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Abstract

The present paper concern the flow through random assemblage of
porous cylindrical particles of radially varying permeability. The Brinkman
equation is used for formulation of flow through porous medium and
Stokes equation is used for flow through clear fluid region. To model
flow through assemblage of particles, cell model technique has been used
i.e. the porous cylindrical shell is assumed to be confined within a hy-
pothetical cell of same geometry. Effect of various parameters on the
permeability of swarm is being discussed analytically as well as graphi-
cally.
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1 Introduction:

Flow through porous media occurs in a wide range of industrial and natural processes. Flow
through random assemblage of particles has been area of interest from last few decades due
application in membrane filtration process. In order to study the flow with high porosity
Brinkman (1947) suggested a modification to Darcy’s (1856) model by adding a Laplacian
term in velocity, which is commonly known as Brinkman equation.

The ground flows of water and oil, the filtration of water through the sand, the filtration
of various solutions through porous membranes are few examples of flow through porous
structures. We can characterized a complex porous structure by swarm of impermeable
particles. The shape of these particles are usually taken as spherical and cylindrical. The
problem of flow through a swarm of particles can be easily solved by using cell model
technique. In the cell model we study slow flow past a swarm of concentrated particles.
This technique is used to replace a system of chaotically distributed particles in to a periodic
array of particles. We assume every particle in array enclosed in an envelope (cell) and
the interaction effect of the multitude of particles being accounted by suitable boundary
conditions at the enveloping surface. Happel (1959) and Kuwabara (1959) proposed cell
model with different boundary conditions on the cell surface. Happel (1959) proposed cell
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models in which the particle and outer cell, both are spherical/cylindrical. The Happel
model assumes uniform velocity condition and no tangential stress at the cell surface.
This condition leads to an axially symmetric flow. In Kuwabara model he used the zero
vorticity condition on the cell surface. Cunningham (1910) proposed another boundary
condition on the cell surface which is also known as Mehta and Morse (1975) condition.
Cunningham assumed that the tangential velocity as a component of the fluid velocity.
This approach signifying the homogeneity of the flow on the cell boundary. Later, Kvashnin
(1979) proposed the condition that the tangential component of velocity reaches a minimum
at the cell surface. Uchida (1954) gave the concept of cell model by considering enveloping
surface of cubical shape. He singled out a particle from the swarm and assumed it to be
confined within a cubic cell acting as a fluid envelope. The advantage of the model is that a
cubic envelope is space filling however, a major drawback of the model is that of difference
in outer and inner geometry. Thus, the entire disturbance due to each particle is confined
within the cell of the fluid with which it is associated.
Number of authors have been investigated the problems of flow through porous medium by
using different cell models. Vasin at al.(2008) investigated flow around a spherical particle
with a porous shell and calculated a hydrodynamic permeability of the porous media build
up by such particles. They used different boundary conditions on the outer surface of
cells and compare the results obtained. Yadav at al. (2010) consider similar problem
as Vasin at al.(2008) and found the effect of stress jump condition on the flow. Vasin
and Filippov (2009) calculated hydrodynamic permeability of a membrane simulated by a
set of identical impenetrable cylinders covered with a porous layer by the HappelBrenner
cell method. They studied both transverse and longitudinal flows of filtering liquid with
respect to the cylindrical fibers that compose the membrane. Boundary conditions on
the cell surface that correspond to the Happel, Kuwabara, Kvashnin, and Cunningham
models are considered and Brinkman equations (1947) are used to describe the flow of
liquid in the porous layer. Yadav at al. (2013) studied the hydrodynamic permeability
of biporous membrane built up by porous cylindrical particles located in another porous
medium by using cell model technique. They considered four known boundary conditions,
namely, Happels, Kuwabaras, Kvashnins and Cunningham/Mehta Morses on the outer
surface of the cell and comparison of the resulting hydrodynamic permeability has been
undertaken. Srivastava and Deo(2013) studied a fully developed flow of an electrically
conducting viscous fluid through a porous medium of variable permeability under the
transverse applied uniform magnetic field between two parallel plates. The variation of
permeability is taken quadratic on the transverse direction. They used Brinkman equation
for flow through porous medium and obtained numerical solution for the velocity and
volumetric flow rate for the two cases, Poiseuille and Couette flow. Verma and Datta (2012)
found analytical solution for fully developed laminar flow of a viscous incompressible fluid
in an annular region between two coaxial cylindrical tubes filled with a porous medium of
variable permeability when the permeability of the porous medium varies with the radial
distance. In the present article we investigate similar problem as considered by Verma and
Datta (2012) and find analytical solution by using cell model. We use Brinkman equation
to analyze the flow in porous region.
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2 Mathematical formulation:

