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Abstract

Statisticians while looking for general parametric-invariant proce-
dures in statistical inference and asymptotics via) derivative and differ-
ential strings came across an infinite dimensional Lie group in 1990 as jet
group which is currently called the phylon group P (d).

This group has a very rich geometry and richer representation theory
than the general linear group GL(d). Just as general tensor fields are
related to the tensor representations of GL(d), all the string fields of
statistics are realizable by representations of P (d). Moreover these string
fields and their generalisations occur as sections of certain vector bundles
whose construction is well known in differential geometry.

There are applications of these representations of P (d) in statistical
asymptotics. The representation theory of P (d) is new and difficult and
is at begining state only posing many challenges.

§1 Introduction

Statisticians while studying statistical inference and asymptotics are concerned with
parametric-invariant procedures. This necessitated them to develop the theory of gen-
eralized tensors ‘or strings’ systematically. In fact it was started by McCullah and Cox
[1986][1]. While studying Bartlet adjustments decomposed it into 6 parts of tensors which
are parameter-invariant. Starting with this paper statisticians developped statistical string
theory during last 3 decades in the form of derivative strings, differnetial strings both struc-
turally symmetric ones and general ones and in this process there evolved a certain infinite
dimensional group in 1992 denoted by P(d) in the work of Murray 1990,1992 [2,3] for the
first time.

It is well known to statisticians that differnential geometry provides a convenient lan-
guage and tool for studying parametric-independent questions in inference. This was stud-
ied by Amari [4] extensively. For statistical parametric models differential geometry pro-
vides global structures like dual structures, affine structure etc on statistical manifold P,
that is, global geometries and their most general generalization on P [5] and neighborhood
geometry of P such as divergence geometry [6] and finally differential form interpretation
of invariants [7] under neighborhood geometry were investigated.

The infinite dimensional Lie group G that arose in statistical string theory was studied
under the name of infinite phylon group (referring to family P). It is closely related and
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contains the general linear group GL(n) This group was also studied by Carey and Murray
[3] under the name of infinite Jet group J∞(d) from representation theoretic aspects since
1988.

On the otherhand the Japaneese group led by H. Omori etc., while studying the the-
ory of infinite dimensional Lie groups that arise in classical, Hamiltonian and symplectic
mechanics, quantum mechanics and more generally in integrable dynamical systems came
to a class of infinite dimensional Frechet Lie groups which are regular [8],[9]. In that
class Omori studied this particular infinite dimensional Lie group of statistics which he
denoted by GF (n) the group of formal coordinate transformations of Rn or Cn . In oth-
erwords this group GF (n) is amenable to formal algebraic geometry i.e., the geometry of
formal neighbourhoods of Rn. In fact Omori [1980] used this group to study the classifi-
cation of expansive singularities of algebraic varieties. From another classification aspect
of natural vector bundles and natural differential operators this group was also studied by
Palais-Terng 1977 [10] and Terng (1978 [11]). In this article we focus on the mathematical
aspects of this infinite dimensional Lie group denoted by P(d) from the representation
theory view point. At the same time we capture all the tensional string theory work of
Barndorff-Nielsen etc., in a series of papers [12] as a theory of generalized tensors or ar-
rays of functions attached to coordinate systems on statistical manifold P of dimension
d (in coordinate version). This is done by means of a well known differential-geometric
construction (or principle) of associating a vector bundle to a principal bundle [13],[14]. It
should be pointed out this group P(d) of statistics has a very rich geometry and has richer
representation theory than that of general linear group GL(d). In fact all the classical
tensor representations are included in those of P(d). The representation theory of P(d) is
in general rather difficult. This is just the beginning only. There are many open problems
and conjectures to be investigated.

Nevertheless, the statistical string theory studies of Barndorff-Nielsen and others gave
new insights into differential geometry such as connection strings and intertwining of con-
nection string and scalar strings and the representation theory of P(d) is quite new and
revealing in many new aspects and is offering new challenges.

This statistical string theory has deep applications in statistical inference and statistical
asymptotics via representations of P(d) and in general is computationally efficient in the
generalized tensor formulation via transformation rules [12].

In §2 we introduced finite and infinite phylon groups in jet form and formal power series
form and discussed its propoerties. §3 deals with classical and general tensors, generalized
tensors and strings as representations of suitable group. §4 concerns with coordinate-free or
invariant formulation of these generalized strings as geometric objects and all the upto-date
information is given in a tabular form. In §5 the study of certain finite-dimensional special
phylon representations was done. §6 treats the infinite dimensional phylon representations
including the adjoint and co-adjoint representations of P (d) and also the Kirillov orbit
theory representations and also the twisted phylon representations. It was proved that an
indecomposable representation of P (d) need not be irreducible. At this time our knowledge
about representations of P (d) is very limited whereas it is complete for GL(d). We used
several test representative spaces to understand P (d) and in this process we gave several
open problems and the current status on this topic was brought out.
Finally in the appendix we applied the twisted phylon representation theory to the asymp-
totic behavior of the maximum likelihood estimator (MLE) (see [29] for other applications).
We gave only limited references though the literature on string theory is vast.
From a more general aspect the analysis of measure parametric statistical models was in-
vestigated by Ay etc. in [26,27]. For a survey on statistical string theory the reader can
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see [30].
§2 The infinite phylon group P(d):
I. Local setup: We define the infinite phylon group P(d) in two equivalent ways.

(a) consider the set of all Rd-valued infinite formal power series in d variables with no
constant term. That is

f = (f1, f2, · · · , f i, · · · , fd) where f i = f ij1x
j1 +

1

2!
f ij1j2x

j1xj2 + · · · (2.1)

where (f ij1)d×d is an invertible matrix or invertible linear term. All such fs form a

group under composition. That is, if f, g ∈ P (d)
def
= Rdinv,0[[x1, x2, · · · , xd]] then f ◦ g

is obtained from (2.1) by replacing xj by gj as series with g = (g1, g2, · · · , gj , · · · , gd).
this is one definition (Barndorff-Nielsen etc., [15]).

