Coefficient Estimates For Certain Subclass of Bi-Univalent Functions Associated With Chebyshev Polynomial

V.B. Girgaonkar \& S.B. Joshi
Department of Mathematics, Walchand College of Engineering, Sangli 416415, India.
vasudha.girgaonkar@walchandsangli.ac.in, santosh.joshi@walchandsangli.ac.in

Abstract

In this paper we have defined new subclass $H_{\Sigma}(\lambda, t, \beta)$ of bi-univalent functions in D and established the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ by using Chebyshev polynomial

2010 Mathematics Subject Classification: 30C45, 30C50.
Keywords: Chebyshev polynomial, bi-univalent function, λ-convex functions, coefficient bounds, subordination.

1 Introduction

A functions of the form $f(z)$ normalized by the following Taylor Maclaurin series:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disc $D=\{z \in \mathbb{C}:|z|<1\}$ and belongs to class A. Let $M(\lambda)$ denote the subclass of λ-convex functions in D defined as follows (see [7]):

$$
M(\lambda)=\left\{f \in A: \Re\left((1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right)>0, \quad \lambda \geq 0\right\} .
$$

Let S be the class of all functions in A which are univalent in D. By Koebe one quarter theorem [5] we can see that the image of D under every function f from the class S contains a disc or radius $\frac{1}{4}$. Thus every function $f \in S$ has an inverse f^{-1}, defined by $f^{-1}(f(z))=z(z \in D)$ and $f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)$ where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots . \tag{1.2}
\end{equation*}
$$

A function $f \in A$ is said to be bi-univalent in D if both $f(z)$ and $f^{-1}(z)$ are univalent in D. Let Σ be the class of bi univalent functions in D investigated by Lewin (see[9]). Recently Joshi and others introduced and investigated the subclass of Σ associated with pseudo starlike functions. and obtain non sharp estimates on initial coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. (for details one could refer [3],[8],[11][12]).
Also in [2] Babalola proved that all pseudo-starlike functions are Bazilevic of type $\left(1-\frac{1}{\lambda}\right)$, order $\beta^{\frac{1}{\lambda}}$ and univalent in open disc D.

In literature there are only few works about the bounds on the general coefficient $\left|a_{n}\right|$ for $n \geq 4$. The problem of coefficient estimate for general coefficient $\left|a_{n}\right| n \in \mathbb{N} \backslash\{1,2\}$ where \mathbb{N} is set of natural numbers is still open.
In numerical analysis the chebyshev polynomial has great importance in theory and practical both. There are four kinds of chebyshev polynomials. The majority of research papers dealing with orthogonal polynomials of Chebyshev family, contains first and second kinds Chebyshev polynomials, which is denoted by $T_{n}(t)$ and $U_{n}(t)$ see Doha[4] and Mason[10].
The Chebyshev polynomial of first and second kinds are well known and given as follows. In the case of real variable x on $(-1,1)$, they are defined by

$$
\begin{gathered}
T_{n}(t)=\operatorname{cosn} \theta \\
U_{n}(t)=\frac{\sin (n+1) \theta}{\sin \theta}
\end{gathered}
$$

where the subscript n denotes the polynomial degree and $t=\cos \theta$.
Also if the functions f and g are analytic in D, then f is said to be subordinate to g and can be written as

$$
f(z) \prec g(z) \quad(z \in D)
$$

If there exists a schwartz function $w(z)$ analytic in D, with $w(0)=0,|w(z)|<1$ such that $f(z)=g(w(z)) \quad(z \in D)$.
Definition 1.1. A function f given by (1.1) is said to be in the class $H_{\Sigma}(\lambda, t, \beta), \beta>0$, $\lambda \geq 0$ and $t \in(0,1]$ if the following subordination hold :

$$
\begin{equation*}
\text { and } \quad\left[(1-\lambda) \frac{w g^{\prime}(w)}{g(w)}+\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]^{\beta} \prec H(w, t)=\frac{1}{1-2 t w+w^{2}} \quad(w \in D) \tag{1.4}
\end{equation*}
$$

where g is extension of f^{-1} to D given by (1.2)