We have considered an axis symmetric Stokes flow of an incompressible fluid through a
membrane build up by swarm of porous cylindrical particles of radius b̃ each enclosing an
impermeable core of radius ã (b̃ > ã). We assume that axes of all cylindrical particles
are parallel to each other. We use cell model to investigate the flow following Happel and
Brenner (1983). By virtue of cell model, each porous cylindrical shell is assumed to be

enveloped by a concentric cylinder of radius c̃ ( c̃ > b̃ ) named as cell surface. The Stokes
flow of a viscous incompressible fluid is assumed to approach towards cell surface as well
as partially passing through the composite cylindrical particle along the axis of cylinder (

Z̃ - axis) with constant velocity Ũ from left to right as shown in Fig.1. The radius c̃ of
hypothetical cell is chosen in such a way that the particle volume fraction m of the swarm
is equal to the particle volume fraction of the cell (More precisely, the volume fraction of
the partially porous particles to the volume of a cell is equal to the volume fraction of
particles in the membrane.), i.e.

(2.1) m2 =
πc̃2

πã2
.

The governing equation of motion in the cell region outside the porous cylindrical shell
is Stokes equation, which is

(2.2) ∇2ũ1 =
1

µ̃
∇p̃

Here ũ1 is the fluid velocity, µ̃ is the fluid viscosity and p̃ is the pressure in the cell region
(region- I). In cylindrical polar coordinates (r̃, θ, z̃) the above stokes equation for present
flow can be written as

(2.3)
d2ũ1
dr̃2

+
1

r̃

dũ1
dr̃

=
1

µ̃

∂p̃

∂z̃

In the porous region ( region II) the governing equation is Brinkman equation given by

µ̃e∇2ũ2 −
µ̃

k
ũ2 = ∇p̃ ; b̃ ≥ r̃ ≥ ã.(2.4)

Here ũ2 is the fluid velocity in the porous region, k is the permeability of the porous region
-II and µ̃e is the effective viscosity in the porous region (b̃ ≥ r̃ ≥ ã). Authors have different
opinions about the role of effective viscosity. Liu and Masaliyah (2005) say that, depending
on the type of porous medium, the effective viscosity may be either smaller or greater than
the fluid viscosity. Many authors, for example, Brinkman (1947) and Chikh et al. (1995),
assume that µ̃e = µ̃. This assumption is valid for a high-porosity medium. In the present
work, following Brinkman and Chikh, we assume that µ̃e = µ̃. With this assumption,
Brinkman momentum Eq. (2.4) becomes
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Fig. 1: Porous cylindrical particle with cell surface

(2.5) ∇2ũ2 −
ũ2
k

=
1

µ̃
∇p̃

In cylindrical polar coordinates (r̃, θ, z̃) above Eq.(2.5) for the present flow can be written
as

(2.6)
d2ũ2
dr̃2

+
1

r̃

dũ2
dr̃
− ũ2

k
=

1

µ̃

∂p̃

∂z̃
; b̃ ≥ r̃ ≥ ã.

Now, we introduce non dimensional quantities as follows

(2.7) r =
r̃

ã
, u1 =

ũ1

Ũ
, u2 =

ũ2

Ũ
, z =

z̃

ã
, n =

b̃

ã
, m =

c̃

ã
.