(b) (i) We say two functions f and g defined in a nbd. of a point p are jet equivalent at
p if they have the same Taylor series at p i.e., T (f)p = T (g)p.
(ii) f and g are germ equivalent at p if f and g agree on same nbd. of p.
Both of these are equivalence relations. The later gives a finer classification than the
former one and the equivalence classes are called jet of f at p or j∞p (f) and the germ
of f at p or [f ]p.

Consider a smooth function f : Rd → Rd with f(0) = 0 with invertible Jacobian i.e.,
such f is a local diffeomorphism from a nbd. 0 onto some nbd. of 0. Then the Taylor
series T (f) defines a formal power series.

By inverse function theorem f has a local inverse f−1 and T (f−1) = T (f)−1 and
the chain rule gives T (f ◦ g) = T (f) · T (g) where f ◦ g is composition and · is
power series multiplication as defined in (a) for P (d). So we have the Taylor map
T : J∞(d) → P (d) where J∞(d) denotes the group of local diffeomorphism of nbds.
of 0 in Rd to itself fixing the origin modulo jet equivalence i.e.,

J∞(d) = {J∞o (f)} under multiplication J∞o (f) · J∞o (g) = J∞o (f ◦ g)

called the infinite jet group (Carey and Murray [3]). The above map T sending

J∞o (f)→ T (f) ∈ Rdinv,0[[x1, · · · , xd]] is an identification and T is onto by a Theorem

of Borel [16]. These give the two ways ((a) and (b)) of understanding the infinite
Phylon gp P (d)

For finite phylon groups Pk(d) truncate the Taylor series at k-th stage or as k-th jet.
II. Manifold setup: Let M be a smooth d-dimensional manifold and m ∈M . Let ω and
ψ be local coordinate systems at m. They define an element of group P (d) as follows:

For ω define new coordinate system ω̂m
def
= ω − ω(m) so that ω̂m(m) = 0. Define

D(ω, ψ)(m) = J∞0 (ω̂m ◦ ψ̂−1
m ) ∈ P (d). Note that ω̂m ◦ ψ̂−1

m is a local diffeom on Rd at
the origin as in our above local setup. More precisely, D(ω, ψ) : ∪ω ∩ ∪ψ → P (d) and on

three coordinate nbds. ∪ω, ∪ψ and ∪ζ we have ψ̂m ◦ ω̂−1
m = (ψ̂m ◦ ζ̂−1

m ) ◦ (ζ̂m ◦ ω̂−1
m ) and so

taking J∞o operation, we get

D(ψ, ω) = D(ψ, ζ)D(ζ, ω) (2.2)
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which we call a cocycle condition on ∪ω ∩ ∪ψ ∩ ∪ζ of M .
III. Structure of P (d): For any positive integer T one can consider the finite dimensional
T -phylon groups PT (d) by taking T -jet equivalence of local diffeomorphisms or formal
power series truncated after T th term with same gp operations and we have projection
maps Jk : P (d) → Pk(d) ∀ k = 1, 2, · · · . which is also a group homomorphism onto with

kernel a normal sub group of P (d) denoted by P (k)(d) and the elements of P (k)(d) are of
the form as formal power series

δijx
j +

1

(k + 1)!
f ij1,j2,··· ,jk+1

xj1xj2 · · ·xjk+1 + · · ·

or equivalently it is a jet of a diffeom that agree with the identity upto order k.
Thus each Pk(d) is a finite dimensional Lie group and note that P1(d) is simply GL(d) the

general linear group and P (1)(d) is the corresponding normal subgroup so that

P (d)/P (1)(d) ∼= P1(d) = GL(d)

and we have the sequence of projection maps as

P (d)→ · · ·Pk+1(d)→ Pk(d)→ Pk−1(d)→ · · · → P1(d)

In other words, the infinite phylon groups is the projective limit of the sequence (Pk(d))
of finite dimensional Lie groups. If P (d) = Rdinv,0[[x1, · · · , xd]] is given the pointwise

convergence (by homogeneous degree components) then each map, jk becomes a continuous
map and this topology is infact the projective limit topology. With this topology the phylon
group P (d) becomes a Frechet Lie group.
Remarks: P (d) as a manifold is a Frechet manifold.

We know Banach space modeled or Hilbert space modeled manifolds behave like finite
dimensional manifolds where as Frechet space modelled manifolds behave differently. the
main problem with them is (1) Inverse function theorem is not valid (ii) the uniqueness
of solutions of O.D. Equations with initial condition also fails in Frechet manifolds. The
geometric consequence of this is the exponential map may not eixst for Frechet Lie groups
and even if it exists it need not be a local diffeomorphism from its Lie algebra to the group
[17], [18]. Thus P (d) is an infinite dimensional Frechet manifold. But P (d) being the
projective limit of finite dimensional Lie groups Pk(d) and each Pk(d) as Lie group enjoys
exponential map: LPk(d) → Pk(d) as local diffeom, P (d) also enjoys exponential map:
LP (d)→ P (d) and is smooth and it is a regular Frechet Lie group (Omori [8]). Moreover

exp: LP (1)(d)→ P (1)(d) is a smooth bijection.
Note that GL(d) is a sub group of P (d) as we can regard ∀ X ∈ GL(d) as power se-
ries of the form Xa

i x
i and also a quotient group of P (d) and hence we have a bijec-

tion: P (1)(d)XGL(d) → P (d) and we can put a group product on P (1)(d)XGL(d) mak-

ing P (1)(d)XGL(d) isomorphic to P (d). But this is a semi-direct product defined by

(f,X) · (g, Y )
def
= (f(XgX−1), XY ).

We study the representation theory of P (d) under this product (cf. §5 in the following).

