
Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds
[17], [18]. He also gave the notion of a slant submersion as a generalization of Hermitian
and anti-invariant submersions [19]. In 2012, K. S. Park also studied H-slant and V-slant
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submersions and investigated interesting geometric properties of such submersions [14],
[15].

In the present paper, our aim is to study bi-slant pseudo-Riemannian submersions from
indefinite almost Hermitian manifolds onto pseudo-Riemannian manifolds.

The composition of the paper is as follows. In section 2, we collect some basic definitions,
formulas and results on indefinite almost Hermitian manifolds and pseudo-Riemannian
submersions. In section 3, we define bi-slant pseudo-Riemannian submersions from indef-
inite almost Hermitian manifolds onto pseudo-Riemannian manifolds. We investigate the
geometry of foliations determined by horizontal and vertical distributions and provide a
non-trivial example. We also obtain a necessary and sufficient condition for submersions
to be totally geodesic and check the harmonicity of such submersions.

2 Preliminaries:

2.1 Indefinite Almost Hermitian Manifolds

A (1,1)-type tensor field J on a 2m-dimensional smooth manifold M is said to be an almost
complex structure if J? = —I and then (M, J) is called an almost complex manifold.

An almost complex manifold (M, J) is such that the two eigen bundles Tt M and T~ M
corresponding to respective eigen values +1 and —1 of J have the same rank.

An indefinite almost Hermitian manifold (M, J, g) is a smooth manifold endowed with an
almost complex structure J and a pseudo-Riemannian metric g such that

(2.1) g(JX,JY)=g¢g(X,Y), forall XY e '(TM).

Here, the metric g is neutral, i.e., g has signature (m,m).
The fundamental 2-form of the almost Hermitian manifold is defined by

(2.2) F(X,Y)=g(X,JY),

for all X, Y e I'(T'M).
For an almost Hermitian manifold (M, J, g), we have

(2'3) g(JX, Y) = —g(X, JY),

(2.4) F(X,Y) = —F(Y, X),

(2.5) FJX,JY) = F(X,Y),

(2.6) 3dF(X,Y,Z) = X(F(Y, Z)) — Y(F(X, Z)) + Z(F(X,Y))

—F([X,Y],Z)—I—F([X,Z],Y) —F([Y,Z],X),

(2.7) (VxF)(Y,Z) = g(Y,(Vx)Z) = —9(Z,(Vx J)Y),
(2.8) 3dF(X,Y,Z) = (VxF)(Y, Z) + (VyF)(Z, X) + (V2 F)(X,Y),

2m
(2.9) The co-differential, (§F)(X) = &(Ve,F)(e, X).
=1
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for all X,Y € I'(T'M).
An indefinite almost Hermitian manifold (M, J, g) is called

(i
(i

) Hermitian, if Nj = 0, equivalently, (V;xJ)JY + (VxJ)Y =0,

)
(iii) almost kéhler, if dF = 0,

)

)

)

Kahler, if for any X € I'(TM), VxJ =0, i.e.,, VJ =0,
(iv) nearly Kahler, if (VxJ)X =0,
(v

(vi

almost semi-Kahler, if 0F = 0,

semi para- Kéhler, if §F =0 and Ny = 0.

2.2 Pseudo-Riemannian Submersions:

Let (M™, g) and (M", g) be two connected pseudo-Riemannian manifolds of indices
5(0<35<m)and s (0<s<n) respectively, with 3 > s.

A pseudo-Riemannian submersion is a smooth map f : M™ —s M™, which is onto and
satisfies the following conditions ([7], [8], [13], [16]):

(i) the derivative map f, : T,M — T'tpyM is surjective at each point p € M:
(ii) the fibres f~1(q) of f over ¢ € M are pseudo-Riemannian submanifolds of M;
(iii) f. preserves the length of horizontal vectors.

A vector field on M is called vertical if it is always tangent to fibres and it is called
horizontal if it is always orthogonal to fibres. We denote by V the vertical distribution and
by H the horizontal distribution. Also, we denote vertical and horizontal projections of a
vector field E on M by vE and by hE respectively. A horizontal vector field X on M is
said to be basic if X is f-related to a vector field X on M such that f, X = X o f. Thus,
every vector field X on M has a unique horizontal lift X on M.