Here note that if $t=\cos \alpha \quad \alpha \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, then

$$
\begin{aligned}
H(z, t) & =\frac{1}{1-2 t z+z^{2}} \\
& =1+\sum_{n=1}^{\infty} \frac{\sin (n+1) \alpha}{\sin \alpha} z^{n} \quad(z \in D) .
\end{aligned}
$$

Thus

$$
H(z, t)=1+2 \cos \alpha z+\left(3 \cos ^{2} \alpha-\sin ^{2} \alpha\right) z^{2}+\ldots \quad(z \in D) .
$$

then we write

$$
H(z, t)=1+U_{1}(t) z+U_{2}(t) z^{2}+\ldots \quad(z \in D, t \in(-1,1))
$$

where $U_{n-1}=\frac{\sin (n \arccos t)}{\sqrt{1-t^{2}}} \quad(n \in \mathbb{N})$ are the Chebyshev polynomial of the second kind and we known that

$$
\begin{align*}
& U_{n}(t)=2 t U_{n-1}(t)-U_{n-2}(t) \tag{1.5}\\
& U_{1}(t)=2 t \tag{1.6}\\
& U_{2}(t)=4 t^{2}-1 \tag{1.7}\\
& U_{3}(t)=8 t^{3}-4 t \tag{1.8}\\
& \vdots
\end{align*}
$$

The generating function of the Chebyshev polynomial of the first kind $T_{n}(t), t \in[-1,1]$ have the form

$$
\sum_{n=1}^{\infty} T_{n}(t) z^{n}=\frac{1-t z}{1-2 t z+z^{2}} \quad(z \in D)
$$

However, the relationship between Chebyshev polynomial of first kind and second kind can be given as follows

$$
\begin{aligned}
\frac{d T_{n}(t)}{d t} & =n U_{n-1}(t) \\
T_{n}(t) & =U_{n}(t)-t U_{n-1}(t) \\
2 T_{n}(t) & =U_{n}(t)-U_{n-2}(t)
\end{aligned}
$$

Motivated by the earlier work of Dziok et al. [6], Sahsene Altinkaya and Sibel Yalcin [1] we use Chebyshev polynomial expansions to provide estimates for coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of bi-univalent functions in $H_{\Sigma}(\lambda, t, \beta)$.

MAIN RESULTS

2 Coefficient Estimates for the function class $H_{\Sigma}(\lambda, t, \beta)$.

Theorem 2.1. Let f given by (1.1) be in the class $H_{\Sigma}(\lambda, t, \beta)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 t \sqrt{2 t}}{\sqrt{\beta(1+\lambda)\left[(1+\lambda)\left(\beta-2 t^{2}(\beta+1)+4 t^{2}\right]\right.}} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4 t^{2}}{\beta^{2}(1+\lambda)^{2}}+\frac{t}{\beta(1+2 \lambda)} \tag{2.2}
\end{equation*}
$$

Proof : Let $f \in H_{\Sigma}(\lambda, t, \beta)$. From (1.3)and (1.4)we have

$$
\begin{equation*}
\left[(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\beta}=1+U_{1}(t) w(z)+U_{2}(t) w^{2}(z)+\ldots \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[(1-\lambda) \frac{w g^{\prime}(w)}{g(w)}+\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]^{\beta}=1+U_{1}(t) v(w)+U_{2}(t) v^{2}(w)+\ldots \tag{2.4}
\end{equation*}
$$

for some analytic functions w, v such that $w(0)=v(0)=0$ and $|w(z)|<1,|v(w)|<1 \forall$ $z \in D$ from equalities (2.3) and (2.4) we have

$$
\begin{equation*}
\left[(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\beta}=1+U_{1}(t) c_{1} z+\left[U_{1}(t) c_{2}+U_{2}(t) c_{1}^{2}\right] z^{2}+\ldots \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[(1-\lambda) \frac{w g^{\prime}(w)}{g(w)}+\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]^{\beta}=1+U_{1}(t) d_{1} w+\left[U_{1}(t) d_{2}+U_{2}(t) d_{1}^{2}\right] w^{2}+\ldots \tag{2.6}
\end{equation*}
$$