§3 Classical tensors, generalized tensors and strings as representations of
a group



GANITA, Proceeding of NCMRT, Vol 68(3), 2018, 5-32 9

1. Notations: We give first some convenient notation to handle higher order derivatives
of functions or coordinate change functions.
Let ω = (ω1, · · · , ωd) and ψ = (ψ1, ψ2, · · · , ψd) be two local coordinate systems on a
d-dimensional manifold M . Generically we write ωi, ωj , ωk etc., and ψa, ψb, ψc etc.,

for them respectively. Let ωi|a = ∂ωi

∂ψa , ωi|a,b = ∂2ωi

∂ψa∂ψb etc., and more generally, the

function ωk|C = ∂tωk

∂ψc1∂ψc2 ···∂ψct where C = (c1, c2, · · · , ct) is a multi-index. Still more

generally, let K = (k1, k2, · · · , ku) be another multi-index then we put

ωK|C =
∑
C||u

ωk1|C1
ωk2|C2
· · ·ωku|Cu

(3.1)

where u = |K|, length of K and C||u means the sum is taken over all ordered
partitions (C1, C2, · · · , Cu) of C into u subsets each having the same order as in C
and with no gaps. That is, we are grouping the higher order derivatives in a definite
arrangements.

We have ωK|C = 0 if |K| > |C|. If K and C are empty then ωK|C = 1, ωφ|C = 0 and

ωK|φ = 0.

Note that ωi1i2···in|a1a2···an = ωi1|a1ω
i2
|a2ω

i3
|a3 · · ·ω

in
|an and ωi1i2|a1a2a3 = ωi1|a1ω

i2
|a2a3 + ωi1|a1a3ω

i2
|a2 +

ωi2|a3ω
i1
|a1a2

2. Strings: Barndorff-Nielsen [19] introduced strings or generalized tensors broadly as
derivative string fields and differential string fields [20].

3. Definition (a) Given a point m ∈ M , a derivative string of tensorial degree (r, s)
and length (T,U) at m assigns to each local coordinate system ω around m a set
of real-valued arrays HIL

JK indexed by multi-indices I, J,K,L with |I| = r, |J | = s,
|K| ≤ T , |L| ≤ U which transform under coordinate change from ω to ψ by

HAD
BC = ψA|Iω

J
|BH

IL
JKω

K
|Cψ

D
|L (3.2)

where |A| = r and |B| = s and the derivatives are valued at ψ(m) or ω(m) as
appropriate and extended summation convention followed. The space SrUsT (m) of
such strings is a finite dimensional vector space. Taking union over m in M we
get the space SrUsT (M) of such global strings on M and elements of Sr0sT (M) and of
SrUs0 (M) are called (r, s)-costrings and (r, s)-contrastrings respectively. In HIL

JK , the
sets I and J are called tensonal indices and K and L are called structural indices.
String H is called structurally symmetric if K and L are symmetric under respective
permutations of their indices separately. Note that a derivative string field H of
degree (r, s) and length (T,U) on M is a section H : M → SrUsT (M) : m → Hm in
the vector space SrUsT (M)m [19].
Definition (b): Definition of differential string ([20]). First we generalize the arrays
ωK|C to arrays [ψ, ω]EKIC defined by

[ψ, ω]EKIC =
∑
C||2

ωK|C1
ωL|C2

(ψE|I )|L (3.3)
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where C||2 denote sumover all order partition (C1, C2) of C into 2 subsets, either or
which may be empty with same order as in C. A differential string of degree (r, s),
type (p, q) and length (T,U) at m ∈ M assigns to each local coordinate system ω
around m a set of real valued arrays HILM

JKN indexed by multi-indices I, J,K,L,M,N
with |I| = r, |J | = s, |K| ≤ T , |L| ≤ U , |M | = p, |N | = q which transform under
coordinate change from ω to ψ by

HADE
BCF = ψA|Iω

J
|BH

ILM
JKN [ω, ψ]NDFL [ψ, ω]EKMC (3.4)

where |A| = r, |B| = s, |E| = p and |F | = q.

Let DrUpsTq (M) denote the space of all such global differential string fields on M and

each such differential string field H =
(
HILM
JKN

)
is a section H : M → DrUpsTq .

Note that both these definitions are coordinate-based on M .

4. Classical tensor fields: classically in coordinates ω = (ω1, · · · , ωd) on M a(1,2)-
tensor field T is a collection of d3 functions T ijk i, j, k = 1 to d which under coordinate

change from ω to ψ = (ψ1, · · · , ψd) transforms by

T abc = T (ψ) = (T ijk)ψ
a
|iω

j
|bω

k
|c (3.5)

with T ijk = T (ω)

The change of coordinate matrix (ωi|a = ∂ωi

∂ψa ; i = 1 to d, a = 1 to d) defines a

function: ∪ω ∩ ∪ψ → GL(d) denoted by d(ω, ψ) where ∪ω ∩ ∪ψ is an open subset of
M .

Note that the group GL(d) acts in Rd by matrix multiplication and on its dual Rd∗
by its transposed inverse. More generally, consider the tensor product vector space
V r,s = (⊗rRd)⊗(⊗sRd∗) and its elements are tensors T with components T i1i2···irj1,j2···js and

the group GL(d) acts on V (r,s) given by for X ∈ GL(d) and T ∈ V (r,s), XT ∈ V (r,s)

with components given by

(XT )a1a2···arb1b2···bs = T i1i2···irj1j2···jsX
a1
i1
Xa2
i2
· · ·Xar

ir
X̂j1
b1
X̂j2
b2
· · · X̂js

bs
(3.6)

where X = (Xa
i ) ∈ GL(d) and X̂ = (Xt)−1.

This gives a representation ofGL(d) in the vectors space V (r,s), namely, τrs : GL(d)→
GL(V (r,s)) ..