We recall the following lemma for later use:

Lemma 2.1. ([7], [12]) If f : M — M s a pseudo-Riemannian submersion and X,Y
are basic vector fields on M that are f-related to the vector fields X,Y on M respectively,
then we have the following properties:

(Z) g(X,?):g(X,Y)Of,
(ii) h|X,Y] is a vector field and h[X,Y] = [X,Y] o f,

(iii) h(VY) is a basic vector field f-related to VxY, where V and V are the Levi-Civita
connections on M and M respectively,

(iv) [E,U] €V, for any vector field U € V and for any vector field E € T'(TM).
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A pseudo-Riemannian submersion f : M — M determines tensor fields 7 and A of
type (1,2) on M defined by formulas ([7], [12], [13])
) _

(2.10 T(E,F)=TgF = h(VygvF) +v(VyghF),
(2.11) A(E,F) = AgF = v(VyghF) + h(VypvF),

for any E,F € T(TM). ~
Let X, Y be horizontal vector fields and U, V' be vertical vector fields on M. Then, we have

(2.12) TuX =v(VuX), TuV = h(VyV),
( ) ?UX = TUX + h(?UX),
(2.14) TxF =0, TeF = T,gF,

( ) ?UV =TyV + U(?UV),
(2.16) AzY =0(VgY), AgU = h(VzU),
(2.17) VU =AzU +0(VgU),
(2.18) AyF =0, ApF = A,pF,

( ) vXYZAX}?—i-h(VXY),
(220) MVuX)=hnVxU) = Azl,
(2.21)

(2.22)

VE,Fel(TM).
It can be easily shown that a Riemannian submersion f : M — M has totally geodesic
fibres if and only if 7 vanishes identically. By lemma (2.1), the horizontal distribution #H
is integrable if and only if A = 0. In view of equations (2.22) and (2.23), A is alternating
on the horizontal distribution and 7T is symmetric on the vertical distribution.

Now, we recall the notion of harmonic maps between pseudo-Riemannian manifolds.
Let (M,g) and (M, g) be pseudo-Riemannian manifolds and let f: M — M be a smooth
map. Then the second fundamental form of the map f is given by

(2.24) (V)X Y) = (VEFY) o f = fo(VxY)

for all X,Y € I'(TM), where V/ denotes the pullback connection of V with respect to f
and the tension field 7 of f is defined by

m

(2.25) 7(f) = trace(V f.) = Y (Vo) (eir i),
i=1
where {e1, ez, e} is an orthonormal frame on M.

It is known that f is harmonic if and only if 7(f) = 0 [6]. B
In this paper, we study pseudo Riemannian submersions f : M — M such that fibres
f~Y(q) over ¢ € M be pseudo-Riemannian submanifolds admitting non-lightlike vector

fields.
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3 Bi-slant pseudo-Riemannian submersions

Definition 3.1. Let (M?™, ], §) be an indefinite almost Hermitian manifold and (M™, g) be
a pseudo-Riemannian manifold where m > n. A pseudo-Riemannian submersion f: M —
M is called a bi-slant pseudo-Riemannian submersion if there exist two orthogonal distri-
butions D1, Dy C ker f, such that

(Z) kerf* = 751 @@2;

(ii) f_or any non-zero vector field X1, € Dy, the angle 6 between JX1, and the space
Dy, is constant;

iii) for any non-zero vector field Xo € Do , the angle Oy between JXo and the space
P D P
Do, is constant.

These angles 01 and 0y are called slant angles of the submersion, which does not depend on
the point p.

We observe that
(i) If dimD; = 0 and 9 = 0, then f is an invariant pseudo-Riemannian submersion.

(ii) If dimD; = 0 and Oy = 5, then f is an anti-invariant pseudo-Riemannian submersion.

(iii) If dimD; # 0 # dimDs,0; = 0 and 6y = 5, then f is a semi-invariant pseudo-
Riemannian submersion.

(iv) If dimD; = 0 and 0 < 6, < 5, then f is a proper slant pseudo-Riemannian submer-
sion.

(v) If dimDy # 0 # dimDq,0; = 0 and 0 < 6 < 5, then f is a semi-slant pseudo-
Riemannian submersion.

(vi) If dimD; # 0 # dimDs, 6 = 5,0 < 0 < 7, then f is a pseudo-slant pseudo-
Riemannian submersion.