It is well known that if $|w(z)|=\left|c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots\right|<1$ and $|v(w)|=\mid d_{1} w+d_{2} w^{2}+$ $d_{3} w^{3}+\ldots \mid<1, z, w \in D$, then

$$
\left|c_{j}\right| \leq 1 \quad \forall j \in \mathbb{N}
$$

From equations (2.5) and (2.6) we can write

$$
\begin{gather*}
\beta(1+\lambda) a_{2}=U_{1}(t) c_{1} \tag{2.7}\\
\beta(2+4 \lambda) a_{3}+\left(\frac{\beta(\beta-1)}{2}(1+\lambda)^{2}-\beta(3 \lambda+1)\right) a_{2}^{2}=U_{1}(t) c_{2}+U_{2}(t) c_{1}^{2} \tag{2.8}\\
-\beta(1+\lambda) a_{2}=U_{1}(t) d_{1} \tag{2.9}\\
{\left[\beta(3+5 \lambda)+\frac{\beta(\beta-1)}{2}(1+\lambda)^{2}\right] a_{2}^{2}-\beta(2+4 \lambda) a_{3}=U_{1}(t) d_{2}+U_{2}(t) d_{1}^{2}} \tag{2.10}
\end{gather*}
$$

From equations (2.7) and (2.9) we get

$$
\begin{equation*}
c_{1}=-d_{1} \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \beta^{2}(1+\lambda)^{2} a_{2}^{2}=U_{1}^{2}(t)\left(c_{1}^{2}+d_{1}^{2}\right) \tag{2.12}
\end{equation*}
$$

Taking addition of (2.8) and (2.10) we get

$$
\begin{equation*}
\left[\beta(\beta-1)(1+\lambda)^{2}+\beta(2+2 \lambda)\right] a_{2}^{2}=U_{1}(t)\left(c_{2}+d_{2}\right)+U_{2}(t)\left(c_{1}^{2}+d_{1}^{2}\right) \tag{2.13}
\end{equation*}
$$

Using equation (2.12) in (2.13) we get

$$
\begin{equation*}
a_{2}^{2}\left[\beta(1+\lambda)(\beta(1+\lambda)-(\lambda-1))-\frac{U_{2}(t)}{U_{1}^{2}(t)} 2 \beta^{2}(1+\lambda)^{2}\right]=U_{1}(t)\left(c_{2}+d_{2}\right) \tag{2.14}
\end{equation*}
$$

From (1.6),(1.7) and (2.14) we have

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 t \sqrt{2 t}}{\sqrt{\beta(1+\lambda)\left[(1+\lambda)\left(\beta-2 t^{2}(\beta+1)+4 t^{2}\right]\right.}} \tag{2.15}
\end{equation*}
$$

Now for bound on $\left|a_{3}\right|$, by subtracting (2.10)from (2.8) we get

$$
\begin{equation*}
2 \beta(2+4 \lambda) a_{3}-\beta(4+8 \lambda) a_{2}^{2}=U_{1}(t)\left(c_{2}-d_{2}\right)+U_{2}(t)\left(c_{1}^{2}-d_{1}^{2}\right) \tag{2.16}
\end{equation*}
$$

Now using (2.11) and (2.12) in (2.16) we get

$$
\begin{equation*}
a_{3}=\frac{U_{1}^{2}(t)}{2 \beta^{2}(1+\lambda)^{2}}\left(c_{1}^{2}+d_{1}^{2}\right)+\frac{U_{1}(t)}{2 \beta(2+4 \lambda)}\left(c_{2}-d_{2}\right) \tag{2.17}
\end{equation*}
$$

Now from (1.6) we get

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4 t^{2}}{\beta^{2}(1+\lambda)^{2}}+\frac{t}{\beta(1+2 \lambda)} \tag{2.18}
\end{equation*}
$$