5. Remark: The above (1,2)-tensor T can be understood as tensor representation τ12 :

GL(d) → GL(V (1,2)) such that T (ω) = T ijk and T (ψ) = T abc and the transformation

law is given by T (ψ)(m) = (τ12 ◦ d(ψ, ω)(m))(T (ω)(m))∀ m ∈ M or globally as
T (ψ) = (τ12 ◦ d(ψ, ω))T (ω).

In general, a tensor field T of type (r, s) on M transforms as

T (ψ) = (τrs ◦ d(ψ, ω))T (ω) . (3.7)
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We say that T is a tensor field transforming in the representation V (r,s) under general
linear group GL(d). To define a global tensor T on M it must satisfy the compatibility
condition for any 3 coordinate charts on M say ω, ψ and ζ, namely

τr,s ◦ d(ψ, ω) = (τrs ◦ d(ψ, ζ))(τrs ◦ d(ζ, ω)) (3.8)

called the cocycle condition.

6. Remarks 1): Then the collection {T (ω)|∀ coordinate system ω on M} satisfying
(3.7) is consistent and defines a global tensor field T on M .
2) By chain rule

∂ψa

∂ωi
=
∂ψa

∂ζr
∂ζr

∂ωi
or ψa|i = ψa|rζ

r
|i or d(ψ, ω) = d(ψ, ζ)d(ζ, ω) (3.9)

Since τrs : GL(d)→ GL(V (r,s)) is a group homomorphism, (3.9) gives (3.8).
3) In this set up all the classical tensor fields can be interpretation as GL(d)-

representations V (r,s) as above, and the properties of these tensors can be studied
from the corresponding representation theory of GL(d) such as decomposability of a
tensor etc. We extend this to the phylon group P (d) to define what are called phylon
fields.
Recall P (d) is the set of diffeomorphism of Rd which fix the origin, upto∞-jet equiv-
alence and it can also be regarded as the set Rdinv,0[[x1, x2, · · · , xd]] of all Rd-valued

(infinite) formal power series in d variables x1, · · · , xd with zero constant term and
with invertible linear term.

7. Definition a): Let ρ be a representation of the phylon group P (d) on vector space
V . We call ρ is an algebraic representation if in any basis of V the matrices ρ(J∞0 f)
representating the elements j∞0 f of P (d) have entries that are polynomial functions
of the derivative (Taylor coefficients of f) f ij1j2···jk and det(f ij1)−1

b) A finite dimensional algebraic representation ρ of P (d) on V is called a special
phylon representation of P (d).

8. Remark: From the general theory of algebraic groups and their representations we
have if ρ1, ρ2 are special phylon representations so are their direct sum ρ1⊕ρ2, tensor
product ρ1⊗ ρ2 and dual ρ∗1 and if W is a ρ-invariant subspace of V then ρ|W is also
phylon and also the induced representation of P (d) on V/W is phylon. In analogy
to tensor fields of type (r, s) we have.

9. Definition: Let ρ : P (d)→ GL(V ) be a phylon representation. Then a phylon field
P of type ρ is a collection of maps P (ω) one for each coordinate system ω on M
namely P (ω) : ∪ω ⊂M → V satisfying the transformation rule

P (ψ) = (ρ ◦D(ψ, ω))P (ω) (analogue of (3.7) for GL(d)) (3.10)

and these maps {P (ω)}s are compatible as the D(ψ, ω)s satisfy the cocycle condition
(done in §2 as (2.2))
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10. Remarks 1): we interpret later a phylon field P of type or simply a phylon as a
section of certain bundle in a coordinate-free manner. Note the above definition is
coordinate-based generalizing strings or tensors to a collection of maps {P (ω)}ω.
2) Phyla can be alternatively defined using D-matrices {D(ψ, ω)}ω,ψ of functions
[15].
3) Since the coefficients in the transformation formula (3.2) for derivative strings
and in (3.4) for differential strings are polynormal in ωi|A and ψa|I of the correspond-

ing tensors, they give the coordinate description of algebraic representations of the
phylon group P (d).
4) Comparison of representations of groups GL(d) and P (d): Many of the problems
classical tensor fields such as how they decompose, how to multiply them tensori-
ally and their existence etc., reduces to studying the representation theory of the
general linear group GL(d). we have complete information on the representation
theory of GL(d), namely (i) we classify all the finite dimensional indecomposable
representations ρ of GL(d). (ρ indecomparable means it is not a direct sum of two
representations).
(ii) to know how a tensor product ρ1 ⊗ ρ2 of two indecomposable representations
decomposes into a sum of indecomposable representations. For GL(d) representation
theory we can answer all these questions using the combinatorics of Young tableaux,
namely for GL(d), every indecomposable representation is irreducible also (i.e. they
have no proper nontrivial invariant subspaces) and there is a discrete collection of
indecomposables for GL(d) labeled by Young tableaux and there are combinatoric
rules for decomposing a tensor product ρ1 ⊗ ρ2 into indecomposables. Similarly the
theory of strings, new tensors and phylon fields reduces to the representation theory
of the phylon group P (d). Moreover since GL(d) ⊂ P (d) as a subgroup, the classical
tensor theory is part of string theory.

The representation theory of P (d) is more complicated because (1) here indecompos-
able representations of P (d) need not be irreduciable (ii) compared to GL(d), P (d)

has a very large unipotent subgroup P (1)(d) = kernel of P (d) → P1(d) = GL(d).

So P (1)(d) acts in the representations like infinite upper triangular block matrices
with identity along the diagonal. This means with analogy to the theory of algebraic
groups that there are continuous families of indecomposable representations of P (d).