For any vector field U € V, we put
(3.1) U=PU+QU

where PU € Dy, QU € Ds. - -
Also, for vector fields U € D1,V € Do, we set

(3.2) JU = U + w U,
(3.3) JV = T/JQV + woV

where 11U, ¥V € Dy and wiU, w2V € Dy and for any X € H, we put
(3.4) JX =tX +nX,
where tX € H and nX € V.
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Proposition 3.1. Let f : M — M be_a bi-slant pseudo-Riemannian submersion from an
indefinite almost Hermitian manifold (M, J, §) onto a pseudo-Riemannian manifold (M, g).
If 61 and 0y are bi-slant angles of the submersion, then for UV € V and X,Y € H,

(3.5) g(w1PU +weQU, V) = —g(U, w1 PV +weQV),
(3.6) §(nX,U) = —g(X¢iPU + 42QU),
(3.7) gtX,Y)=—g(X,tY).

Proof. For U,V € V, equation (2.3) implies
g(J(PU +QU), V) =g(U, J(PV +QV)).
By using equations (3.2) and (3.3), above equation gives
g1 PU +wiPU + QU +waQU, V) = g(U, 1PV + w1 PV + ¢aQV + waQV),

which implies equation (3.5).
Similarly, we can obtain other equations. O

Theorem 3.1. Let (M, J,g) be an indefinite almost Hermitian manifold and (M, g) be a
pseudo-Riemannian manifold. Then, a pseudo-Riemannian submersion f: M — M is a
bi-slant pseudo-Riemannian submersion if and only if there exist A1, \a € [0,1] such that

(3.8) (Pw1)? = M J?,
and
(3.9) (Qua)? = Ao J>.

Moreover, if 61 and 6y are bi-slant angles of the submersion, then \i = cos? 61 and Ay =
2
cos” 05.

Proof. Let U € Dy. Then,

§(JU, Puw,U)
3.10 0 = ——=———-.
(3.10) S N TU | PanU|
Again,
]PwlU]
3.11 0 = — .
(3.11) cos 0 U]

From (3.10) and (3.11), we have

—g(U, (Puw)?U)

3.12 29, — —
(3:12) O8N T 5w, )

Now, equation (3.12) implies that cos?#; is constant if and only if (Pwi)? and J? are
conformally parallel. Thus, there is A\; € [0, 00) such that (Pw;)? = A J2.

Again, from equation (3.12), A\; = cos?61. So, A\ € [0, 1].

Similarly, we can prove (Quwz)? = A\2J?2, where X € [0, 1]. O
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Proposition 3.2. Let f : M — M be a bi-slant pseudo-Riemannian submersion from an
indefinite almost Hermitian manifold (M, J,g) onto a pseudo-Riemnnian manifold (M, g).
If 61 and 02 are bi-slant angles of the submersion, then for Uy,Us € D1 and Vi, Vo € Do,
we have

(3.13) g(Pw1U1,U2) = —Q(Ul,Pqug),

(3.14) G(Pw Uy, PwiUs) = §(Uy, Us) cos? 61,
(3.15) G(1 Uy, Us) = g(JUy, JUs) sin? 6 — §(Pw Uy, QuiUs),
(3.16) G(PwaVi, Vo) = —g(Vi, PwsVs),
(3.17) G(PwoVi, PuwsVa) = §(Vi, Va) cos? bs.
(3.18) G(haVh, 02 Vo) = G(JVa, JVa) sin? By — G(PuwoVi, QuaVa).

Proof. Let Uy, Uy € Dy. Then, by using equations (2.3) and (3.2), we have
G U1 + wiUp, Uz) = —g(Ur, 11Uz + wiUs).

In view of equation (3.1), above equation implies (3.13).
Now, replacing Us by Pw;Us in equation (3.13), we get

g(PwlUl, PwlUQ) = —Q(U, PwlelUg).
In view of equation (3.8), above equation gives
g(PW1U1, POJlUQ) = g(le, J_Ug) COS2 01,

which is equation (3.14).
Similarly, we can obtain other equations. O

Theorem 3.2. Let f: M — M be a bi-slant pseudo-Riemannian submersion from an
indefinite almost Hermitian manifold (M, J, g) onto a pseudo-Riemannian manifold (M, g).
Then, (¥1D1)* and (YoD2)*" are invariant with respect to J.

