GANITA, Vol. 68(2), 2018, 01-06 1

A Coincidence Point Theorem in Partial Metric Space
M. C. Arya, N. Chandra and Mahesh C. Joshi

Department of Mathematics,
D. §. B. Campus, Kumaun University
Nainital, India

mcaryal986@gmail.com, cnaveen329Qgmail.com, € mcjoshi69@gmail.com

Abstract

The aim of this paper is to obtain some coincidence point results
on complete partial metric spaces under a generalized contractive con-
dition. Our results extend some well known results on the existence of
fixed /coincidence points for single valued maps in partial metric spaces.
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1 Introduction

Banach contraction mapping principle is the most celebrated result in fixed point theory
and and its applications. Banach contraction principle guarantees that any contraction
map on complete metric space has a unique fixed point. Kannan [3] was first, who gave a
new contractive condition for which a map need not be continuous even if it has a fixed
point on complete metric space. Also, Chatterjea [1] generalized the Banach’s contractive
condition and obtained a fixed point theorem. In this direction, Hardy and Rogers [2]
obtained a fixed point theorem under the generalized condition which is the combination
of Kannan, Chatterjea and Banach contractive type condition. Hardy and Rogers result is
stated as follows.

Theorem 1.1. Let T be a selfmap on a complete metric space (X, d) such that
d(Tz,Ty) < ald(z,Tx) + d(y, Ty)] + bld(z, Ty) + d(y, Tz)] + cd(z,y)
forallx,y € X, where 0 < 2a+2b+c <k < 1. Then T has a unique fixed point.

Matthews [4] introduced the notion of partial metric space (PMS) which is the
part of study of denotational semantics of data for network. In the same paper, Matthews
extended the Banach contraction mapping principle and proved the fixed point theorem in
the setting of PMS. Here we recall the definitions and basic properties of PMS.

Definition 1.1. [4] Let X be a non empty set, then a partial metric on X is a mapping
p: X x X — R such that for all z,y,2 € X:

(a) x =y & p(z,z) =p(z,y) = p(y,y)
(b) p(z,z) < p(x,y)
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(¢) p(z,y) = p(y, z)
(d) p(z,y) < p(x,2) +p(z,y) —p(2,2).
And the pair (X, p) is said to be partial metric space (PMS).
If p is a partial metric on X, then the functions p®,p' : X x X — RT given by

pi(z, y)t = 229(1»‘}1(/) —p(x,2) —p(y,y) and p'(z,y) = max{p(z,y) — p(z,z), p(z,y) — p(y,y)}

Definition 1.2. ([4]) Let (X, p) be a partial metric space. Then,

(i) a sequence {z,} in (X,p) is said to be convergent to a point z € X if and only
p(z, ) = limy 00 p(zp, ),

(ii) asequence {xy} is called a Cauchy sequence if limy,, p—s00 P(Zm, Tp) exists (and finite),

(iii) (X, p) is said to be complete if every Cauchy sequence {x,} in X converges to a point
x € X with respect to 7,. Furthermore,

im plan, @) = lim plan,2) = p(o, o).

Lemma 1.1. ([4]) Let (X,p) be a partial metric space. Then

(i) a sequence {xy,} in (X,p) is a Cauchy sequence if and only if it is a Cauchy sequence
in the metric space (X, p*),

(ii) (X,p) is complete if and only if the metric space (X, p®) is complete,

(iii) a subset E of a (X,p) is closed if a sequence {x,} in E such that {z,} converges to
somex € X, thenx € E.

Definition 1.3. [5] Let (X, p) be a partial metric space. Then,
(i) a sequence {x,} in (X, p) is called 0-Cauchy if limy, p—yo0 P(Tm, zpn) = 0,

(ii) (X,p) is said to be 0-complete if every 0-Cauchy sequence in X converges to a point
x € X, such that p(x,z) = 0.

Remark 1.1. Let (X, p) be a PMS, then p(z,y) = 0 = = = y, but converse is not true in
general.

Now, we prove our main results using Hardy and Rogers [2] type condition in partial
metric spaces.



GANITA, Vol. 68(2), 2018, 01-06 3

2 Main Results

Theorem 2.1. Let T be a self-map on a complete partial metric space X satisfying the
condition

(2.1) p(Tx,Ty) < alp(z, Tx) + p(y, Ty)] + blp(x, Ty) + p(y, Tx)] + cp(z,y)
forallx,y € X, where 0 < 2a+2b+c <k < 1. Then T has a unique fixed point.