Nevertheless we get a class of finite dimensional representations of P (d) by projecting
to GL(d). We study later some finite representation of P (d) called class of special
phylon representations and their structure which can be computed in the special case
of rank 2 on P2(d) and also some examples of infinite dimensional phylon represen-
tations of P (d) (cf. §5 and §6 below).
5) So we can interpret the study of new tensors and strings and even the study of
old tensors as simply the study of the representation theory of the infinite phylon
group P (d). That is, all strings and new tensors are tensor fields of type W for some
representation W of P (d) i.e. ρ : P (d) → GL(W ) group homomorphism for some
vector space W transforming by gα,β : Uα ∩ Uβ → P (d) as defined before.
6) Let M be a d-dimensional manifold. Then a general tensor field-like object Γ can
be defined on M as follows: Instead of group P (d), start with a group G and let
gαβ : Uα ∩ Uβ → G be given maps satisfying the cocycle condition gαγ = gαβ ◦ gβγ
on Uα ∩ Uβ ∩ Uγ and also given an action of G on some vector space W . Then
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with this data we can define a (G, {gαβ},W )-tensor field Γ as a collection of maps
{Tα : Uα →W |Tα = gαβTβ}. Most of the string fields of statistics occur like this only
and the study of tensor like objects can be reduced to the study of representations of
group G.
7) We can define tensor field-like objects, more general than phylon fields as follows:
Let M = Rd. Two functions f and g on M are germ equivalent at x ∈ M if f
and g agree on some nbd. of x; denoted by [f ]x the germ of f at x. Let G0(d) be
the set of all germs at 0 ∈ Rd of origin-preserving diffeomorphisms of Rd to itself.
That is, G0(d) = {[f ]0|f diffeomorphisms of Rd to itself and f(0) = 0} then define
[f ]x · [g]x] = [f ◦ g]x. Thus G0(d) becomes a group. Define χ : G0(d) → P (d) by the
infinite jet (or Taylor) map sending [f ]x → J∞0 (f) which is well defined and it is a
group homomorphism onto.
As in above remark 6) we can construct more general tensor fields Γ as (G0(d),
{gαβ},W )-tensor field where W is a representation of G0(d) and the properties of Γ
can be studied from the representations of group G0(d). By a theorem of Terng ([11],
[1978]) every (continuous) finite dimensional representation of G0(d) (as well as that
of P (d)) factors through some finite phylon group PT (d). (Theorem 1.3 of Terng
[11]). By looking at spaces W on which G0(d) acts we may get some information on
the set of indecomposable representations of P (d), as well as invariant subspaces of
W [21].

§4 Coordinate-free (or invariant) formulation of geometric string objects

In differential geometry there is general construction of a vector bundle E from a
principal bundle P where its structure group G acts on a vector space F so that F is
the fiber of E. That E = P × F (G). There is a natural principal bundle of frames on a
manifold and we can construct an associated vector bundle from it.
1 Definition: A principal bundle consists of three manifolds F, P,G, denoted by F (P,G),
F total space, P base manifold, G is a Lie group called the structure group and G acts
freely on F on the right and there is a smooth projection π : F → P such that π−1(p)
called the fiber over p is diffeomorphic to G-orbits in F and π admits local sections so that
π−1(U) ∼= U ×G (local triviality).
Examples: 1) F = P ×G. Then P ×G(P,G) is a trivial principal bundle.

2) Let E be a vector bundle over P of rank r. Then F (E) =
⋃
p∈P

F (Ep) where Ep

is fiber over p which is r-dimensional vector space and F (Ep) is the set of all frames
(f : Rr → Ep linear isomerphism) of Ep. Then F (E)(P,G = GL(r)) is a principal
bundle. In particular, P is manifold of dimension n. Then the tangent bundle T (P )
is a manifold and dimension Tp(P ) = n and T (P ) is vector bundle over P of rank n.

Then F (P ) = F (T (P )) =
⋃
p∈P

F (TpP ) is a principal bundle over P with structure group

G = GL(n) i.e., F (P ) is a manifold on which GL(n) acts freely and π : F (P )→ P projec-
tion with fibers π−1(p) ∼= GL(n). These are finite frame bundles.
2. Infinite frame bundle:
Now we consider for a statistical d-manifold P (⊂ P ⊂M) [6] and discuss its infinite frame
bundle F∞(P ). Let p ∈ P and ϕ be a coordinate system about p. Then expand any func-
tion f about p in a Taylor series in coordinates ϕ. Let ϕ and ψ be two coordinate systems
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about p. We say ϕ and ψ are infinite jet equivalent if any function f expanded w.r.t. ϕ and
ψ have same Taylor coefficients. Then the equivalence class [ϕ]p is called an infinite frame
at p. Similarly r-frames at p for 1 ≤ r < ∞ can be defined for P . Denote by F∞(P ) (re-
spectively Fr(P ) the collection of all infinite frames (respectively r-frames) at p,∀ p ∈ P .
By above construction we get a principal bundle over P namely F∞(P )(P,P(d)) (respec-
tively Fr(P )(P,Pr(d)) for 1 ≤ r < ∞). Note for r = 1, F1(P )(P,P1(d) = GL(d)) is the
standard frame bundle of P as in differential geometry. Thus corresponding to various
phylon groups Pr(d) (r = 1, 2, · · · ,∞) (i.e P∞(d) = P (d)) we have the corresponding prin-
cipal bundle of frames of P and in particular, the structure group of F∞(P ) is the infinite
phylon group P (d).
3 Remark: Each Fr(P ) is finite dimensional for 1 ≤ r < ∞ whereas for r = ∞, F∞(P )
is infinite dimensional and the structure group P (d) is also an infinite dimensional regular
Frechet Lie group.
4. Associated vector bundle: We can associate a vector bundle E to a principal bun-
dle F (P,G) if a G-action is given on a vector space F ([13], [14] for general situations)
as follows: consider the product F × V . Define (f1, v1) ∼ (f2v2) if ∃g ∈ G such that
(f1, v1) · g = (f2, v2), where (f1, v1) · g = (f1g, g