3 Fekete-Szegö inequalities for the class $H_{\Sigma}(\lambda, t, \beta)$

Theorem 3.1. If f given by (1.1) is in the class $H_{\Sigma}(\lambda, t, \beta)$ and $\delta \in R$, then

$$
\left|a_{3}-\delta a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{t}{\beta(1+2 \lambda)} ; \\
\text { for }|\delta-1| \leq \frac{1}{4(1+2 \lambda)}\left|\frac{\beta(1+\lambda)^{2}}{2 t^{2}}-\left(\beta(1+\lambda)^{2}+\left(\lambda^{2}-1\right)\right)\right| \\
\frac{8 t^{3}|(1-\delta)|}{\left|2 t^{2}\left(\beta^{2}(1+\lambda)^{2}-\beta\left(\lambda^{2}-1\right)\right)-\left(4 t^{2}-1\right)\left(\beta^{2}(1+\lambda)^{2}\right)\right|} ; \\
\text { for }|\delta-1| \geq \frac{1}{4(1+2 \lambda)}\left|\frac{\beta(1+\lambda)^{2}}{2 t^{2}}-\left(\beta(1+\lambda)^{2}+\left(\lambda^{2}-1\right)\right)\right|
\end{array}\right.
$$

Proof. From equations (2.17) and (2.14)

$$
\begin{aligned}
a_{3}-\delta a_{2}^{2} & =(1-\delta)\left[\frac{U_{1}^{3}(t)\left(c_{2}+d_{2}\right)}{U_{1}^{2}(t)\left[\beta(\beta-1)(1+\lambda)^{2}+2 \beta(1+\lambda)\right]-U_{2}(t) 2 \beta^{2}(1+\lambda)^{2}}\right]+\frac{U_{1}(t)\left(c_{2}-d_{2}\right)}{2 \beta(2+4 \lambda)} \\
& =U_{1}(t)\left[\left(l(\delta)+\frac{1}{4 \beta(1+2 \lambda)}\right) c_{2}+\left(l(\delta)-\frac{1}{4 \beta(1+2 \lambda)}\right) d_{2}\right]
\end{aligned}
$$

where

$$
l(\delta)=\frac{U_{1}^{2}(t)(1-\delta)}{U_{1}^{2}(t)[\beta(1+\lambda)(\beta(1+\lambda)-(\lambda-1))]-U_{2}(t) 2 \beta^{2}(1+\lambda)^{2}} .
$$

Then from (1.6) and (1.7) we can write

$$
\left|a_{3}-\delta a_{2}^{2}\right| \leq \begin{cases}\frac{t}{\beta(1+2 \lambda)} & \text { for } 0 \leq|l(\delta)| \leq \frac{1}{4 \beta(1+2 \lambda)} \\ 4 t|l(\delta)| & \text { for }|l(\delta)| \geq \frac{1}{4 \beta(1+2 \lambda)}\end{cases}
$$

References

[1] S. Altinkaya and S. Yalcin, Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions, arXiv:1605.08224v1.
[2] K.O.Babalola, On λ-pseudo-starlike functions, J.class Anal., 3(2), (2013), 137-147.
[3] D.A.Brannan, T.S.Taha, On some classes of bi-univalant functions, in: S.M.Mazhar, A.Hamoui, N.S.Faour(Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceeding Series, Vol-3, Pergamon press, Elsevier Science Limited,Oxford , (1988), 53-60 ; See also Studia Univ. Babe-Bolyai Math., 31(2), (1986), 70-77 .
[4] E.H. Doha, The first and second kind Chebyshev coefficients of the moments of the general-order derivative of an infinitely differentiable function, Intern.J.Comput.Math., 51(1994), 21-35.
[5] P.L.Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, 259, (1983).
[6] J. Dziok, R.K.Raina, J.Sokol,Application of Chebyshev polynomials to classes of analytic functions, C.R.Acad. Sci. Paris, Ser. I, 353(2015), 433-438.
[7] Fekete M., Szegö G. Bermerkung uber ungeraade schlichte funktionen[J]. J., London Math.Soc., 8, (1933), 85-89.
[8] Santosh Joshi, Sayali Joshi, Haridas Pawar, On some subclasses of bi-univalent functions associated with pseudo-starlike functions, J. Egypt. Math. Soc., (2016), 1-4 .
[9] M.Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 , (1967), 63-68.
[10] J.C. Mason, Chebyshev polynomials approximations for the L-membrane eigenvalue problem, SIAM J. Appl. Math., 15(1967), 172-186
[11] E.Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32, (1969), 100-112.
[12] H.M.Srivastava, A.K.Mishra, P.Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 023, (2010), 1188-1192.