Proof. Let zy € X and {x,}°, be a sequence in X which is defined as x,, = Tz, for

n=1,2,3,..., then z,, = T"xzy. Now, we have
p(Tn, 2nt1) = p(Tan—1,Ty,)
< a[p(xn—ly T-Tfn—l) + p(xm Txn)]

+bo[p(zn—1,Txn) + p(zn, TTn-1)] + cp(Tn_1,Tn)
a[p(xn—la xn) + p(Zn, $n+1)]

+0[p(Tn—1, Tnt1) + p(Tn, Tn)] + cp(Tn—1,2n)

< a[p(xn—laxn)"’_p(xmxn—l—l)]

+0[p(zn—1,2n) + p(Tn, Tpt1)] + cp(Tn-1, T0)
(a+b+c)p(xn—1,24) + (a+ b)p(Tpn, Tpni1)

IN

= (1—-—a—-0bp(xn,znr1) < (a+b+c)p(xn_1,zn)
a+b+c
= p(Tn, Tny1) < mp(iﬂn—l,ffn)'

Since k < 1, p(xn,Tpy1) < kp(xp—1,z,) < k:Zp(xn_g,xn_l) oo < E"p(x0,21).

Now we show that {z,}'=7° is a Cauchy sequence in X. Let m,n > 0 with m > n, then

P(Tns2m) < p(Tns Tot1) + P(Tnt1, Tny2) + o+ P(Tatm—1, Tm)
—p(Tnt1, Tny1) — P(Tnt2, Tnt2) — - — P(Tntm—15 Tntm—1)
< k"p(xo,x1) + K" p(ze, 1) .. A+ KT p(20, 21)
< E"[p(xg,x1) + kp(xo, z1) + ... + K™ p(x0, 1))
1— gt
= Moy plen),

Taking n, m — oo we get p(zy, Tm) — 0, hence {z,, }>°; is Cauchy sequence in X. Thus by
lemma this sequence will also Cauchy in (X, p®). As X is complete therefore the sequence
{z,} will converge to =z € X, i.e, x,, — z. Thus,

Jim plansan) = lim p(ea,2) = pla,) =0.
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Existence of fixed point: Now, we show that z is fixed point of T'. As,

p(x,Tx) < p(z,xn41) +0(Tey, Tx) — p(Tpt1, Tnt1)
p(z,Tz) < p(z,2nt1) + a[p(@n, ni1) + p(z, Tz)]
+ b[p(zn, Tz) + p(@, Tns1)] + cp(Tn, ©) = P(Tnt1, Tni1)
p(z,Tz) < p(x,2ni1) + alp(xn, ) + p(@, Tny1) — p(z, ) + p(z, T)]
—i—b[p(xn, '7") =+ p($, Tx) - p(iL‘, x) + p(ac, $nJrl)]
+ep(zn, ) — p(Tnt1, Tnt1)
< (I+a+b)plx,xne1) + (a+ b+ c)p(xn, z) + (a + b)p(z, Tx)
= (I—a—-bp(z,Tx) < (14+a+bp(x,znt1)+ (a+b+ c)p(zn,x)
= p(z,Tz) < 8 i_ Z i_ Zip(x, Tpt1) + mp(% x).

Letting n — oo, then we have
p(z,Tx) <0=plx,Tz) =0= Tz =x.

Now, if y is another fixed point of T, i.e., p(y,T'y) = 0. Then,

p(x,y) p(Tz, Ty)

< alp(z,Tz) + (y, Ty)] + blp(z, T'y) + p(y, Tx)] + cp(, y)
< alp(z,z) + (y,9)] + blp(z, y) + p(y, z)] + cp(z, y)
< bp(z,y) +p(y,x)] + cp(z,y) < (2b+ c)p(z,y)
= (1-2b—-c)p(z,y) < 0=>p(z,y)=0ie ==y,
which completes the theorem. O

Taking particular values of a,b and ¢ in Theorem 2.1, we obtained the following results
as corollaries due Kannan [3], Chatterjea [1] and Banach contraction principle in partial
metric spaces.

Corollary 2.1. Let T be a self-map of a complete partial metric space X such that
p(Tz,Ty) < alp(z, Tx) + p(y, Ty)]

for each x,y € X, where 0 < a < % Then T has a unique fixed point on X.