Proof. Let U,V € Dy. Then, JV = 1)V + PwoV + QuwsV. We have
G(JU,QuaV) = —g(U, JQuaV)
= —9(U,Y2QuaV +wyV)
= —g(U,2QwaV + PwyQuaoV + QuaQuwiV)

e

Also, for any V € Dy,

g(Ju,v) = —gU,Jv)
= —g(U,¢2V+Pw1V+Qw2V)

0.
Hence, JU € (TZJZ@Q)L and j(}/}g’[)g)L - (@bgﬁg)l
Similarly, we can show that J(¢1D;)* C (¢1D1)*. O
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Lemma 3.1. Let f: M — M be a_bi-slant pseudo-Riemannian submersion from an
indefinite almost Hermitian manifold (M, J, §) onto a pseudo-Riemannian manifold (M, g).
Then, for any U,V € V and X,Y € H, we have

hV py (1 PV) + hV py (w1 PV) + 0V ,0 (¥pv) + oV py(wi PV)
+hVQU(¢1PV) + hVQU(w1PV) + UVQU(T/)1PV) + U?QU(wlp )
+hV pu (¥2QV) + vV py (2QV) + AV (w2QV) 4+ vV py (w2QV)
( )
)

<

(3.19) v
+hVQU<¢2QV) + ’UVQU(leQU) + hVQU(wQQV) + ’UVQU woQV

= (?Uj)v + t(h?UV) + n(thV) + ¢1P(U?UV
+w1P(UVUV) + ’L/JQQ(’UVUV) + UJQQ( ? );

(3.20) = (VgJ)Y +t(hV)Y +n(hVg)Y + 1 P(A5Y)
+wi1 P(AgY) 4+ ¢2Q(AgY) + waQ(AxY);

hV 5 (tY) + vV ¢ (tY) + hV g (nY) + vV ¢ (nY)
Vx

hV (1 PU) + hV g (w1 PU) + vV g (11 PU) + vV 5 (w1 PU)
+hV 5 (12QV) + Ax (12QU) + Ax (w2QU) + vV ¢ (waQU)
= (Vg )U + t(AgU) +n(AgU) + 1 Py ( U))
+w1P(v?XU) +¢2Q(Uvj( ) FwQ(VVU);

(3.21)

I

hVy(tX) + To(tX) + To(nX) + vVy(nX)
(3.22) = (Vu )X +t(hVyX) +n(hVyX) + 1 P(Tu X)

+wi P(TuX) + ¥2Q(Ty X) + waQ(vVy X).
Proof. For U,V €V, we have

Vu(JV) = (Vu)V +J(VyV),

which gives equation (3.19). Similarly, we can obtain other equations.

By using similar steps as in lemma 3.1, we have

Lemma 3.2. Let f: M — M be a bi-slant pseudo-Riemannian submersion from an
indefinite almost Kdhler manifold (M,.J,g) onto a pseudo-Riemannian manifold (M, g).
Then, for any U,V €V and X,Y € H, we have

h?PU(w V) + hVPU(CUlPV) + hVQU(V,/qPV) + hVQU(CUlPV)
(3.23) +hV pu (Y1QV) + hV py (w2QV) + hVqu (12QV) + hV qu (w2 QV)
=t(hVyV + 1 P(VyV) + 12Q(wVyV);
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vva(IMPV) + UVPU( ) + U?QU(TMPV) + U?QU(OAPV)
(3.24) +oV py (12QV) + vV py(waQV) + U?QU@/}QQV) + 'U?QU(WQQV)
= (thV) + wlp(UVU) + ng(vaV).

(3.25) AV 5 (tY) + hV g (nY) = t(hV ¢Y) + 01 P(AgY) + 10Q(AgY);

(3.26) wW(tY)+oVe(Y)=n(hVgY)+wiP(AgY) +wQ(AgY).

hV 3 (¥1PU) + th(WIPU) +hV g (12QV) + Ag (w2QU)

(8:27) — (A U) + by PV ) + o Q¥ 5 U);
(3.28) V(@1 PU) 40V 5 (w1 PU) + Ax (12QU) 4+ 0V 5 (wQU)

. :n(.A)zU)—l—wlP(U?be)—ngQ(vvx—U).
(3.29) AVy(tX) + Tu(nX) = t(hVyX) + 01 P(To X) + ¥2Q(Tu X);
(330) TU(tX) + 'U?U(TLX) = n(h?UX') + wlP(TUX') + WQQ(U?UX).