−1
1 v1) (respectively for representation ρ of

G)). Let E = {[f, v]|(f, v) ∈ F × V }. Then E is a GL(r)-vector bundle over P with fiber
r-dimensional vector space V denoted by E = F × V (G, ρ) called the associated vector
bundle of the prinicpal bundle F (P,G) via the representation ρ : G→ GL(V ).
5. Special Cases: (a) F r(P ) r-frame bundle over P (1 ≤ r ≤ ∞). Let ρ : Pr(d)→ GL(V )
be a representation of phylon group (1 ≤ r ≤ ∞). Then we get the associated vector bundle
E = F r(P )× V (Pr(d), ρ) over P with fiber V . We assume V has appropriate smoothness
as necessary.
(b) F (P ) bundle of frames of manifold P , V vector space, and T (r,s)(V ) = (⊗rV )⊗ (⊗sV ∗)
is the tensor bundle of type (r, s). Take V = Rn. We saw GL(n) acts on T (r,s)(Rn) by

(3.6) giving a representation ρ : GL(n) → GL(T (r,s)(Rn)). By above associated bundle

construction we get the vector bundle E = F (P )× T (r,s)(Rn)(GL(n), ρ). Then the tensor

field T with components T i1i2···irj1j2···js satisfying the transformation law (3.6) precisely gives a
global section of E.
(c) The Fisher information metric can be interpreted a section of the tensor bundle

T (1,2)(P ).

Now we briefly interpret various tensor fields or string fields or phylon fields as sections
of vector bundles via) actions (or representations) on appropriate vector space. We give
this in tabular form for d-dimensional manifold P in Appendix B.

§5 Structure of special phylon representations of P (d)
1. Another interpretation of phylon group:

Let P be a d-dimensional manifold, m ∈ P such that ω(m) = ψ(m) = 0, ψ, ω are two
coordinate systems around m ∈ P . Then the multi-array {[ψc|k1 ], [ψc|k1k2 ], · · · , [ψc|k1k2···kT ]}
evaluated at 0 where 1 ≤ T ≤ ∞; is essentially the set of coefficients in the T th-order
(infinite order) Taylor series of the coordinate change function ψ ◦ω−1 from some open set
of Rd to Rd.
a) T -finite case: Define the phylon group of order T of Rd as

PT (d) = {multi-array {ack1 , a
c
k1k2

, · · · , ack1k2···kT }| with ack1k2···kt symmetric in k1, k2, · · · , kt
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and with (ack) forming a non-singular matrix and c = 1, 2, · · · , d}. Under identification of

multi-arrays in PT (d) with T -th order Rd-valued Taylor series

f c(x) = ack1x
k1 +

1

2!
ack1k2x

k1xk2 + · · ·+ 1

T !
ack1···kT x

k1xk2 · · ·xkT (5.1)

the group operation in PT (d) corresponds to composition of functions. In coordinate-free
language, PT (d) is the group of T -jets at 0 of local diffeomorphisms of (Rd, 0) with itself.
The group operation being composition (two functions have the same T -jet at a point x if
they have the same T -th order Taylor series around x). Thus for finite T , PT (d) is the group
of Rd-valued polynomial functions on Rd of degree at most T with zero constant term and
invertible linear term. Thus PT (d) = {(A1, A2, · · · , AT )|Ai ∈ �i(Rd)∗ ⊗ Rd, A1 ∈ GL(d)}
where � denotes the symmetric tensor product.
b) T -infinite: The above interpretations carry on for T infinite by replacing T -jet with
infinite jet finite multiarray with infinite multiarray and finite Taylor series with infinite
formal power series on Rd. Define the infinite phylon group P∞(d) = P (d) as

P (d) = {(A1, A2, · · · , AT , · · · ,∞)| Ai ∈ �i(Rd)∗ ⊗ Rd, A1 ∈ GL(d)}Rd. (5.2)

and has the coordinate free interpretation as given before in §2.
2 Remark: Transformation rules for derivative and differential strings (3.2) and (3.4)
can be interpretated as giving representations of P (d) as follows: Note that the transfor-
mation laws for derivative and differential strings involve higher derivatives ωk|C and ψc|K
of coordinate changes and give coordinate descriptions of representations of P (d). Also
these transformation laws are polynomials in ωc|C and det(ωk|C)−1; and hence these repre-

sentations of P (d) are algebraic [22]. Any such general algebraic representation of group
P (d) defines geometrical objects called phyla and these phyla are representated by arrays

HA1A2···Ar
B1B2···Bs

which transform under coordinate change from ω to ψ by

HA1A2···Ar
B1B2···Bs

= HI1I2···Ir
J1J2···JsD[ω, ψ]A1A2···ArJ1···Js

B1B2···BsI1···Ir (5.3)

where D[ω, ψ] is the block matrix in which the elements of the blocks are polys in ωi|A and

ψa|I .

In fact we can order these arrays HA1,···Ar

B1···Bs
in such a way that the matrix D[ω, ψ] is

an upper triangular block matrix. We call the function which takes a pair (ω, ψ) of local
coordinate systems of P to the matrix D[ω, ψ] satisfying (i) each D[ω, ψ] is a non-singular
upper triangular block matrix in which elements of the blocks are polys. in ωi|A and ψa|I
and (ii) (cocycle condition) D[ω, ψ] = D[ω, χ]C[χ, ψ].