Corollary 2.2. Let T be a self-map of a complete partial metric space X such that
p(Tz, Ty) < b[p(z, Ty) + p(y, T'z)]

for each x,y € X, where 0 < b < % Then T has a unique fized point on X.

Corollary 2.3. Let T be a self-map of a complete partial metric space X such that

p(Tz,Ty) < kp(z,y)
for each x,y € X, where 0 < k < 1. Then T has a unique fized point on X.
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Coincidence Point Result for Two Mapping

Theorem 2.2. Let T and f be a self-maps on a complete partial metric space X such that

(2.2)  p(Tz,Ty) < alp(fz, Tx) + p(fy, Ty)] + blp(fz, Ty) + p(fy, Tx)] + cp(fz, fy)

for all xz,y € X, where 0 < 2a 4+ 2b+ ¢ < k < 1. If the range of f contains the range of T
and f(X) is a complete subspace of X, then T and f have a coincidence fixed point.

Proof. Let xp € X and Choose a point x1 in X such that Tzg = fx1,...,Txyn = fTni1,
we get

p(Txp—1,Txy)

a[p(fxn—lv T:Un—l) + p(fxm T.I‘n)]

+0[pf(®n—1,Txn) + p(fTn, TTn-1)] + cp(fTn-1, frn)
a[p(fxn—lv fxn) + p(fxn, fxn-&-l)]

+o[p(frn—1, frnt1) + p(fon, fon)] +cp(frn—1, fon)
(a+b+)p(frn_1f,xn) + (a+b0)p(fan, frni1)
(a+b+)p(frn-1, frn)

mp(fl‘nla frn).

kp(frn—1, frn) < Kp(fen—2, foa-1)... <K'p(fzo, f21).

p(fon, frng)

IA

IN A

= (1—a—0)p(frn, frni1)

= p(fon, frni1)

IN

IN

Since k < 17 p(fxnv fxn+1)

Now, we show that {fz,}5°, is a Cauchy sequence in X. Let m,n > 0 with m > n, so we
have

IN

p(frn, fxm) P(f2n, fxn—l-l) +p(frnat, frnre) + .+ p(fTnim—1, fxm)
—D(fTni1, frni1) — D(fTny2, fonie) — .. = P(fZrgm—1, fTnim—1)
E'p(fxo, fz1) + k”“p(fxo, fx1)+ ... k"+m*1p(fa:0, fx1)

kn[p(fl‘o, fl'l) + kp(fxﬁv fxl) +.oo+ kmilp(fx()? fxl)]

1— km—l
k”ﬁp(fxo, fx1).

IA A

IN

Letting n, m — oo, we get p(fzn, frm) — 0, hence {fx,}5°; is a Cauchy sequence in X.
Thus by lemma this sequence will be Cauchy in (X, p®) also. As X is complete therefore
the sequence {z,} will converge to = in X, i.e., z, — = fx, — fx. Therefore,

lim p(fan, fom) = lm p(fan, fz) = p(fa, fz) = 0.

n,Mm—00
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Existence of Coincidence fixed point : For if,

p(fz,Tx) < p(fz, fons1) +p(Ton, T2) — p(fTpi1, frnin)

p(fz,Tz) < p(fz, fras1) +alp(fzn, fon) + p(fr, T2)]

+o[p(fn, Tz) + p(f, frai1)] + ep(fon, fr) — p(fTni1, fTnir
p(fx, fenir) + alp(fon, f2) + p(f2, fone) — p(fe, fo) + p(fz, Tx)]
—i—b[p(xn, x) —|—p(a:, TLU) - p(JJ, x) +p(fa:, fl'n+1)]

+ep(fn, fr) — p(fonit, fonn

p(fx, Tx)

IN

< (L4 a+b)p(fo, fnin) + @+ b+ Op(fon, f2) + (a -+ bp(fz, Ta)
= (1—a-0b)p(fe,Tx) < (1+a+bp(fz, fent1)+ (a+b+c)p(fan, f)
1 b b
= plfnT) < e fon) + (o (o o)
Taking n — oo, we get p(fz,Tz) < 0= p(fe,Tz)=0= Tz = fz. O

Remark 2.1. Taking f = I and T is the single valued map in Theorem 2.2, we get
Theorem 2.1.
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