Theorem 3.3. Let f: M — M be a bi-slant pseudo-Riemannian submersion from an
indefinite almost Kdhler manifold (M, J,g) onto a pseudo-Riemannian manifold (M, g).
Then, the fibres of f are totally geodesic if and only if Vi (JV) = J(vVyV), for any vector
fields U,V € V.

Proof. For vector fields U,V € V, we have
(3.31) ?U(jV) = j(TUV) + j(vaV)

The fibres of f are totally geodesic if and only if 7 = 0. So, the proof follows from
(3.31). 0

Theorem 3.4. Let f: M — M be a bi-slant pseudo-Riemannian submersion from an
indefinite almost Hermitian manifold (M, J,g) onto a pseudo-Riemannian manifold (M, g).
Then, the horizontal distribution H defines a totally geodesic foliation if and only if

(3.32) g(t(hVRY)) + 1 P(0VRY) +12Q(vVRY), 1 PU +12QU)
+g(n(hVY) + w1 P(oVgY) + waQ(vV 5Y), w1 PU + weQU) = 0,

for X,Y € H and U,V € V.
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Proof. Let X, Y € H and U € V. Then, we have
g(v)??a U) = g(j(?Xg)7 jU) o B - o
= g(t(hV5Y)+n(hVgY)+ J(P(vVY))+Q(vVgY),
1 PU + w1 PU + ¢oQU + CUQQU),

which implies

(3.33) g(VxY, U) = gt(hVgY))+¢1P(wVgY), Y1 PU + 42QU)

Now, H defines a totally geodesic foliation if and only if V ¢Y € H. So, the proof follows
from above equation. O

Corollary 3.1. Let f: M — M be a bi-slant pseudo-Riemannian submersion from an
indefinite almost Hermitian manifold (M, J, g) onto a pseudo-Riemannian manifold (M, g).
Then, the following statements are equivalent:

(a) The horizontal distribution H defines a totally geodesic foliation,

(b) g(t(hVY)) + 1 P(0VgY) +1Q(uV Y, ¢¥1PU +4QU)
+g(n(hVgY) + wiP(0VgY) + weQ(vVxY), wiPU 4+ weQU) =0,

(¢) g(hV Y, t1 PU) + 11 Pwi PU + 12Qwi PU + t1p2QU
+ Y1 PwaQU + ¢2QuwaQU) + g(vV g Y),
n¢1PU + w1 P PU + CL)2QLL)1PU
+ noQU + wi PwaQU + waQuwaQU) = 0,

(d) gnt(hVgY)+wiPn(hVY) +wQn(hVgY)
+ mplP(vYX}_/) + w1Pw1P(UYX¥) + WQlep(UVXY)
+ nQ(vVgY) + wi PwaQ(vV YY)
+ weQuw2Q(vVY), U) =0,
forall X,Y € H and U € V.

Proof. In theorem (3.4), we have proved (a) < (b). Similarly, we can prove (b) < (c),
(c) & (d) and (d) & (a). O

Theorem 3.5. Let f: M — M be a bi-slant pseudo-Riemannian submersion from an
indefinite almost Hermitian manifold (M, J,g) onto a pseudo-Riemannian manifold (M, g).
Then, the vertical distribution V defines a totally geodesic foliation if and only if

(3.34) g(t(thV) + IblP(UvUV) + ¢2Q<’U?UV), tX)
+g(n(hVy V) + w1 P(wVyV) + waQu(VyV), nX) =0,

forall X € H and U,V € V.
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Proof. Let X € H and U,V € V. Then, we have
gVuV,X) = g(JVuV, JX)
= g(t(thV) + n(thV) + wlp(vaV)
—i—wlP(v?UV) + ¢2Q(U?UV)
+w2Q(vVy V), tX +nX),

which gives

(3.35) g(VuV,X) = gt(hVuV) + 1 P(wVyV) 4+ 2QwVyV), tX)
—i—g(n(thV) + wlP(v?UV) + OJQQ'U(?UV), nX')