Using these non dimensional variables Stokes Eq.(2.3) and Brinkman Eq. (2.6) takes the
following form

(2.8)
d2u1
dr2

+
1

r

du1
dr

= −P
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and

(2.9)
d2u2
dr2

+
1

r

du2
dr
− a2u2

k
= −P.

respectively, where P = −(a2/Ũ µ̃)(∂p̃/∂z̃) is non dimensional pressure gradient.

3 Boundary Conditions

In our present case, the Happel, Kuwabara, Kvashnin, and Cunningham boundary condi-
tions lead to the following single condition on the cell surface, which is in non dimensional
variables can be expressed as

(3.1)
du1
dr

= 0, at r = m.

On the fluid porous interface at r = n, we assume following matching conditions -
(i) Continuity of velocity i.e.

(3.2) u1 = u2, at r = n

and (ii) Continuity of tangential stress gives us

(3.3)
du1
dr

=
du2
dr

, at r = n.

On the surface of impermeable inner cylindrical core we have no slip condition, which is

(3.4) u2 = 0 at r = 1.

4 Solution and Results

Now we consider the case when permeability of the porous region - II vary with radial dis-
tance according to the law k(r) = kor

N , where N is a real number. With this permeability
Eq.(1.9) become

(4.1)
d2u2
dr2

+
1

r

du2
dr
− α2u2

rN
= −P.

where α2 = a2/ko is the permeability parameter. Since it is very cumbersome to deal with
the general value of N , therefore we will consider three particular cases of permeability
variation : case I, when k = ko; case II, when k = kor and case III, when k = kor

2. Here
ko is characteristic permeability, which may be taken as permeability on the surface of an
inner cylinder or as mean permeability of the porous region-II.
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4.1 Case I

When permeability of the porous region is constant. Let k = k0, i.e. N = 0 in Eq.(4.1).
With this permeability Brinkman Eq.(4.1) becomes

(4.2)
d2u2
dr2

+
1

r

du2
dr
− α2u2 = −P

Equation (4.2) is a modified Bessels equation of order zero. Its general solution is given by

(4.3) u2(r) = C1I0(αr) +D1K0(αr) +
P

α2

Where I0 and K0 are modified Bessel’ s functions of order zero of first and second kind,
respectively. C1 and D1 are constants of integration. Solution of Stokes equation (2.8) for
cell region-I is given by

(4.4) u1(r) = A1 +B1 log r − Pr2

4

Here A1 and B1 are constants of integration. Using boundary conditions (3.1), (3.2), (3.3)
and (3.4) to determine constants A1, B1, C1 and D1. We get

A1 =
P [αnK0(α) + 2K1(αn)] [I0(α)K0(αn)−K0(α)I0(αn)]

2α2K0(α) [K0(α)I1(αn) + I0(α)K1(αn)]
− PK0(αn)

α2K0(α)

+
n2P

4
+
P

α2
− Pm2

2

[
log(n) +

(I0(α)K0(αn)−K0(α)I0(αn))

nα (K0(α)I1(αn) + I0(α)K1(αn))

]
B1 =

m2P

2

C1 =
Pα(m2 − n2)K0(α)− 2nPK1(αn)

2α2n (K0(α)I1(αn) + I0(α)K1(αn))

D1 = − Pα(m2 − n2)I0(α) + 2nPI1(αn)

2α2n (K0(α)I1(αn) + I0(α)K1(αn))
(4.5)

The fluid velocity u1 in the cell region and u2 in the porous region is given by Eq.(4.4) and
Eq.(4.3), respectively when permeability of the porous region is constant k0. The constants
A1, B1, C1 and D1 are given by Eq.(4.5). The velocity profile of the flow within the cell
region and porous region for different values of permeability variation parameter α = 3, 6, 9
and 12, when permeability of the porous region is k = ko and P = 1, n = 2,m = 2.5 is
shown in Fig(2).