We saw in §4 the strings or above phyla H can be interpreted as section Γ of the as-
sociated vector bundle E of the infinite frame bundle F (P ) by a representation of P (d).
Thus the study of the algebraic properties of these phyla or strings or tensors H reduces
to the study of representations of P (d).
3. Definition: Let V be a representation of PT (d) i.e. χ : PT (d) → GL(V ) is group ho-
momorphism; χ is called algebraic if in any basis for V the matrices representing elements
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[f ] ∈ PT (d) have entries that are polynomial functions of f i|j1j2···jk and det(f ij1)−1. We say

χ : PT (d)→ GL(V ) is finite dimensional or special phylon representation if it is algebraic

in above sense. Here f has the formal power series f = f ij1x
j1 + 1

2!f
i
j1j2

xj1xj2 + · · · and V
is a complex vector space.
4. Remark: These phylon representations respect direct sum, tensor product, subrepre-
sentations and quotient representations are also phylon. We have the following result from
Terng [11].
5. Theorem (Terng): A representation χ : PT (d)→ GL(V ) is finite dimensional phylon
(i.e. algebraic) representation iff ∃ a decomposition of V as V = V1 ⊕ V2 ⊕ · · · ⊕ Vk with

Vi as a GL(d)-irreducibles such that for each element fX ∈ PT (d) with f ∈ P (1)
T (d) and

X ∈ GL(d)

(i) χ(X) ∈ GL(V ) is diagonal block matrix

χ1(X) 0 · · · 0
0 χ2(X) 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · χk(X)


(ii) χ(f) =


1 χ12(f) · · · χ1k(f)
0 1 · · · χ2k(f)

· · · · · · . . .
...

0 0 0 0 · · · 1

(upper triangular block matrix for f ∈ P (1)
T (d))

(iii) χ(fX) = χ(f)χ(X) where χi(X) : Vi → Vi linear operator and χij(f) : Vj → Vi linear
map satisfying χii(I) = I, χij(I) = 0 (i 6= j).

6. Remarks a): χ : PT (d) → GL(V ) representation ⇒ χ(fX gY ) = χ(fX)χ(gY ) and
hence χi(X)χi(Y ) = χi(XY ) i.e. χi : GL(d)→ GL(Vi) are representations and also

χij(XgX
−1) = χi(X)χij(g)χj(X)−1 (5.4)

and χij ’s satisfy the relation.
(iv) χij(fg) = χij(g) + χi,i+1(f)χi+1,j(g) + χi,i+2(f)χi+2,j(g) + · · · + χi,j−1(f)χj−1,j(g) +
χij(f) (i < j) (5.5)

(Note that χij : P
(1)
T (d) → L(Vj , Vi) ∼= V ∗j ⊗ Vi and since GL(d) acts on both sides and

since (5.3) holds we have χij are GL(d)-equivariant maps).
b) Conversely given χi and χij satisfying the above three relations they define a phylon
representation χ of PT (d) on V .

c) The ordering of these subspaces Vi can be so done that χ(f), f ∈ P (1)
T (d) are upper

triangular block matrices with identity I on the diagonal.
Then χ is called a phylon representation of type (V1, V2, · · · , Vk) and k is called the rank

of the representation. (this is equivalent to rearranging the components HA1···Ar
B1···Bs

of the

phylon H in the coordinate representation above).
d) Since χ(fX) is upper triangular block matrix ∀ fX ⊂ PT (d) and χi : GL(d)→ GL(Vi)

are representations and χij : P
(1)
T (d) → V ∗j ⊗ Vi is an GL(d)-equivariant map we can

arrange the arrays HA1···Ar
B1···Bs

of phylon H into arrays representing (P1, P2, · · · , Pi, · · ·Pk)
with Pi ∈ Vi. Then We can project phylon H onto other phyla which it contains say
(P1, P2, · · ·Pj) j < k, called the tails of the phylon H. That is, phyla of length ν
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and block structure (m1,m2, · · · ,mν) projects to phyla of length µ and block structure
(m1,m2, · · · ,mµ) for 1 ≤ µ < ν. More precisely if phylon P = (P1, P2, · · ·Pk) then its
coordinate representatives are transformed by D-matrices

P (ψ) = (P1(ψ), · · · , Pk(ψ))

= (P1(ω), P2(ω), · · · , Pk(ω))


D11(ω, ψ) D12(ω, ψ) · · · · · · D1k(ω, ψ)

0 D22(ω, ψ) · · · · · · D2k(ω, ψ)
0 0 D33(ω, ψ) · · · D3k(ω, ψ)
...

...
0 0 · · · · · · Dkk(ω, ψ)

 (5.6)

and so

(P1(ψ), P2(ψ), · · · , Pj(ψ))

= (P1(ω), P2(ω), · · · , Pj(ω))

(
D11(ω, ψ), · · · · · · · · · D1j(ω, ψ)

0 D22(ω, ψ) · · · · · · D2j(ω, ψ)
0 0 0 0 Djj(ω, ψ)

)
(5.7)

for 1 ≤ j < k are also phyla of length j and type (m1,m2, · · · ,mj), called the tails of the
phylon P .
e) Terng proved Theorem 3.8 of [11] in much more general setup above characterizing all
phylons of PT (d) while studying natural vector bundles.
We illustrate Terng’s theorem by an example
7. Example: G = PT (d) and the representation space V is the space of power series of
degree ≤ T with no constant term denoted by CT (d) with PT (d)-action given by JT0 (ϕ) ·
JT0 (f) = JT0 (f ◦ ϕ−1) with JT0 (ϕ) ∈ PT (d) and JT0 (f) ∈ CT (d).

Then CT =
⊕T Sk(Rd)∗;Sk(Rd)∗ is the space of polynomials of homogeneous degree k

where Sk(Rd)∗ is GL(d)- irreducible representation of PT (d) with GL(d) ⊂ PT (d). With
respect to this decomposition every element of PT (d) can be represented by a block matrix
say upper triangular and the entry in the i-th row and j-th column is a linear map ∈
L(Sj(Rd∗), Si(Rd∗)) and the elements of GL(d) are represented by block diagonal matrices

and those of P
(1)
T (d) are represented by upper triangular block matrices having identity

matrices along the diagonal.
Now we close this section with finding all phyla of P2(d) of rank 2 by using Terng’s

theorem.
8. Action of P2(d) on C2(d): Consider h = (h1, h2, · · · , hd) : Rd → Rd with hi(x) =
hijx

j + hijkx
jxk with (hij) invertible matrix (i = 1 to d) representing an element j2

o(h) in

P2(d). Similarly elements of C2(d) are represented by g : Rd → R with g(x) = gix
i+gilx

ixl.
The action of h−1 takes g to j2

o(g ◦ h). since (g ◦ h)(x) = gih
i
jx
j + (gihjk + hijgilhk)x

jxk+
higher order terms and so

j2
o(g ◦ h)(x) = gih

i
jx
j(gih

i
jk + hijgilh

l
k)x

jxk (5.8)