The distribution V defines a totally geodesic foliation if and only if ViV € V. This
completes the proof. O

Theorem 3.6. Let f: M — M be a bi-slant pseudo-Riemannian submersion from an
indefinite Kdahler manifold (M, J,g) onto a pseudo-Riemannian manifold (M, g). Then,
the vertical distribution V defines a totally geodesic foliation if and only if

(3.36) G(hWVu (1 PV + w1 PV 4+ 12QV + waQV), tX)
+3(0Vu (Y1 PV + w1 PV + 1QV 4+ wQV), nX) =0,

for U,V €V and X € H.
Proof. Let U,V € V and X € H. We have
— 3

?U(jV), tX —i—nX),
Vu(@1PV 4+ w1 PV + 12QV + waQV), tX + nX),
which implies

(3.37) g(VuV, X) = g(hVu(1 PV +wiPV 4+ 4QV +wQV), tX)
+3(0Vu (W1 PV + w1 PV + 15QV 4+ wQV), nX).

VyV €V if and only if right side of above equation vanishes.
Hence, the proof follows from equation (3.37). O

Now, using similar steps as in theorem 22 and theorem 24 of [20], we have

Theorem 3.7. Let f: M — M be a bi-slant pseudo-Riemannian submersion from an
indefinite almost Hermitian manifold (M, J, g) onto a pseudo-Riemannian manifold (M, g).
Then, the submersion f is an affine map on H.

Theorem 3.8. Let f: M — M be a bi-slant pseudo-Riemannian submersion from an
indefinite almost Hermitian manifold (M, J,g) onto a pseudo-Riemannian manifold (M, g).
Then, the submersion f is an affine map if and only if h(VEhF) + AppvE + TypvF is
f-related to VxY, for any E,F € T'(TM).
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Theorem 3.9. Let f: M — M be a bi-slant pseudo-Riemannian submersion from an
indefinite almost Hermitian manifold (M, J, g) onto a pseudo-Riemannian manifold (M, g).
Then, the submersion map f is totally geodesic if and only if

(3.38) ToV +AgV +hVyY = 0,
for any U,V €V and X,Y € H.

Proof. Let E=X+U, F=Y +V € (TM).
In view of equation (2.24), using similar steps as in proof of theorem (3.7), we have

(VENE, F) = (VL)UV)+ (VE)X, V) +(VA)UY)

= —f(M(VyV + V5V +VyY)),
which gives
(3.39) (VINE, F) = —f(TuV + A5V +hVpY).
é{s th)e submersion map f is totally geodesic if and only if V f, = 0, the proof follows fI‘OIé]l
3.39).

Theorem 3.10. Let f: M — M be a bi-slant pseudo-Riemannian submersion from indef-
inite almost Hermitian manifold (M?*™,.J, g) onto pseudo-Riemannian manifold (M™2, g).
If the fibres f~1(q) of f over ¢ € M are totally geodesic, then f is a harmonic map.

Proof. The tension field 7(f) of the map f: M — M is defined as

(3.40) 7(f) = trace(Vf.).
Let {e1,€2,- ,€2m; —mo» €2my—matl = €1,€2, - Em, + be an orthonormal basis of T'(T M),
where {e1,e2, - ,€2m,—m,} is an orthonormal basis of V and {éj,é2, - €p,} is an or-

thonormal basis of H. Then, we have

2mi1—mo m2
B4 () = S alen e)(Vh e )+ 56 &)L, &)
i1 j=1

For any vertical vector fields U, V' € V, using equation (2.12), we have
(342) (VINWU.V) = (V(£V)of = [(VuV)

= _f*(thV)

= _f* (TUV)a

where V7 is the pullback connection of V with respect to f. For any horizontal vector fields
X,Y € H, which are f-related to X,Y € I'(T'M) respectively, lemma 2.1 and theorem 3.7

imply

(3.43) (VENX,Y) = (VL(LEY))of — f(VgY)
(Vi x(f:¥)) o f — f(hVRY)
0.
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In view of equations (3.41), (3.42), (3.43) and theorem 3.8, we get

Adm—+3—n

(3.44) () = = D gle, e)fu(Teen).

i=1
Now, if the fibres f~1(q) of f over ¢ € M are totally geodesic, then 7 = 0. So the proof of
the theorem follows from equation (3.44). O
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