4.1.1 Rate of volume Flow

The dimensionless rate of volume flow through the cross - section of cylindrical particle
enveloped by hypothetical cell is given by

(4.6) Q = 2π

[∫ m

n
r u1(r)dr +

∫ n

1
r u2(r)dr

]
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Fig. 2: Velocity profile of the flow within the cell region and porous region for different values of α
when permeability of the porous region is k = ko.

Q = 2π

[
−2αC1 [I1(α)− nI1(αn)] + 2αD1 [K1(α)− nK1(αn)] +

(
n2 − 1

)
P

2α2

+(
A1 − 8P

16
)
(
m2 − n2

)
+

1

4
B1

(
−m2 + 2m2 logm+ n2 − 2n2 log n

)]
(4.7)

Where I1 and K1 are modified Bessel’s functions of first order. The variation for rate of
volume flow through the cross section with α is shown in Fig.(3).

4.1.2 Hydrodynamic Permeability

Hydrodynamic permeability of the membrane when permeability of the porous region is
constant k = ko is defined as

(4.8) L1 =
Q

πm2P
.

Where volume flow rateQ is given by Eq.(4.7). Variation of hydrodynamic permeability
with permeability variation parameter α is shown in Fig(4).
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Fig. 3: Variation of rate volume flow Q with
α when permeability of the porous region is
vary as k = ko.

Α = 3

Α = 6

k = k0

P = 1

n = 2

2.2 2.4 2.6 2.8 3.0
m

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L1

Fig. 4: Variation for Hydrodynamic permeability for
different values of α when permeability of the
porous region is vary as k = ko.

4.2 Case II

When the permeability k of porous region of the particle is varying according to the law
k = k0r, i.e. N = 1 in Eq.(4.1). With this permeability Brinkman Eq.(4.1) becomes

(4.9) r
d2u2
dr2

+
1

r

du2
dr
− α2u2 = −rP

General solution of this differential equation is

(4.10) u2(r) = C2Io
(
2
√
rα
)

+D2Ko

(
2
√
rα
)

+
P
(
α2r + 1

)
α4

where Io and Ko are modified Bessel’ s functions of order zero of first and second kind,
respectively and C2, D2 are constant of integration.Solution of Stokes equation (2.8) for
cell region-I is given by

(4.11) u1(r) = A2 +B2 log r − Pr2

4
.

Here A2 and B2 are constants of integration. Using boundary conditions (3.1), (3.2), (3.3)
and (3.4) to determine constants A2, B2, C2 and D2. We get
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A2 =
P

4α4K0(2α)

[
(2 + nα)2K0(2α)− 4

(
α2 + 1

)
K0

(
2α
√
n
)

−
2 [K0(2α)I0 (2α

√
n)− I0(2α)K0 (2α

√
n)]
[
α
√
n
(
α2n+ 2

)
K0(2α) + 2

(
α2 + 1

)
K1 (2α

√
n)
]

[K0(2α)I1 (2α
√
n) + I0(2α)K1 (2α

√
n)]

−8m2α4

(
K0(2α) log(n) +

I0(2α)K0 (2α
√
n)−K0(2α)I0 (2α

√
n)

α
√
n (K1 (2α

√
n) + I1 (2α

√
n))

)]
B2 =

m2P

2

C2 = −Pα[α2(n2 −m2) + 2n]K0(2α) + 2P (α2 + 1)
√
nK1 (2α

√
n)

2α4
√
n (K0(2α)I1 (2α

√
n) + I0(2α)K1 (2α

√
n))

D2 = −Pα[α2(m2 − n2)− 2n]I0(2α) + 2P (α2 + 1)
√
nI1 (2α

√
n)

4α4
√
n (K0(2α)I1 (2α

√
n) + I0(2α)K1 (2α

√
n))

(4.12)

The fluid velocity u1 in the cell region and u2 in the porous region is given by Eq.(4.11) and
Eq.(4.12), respectively when permeability of the porous region is k = k0r. The constants
A2, B2, C2 and D2 are given by Eq.(4.12). The velocity profile of the flow within the cell
region and porous region for different values of permeability variation parameter α = 3, 6, 9
and 12, when permeability of the porous region is k = kor and P = 1, n = 2,m = 2.5 is
shown in Fig(5).
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Fig. 5: Velocity profile of the flow within the cell region and porous region for α = 3, 6, 9 and 12
when permeability of the porous region is k = kor.
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4.2.1 Rate of Volume Flow:

The dimensionless rate of volume flow through the cross - section of cylindrical particle
enveloped by hypothetical cell when permeability of the porous region vary k = kor is
given by

Q = 2π

[∫ m

n
r u1(r)dr +

∫ n

1
r u2(r)dr

]

Q = C2
2π

α2
{αn
√
nI1(2

√
nα)− αI1(2α)− nI2(2

√
nα) + I2(2α)}

+
π

3α4
{3(q2 − 1) + 2α2(q3 − 1)}+D2

2π

α2

{
− αn

√
nK1(2

√
nα) + αK1(2α)

−nK2(2
√
nα) +K2(2α)

}
+

1

16

(
8A2

(
m2 − n2

)
+ 4B2

(
−m2

+2m2 logm+ n2 − 2n2 log n
)

+ P
(
n4 −m4

) )
(4.13)

The variation for rate of volume flow through the cross section with α is shown in Fig.(6).

4.2.2 Hydrodynamic Permeability

Hydrodynamic permeability of the membrane when permeability of the porous region is
constant k = kor is defined as

(4.14) L2 =
Q

πm2P

Where Q is given by Eq.(4.13). Variation of hydrodynamic permeability with permeability
variation parameter α is shown in Fig(7).

4.3 Case III

When the permeability of Porous medium is k = k0r
2 In this case Brinkman’s equation

takes form

(4.15) r2
d2u2

dr2
+ r

du2
dr
− u2
k0

= −Pr2

where P = (a2p0/uµ̃1)(∂p/∂z).

(4.16) r2
d2u2

dr2
+ r

du2
dr
− α2u2 = −Pr2.

The corresponding solution of Brinkman’s equation becomes

(4.17) u2(r) = C3 cosh(α log r) +D3 sinh(α log r) +
Pr2

α2 − 4
, for α 6= 2
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Fig. 6: Variation of rate volume flow Q with
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Fig. 7: Variation for Hydrodynamic permeability for
different values of α when permeability of the
porous region is vary as k = kor.

(4.18) u2(r) = C ′
3 cosh(2 log r) +D′

3 sinh(2 log r)− 1

4
Pr2 log r, for α = 2

Solution of Stokes equation (2.8) for cell region-I is given by

(4.19) u1(r) = A3 +B3 log r − Pr2

4
.

To find the constants A3, B3, C3 and D3 for α 6= 2 we use boundary conditions (3.1), (3.2),
(3.3) and (3.4). We get

A3 =
1

4
P [
αn2{α− 2 tanh(α log n)} − 4sech(α log n)

α2 − 4
+

2m2 tanh(α log n)− α log(n)

α
]

B3 =
m2P

2
,

C3 = − P

α2 − 4
,

D3 =
m2P sech(α log n)

2α
− P{αn2sech(α log n)− 2 tanh(α log n)}

2 (α2 − 4)
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To find the constants A′
3, B

′
3, C

′
3 and D′

3 for α = 2 we use boundary conditions (3.1), (3.2),
(3.3) and (3.4). We get

A′
3 =

1

8
P{−2

(
2m2 + n2

)
log n+

(
2m2 − n2 + 2n2 log n

)
tanh(2 logn) + 2n2},

B′
3 =

m2P

2
,

C ′
3 = 0,

D′
3 =

1

8
P
(
2m2 − n2 + 2n2 log n

)
sech(2 log n)(4.20)

The corresponding expressions for dimensionless velocity at any point in cell region and
porous region, when permeability of medium is k = k0r

2 is given by Eq.s (4.19) and (4.17),
on insertion of above values of constants.
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Fig. 8: Velocity profile for different values of α.

4.3.1 Rate of Volume Flow :

The dimensionless rate of volume flow through the cross - section of cylindrical particle
enveloped by hypothetical cell when permeability of the porous region vary k = kor

2 is
given by

(4.21) Q = 2π

[∫ m

n
ru1(r)dr +

∫ n

1
ru2(r)dr

]
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Q for α 6= 2 and α = 2 is given by following equations.

Q = 2π
4n2((αC3 − 2D3) sinh(α log n) + (αD3 − 2C3) cosh(α log n)) + 8C3 − 4αD3 +

(
n4 − 1

)
P

4 (α2 − 4)

+
π

8
[
(
m2 − n2

)
{8A3 − 4B − P

(
m2 + n2

)
}+ 8B3

(
m2 logm− n2 log n

)
], α 6= 2

Q =
π

8
{8A3

(
m2 − n2

)
+ 4B3

(
−m2 + 2m2 logm+ n2 − 2n2 log n

)
+ P

(
n4 −m4

)
}

+
π

32
{
(
n4 − 1

)
(8C ′

3 + 8D′ + 1) + 4 log n
(
8C ′

3 − 8D′
3 − n4

)
}, α = 2.(4.22)

The variation for rate of volume flow through the cross section with α is shown in Fig.(9).
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Fig. 9: Variation of rate volume flow Q with
α when permeability of the porous region is
vary as k = kor
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Fig. 10: Variation for Hydrodynamic permeability
for different values of α when permeability
of the porous region is vary as k = kor

2.

4.3.2 Hydrodynamic Permeability:

Hydrodynamic permeability of the membrane when permeability of the porous region is
constant k = kor

2 is defined as

(4.23) L3 =
Q

πm2P
,

Where Q is given by equation no. 4.21 and 4.22. Variation of hydrodynamic permeability
of the membrane with of m for different of α is shown in Fig.(10).
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Fig. 11: Velocity Profile for different Cases.

5 Discussion and conclusion

Fig. (2), (5) and (8) shows the velocity profile of fluid velocity within the cell region and
porous region when permeability of the porous particle vary according to the law k = ko,
k = kor and k = kor

2, respectively. These figures are plotted for fixed value of n = 2,
m = 2.5, P = 1 when α = 3, 6, 9 and 12. Figures reveal that as permeability parameter
α increases, velocity u of the fluid flow decreases. This is because increase in α caused
decrease in the permeability of the porous region. Fig. (11) shows the effect of perme-
ability variation on the fluid velocity for fixed value of α = 3. We observe that velocity is
maximum for permeability variation k = k0r

2 and minimum for the case k = ko.
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Fig. 12: Variation of volume flow rate for different
cases of permeability variation .
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Fig. (3), (6) and (9) shows that rate of volume flow Q decreases with increases in α
i.e. with decrease in permeability for all the cases of permeability variation. In Fig.(12) we
found that rate of volume flow Q is maximum when permeability of the porous medium
varies as k = k0r

2 and it is minimum when permeability is constant.

Fig. (4), (7) and (10) shows the variation of hydrodynamic permeability of the mem-
brane with particle volume fraction m when permeability of the porous particle vary ac-
cording to the law k = ko, k = kor and k = kor

2, respectively. Figures reveal that hydro-
dynamic permeability of the membrane increases with increase in m. Fig.(13) shows that
hydrodynamic permeability of the membrane is minimum in the case when permeability of
the porous particle vary according to the law k = kor

2 and is maximum when it is constant.

It is observed that permeability parameter α has strong influence on the flow. Increase
in α causes decrease in the fluid velocity and the volume flow rate through the mem-
brane. It is also observed that permeability variation in the porous particle affects the flow
through membrane considerably. Hydrodynamic permeability of the membrane increases
with increase in m.
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