Take V1 = S2(Rd)∗ homogeneous quadratic function on Rd, V2 = Rd∗ linear functions on
Rd so that C2(d) = S2(Rd)∗⊗Rd Then the action of P2(d) on C2(d) gives the representation
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χ : P2(d)→ GL(C2(d)) for which

χ(h) =

(
hijh

l
k hijk

0 hij

)
. (5.9)

9. Finding phylon representations of P2(d) in C2(d):
Now take a general splitting of V as V = V1 ⊕ V2 where V1, V2 are GL(d)-irreducibles.
By Terng scheme above to define a representation of P2(d) we have to choose the two

representations χi : Gl(d) → GL(Vi) (i = 1, 2) and a map χ12 : P
(1)
2 (d) → V ∗2 ⊕ V1 such

that χ12(XgX−1) = χ1(X)χ12(g)χ2(X−1) and

χ12(fg) = χ12(f) + χ12(g). (5.10)

then for f, g ∈ P (1)
2 (d) given by f i(x) = f ijx

j + f ijkx
jxk; gi(x) = gijx

j + gijkx
jxk (fg)i =

f ijx
j + (f ijk + gijk)x

jxk. Since P
(1)
2 (d) ∼= S2(Rd)∗ ⊗ Rd is group isomorphism, we have by

(5.10) χ12 : LS2(Rd)∗ ⊗ Rd → V ∗2 ⊗ V1 is an additive continuous map which is GL(d)-
equivariant and so it is linear.
Thus the problem reduced to the study of these linear maps χ12. For the case of splitting
V1 = S2(Rd)∗ and V2 = Rd∗, and the corresponding representation of P2(d) of rank 2, note
that χ12 : S2(Rd)∗ ⊕ Rd ⊗ S2(Rd)2 is the standard identification.

Our interest is in the isomorphism classes of such representations: χ, χ′ phylon repre-
sentations of P2(d) are isomorphic iff ∃ Φ : V → V ′ isomorphism s.t.

χ(fX)Φ(ν) = Φ(χ(fX)(ν)) (5.11)

for all ν in V .
For V = V1 ⊕ V2 then Φ can be taken into 2 by 2 block form. We take all representations
χ of P2(d) as complex. By (5.11) Φ intertwines the GL(d)-actions obtained from χ and χ′

and then Schur’s lemma gives

Φ =
(
αI1 0
0 βI2

)
with α, β ∈ C∗. (5.12)

I1, I2 identity matrices of V1 and V2.
On the other hand, given a representation χ on V1⊕V2 and given arbitrary nonzero α, β ∈
C∗, (5.12) defines a Φ which intertwines χ and χ′ where χ′i = χi (i = 1, 2) and χ′12 = (αβχ12).

Thus multiplying χ12 by a nonzero scalar gives rise to an isomorphic representation. Thus
we reduced the problem to: the isomorphism classes of phylon representations of P2(d) of
type (V1, V2) are in 1-1 correspondence with GL(d)-equivariant maps χ12 : S2(Rd)∗⊗Rd →
V ∗2 ⊗ V1 taken upto scaling in C∗.
We close this section with finding all the phylon representations for P2(d) with k = 2 (·
rank).
Let X(V1, V2) denote the set of all such GL(d)-equivariant maps. Then the isomorphism
classes of phylon representations of P2(d) are in 1-1 correspondence with the orbit space
X(V1, V2)/C∗ under C∗-action.
If S2R(d)∗ ⊗ Rd is sum of two non-isomorphic irreducibles W1 and W2 and V ∗2 ⊗ V1 is a



GANITA, Proceeding of NCMRT, Vol 68(3), 2018, 5-32 19

sum of r irreducibles U1, U2, · · · , Ur say. Then by Schur’s lemma the only possible GL(d)-
equivariant maps χ12 are those which map each Wi iesomorphically to Uj . That is, if
there are p1 Ujs isomorphic to W1 and p2Uj ’s isomorphic to W2 with r = p1 + p2 then
X(V1, V2) = Cp1+p2 and under C∗-action the orbits are {0} orbit or a complex line without
origin. So X(V1, V2)/C∗ is 0 orbit or complex projective space PCp1+p2−1.
The trivial representations of P2(d) corresponds to {0} orbit. If V1 = Rd∗ and V2 = S2Rd∗

then X(V1, V2) = C2 and the isomorphic classes of phylon representations correspond to
points of 2-sphere P1(C). This completes the example.
10. Remarks: (i) Terng classified all the phylon representations of PT (d) in terms of
orbits under group action on the Lie algebra cohomology space [11] which is a systematic
mathematical scheme but not explicitly easy to calculate.
In that sense phylon representations of P2(d) in C2(d) are geometrically realizable.
(ii) By carefully studying the features of tensors or strings occurring in stochastic calculus
and asymptotic statistical inference and generalizing them may give a subclass of phylon
representations amenable to computation.

§6 Infinite dimensional phylon representations of P (d)

1. Definition: Even though a general Frechet space F is a complete locally convex, metriz-
able topological vector space, we consider a particular one F which is a direct product∏∞
i=1 Vi of a sequence of finite dimensional vector spaces with the component wise conver-

gence topology. In this sense P (d) = Rdinv,0[[x1, x2, · · · , xd)] becomes a Frechat space.

2. First note that at scalar function level the space of formal power series R[x1, · · · , xd]]
can be identified with J∞0 (Rd,R) the space of all infinite jets at the origin of smooth real
valued, function on Rd. Also we have the Taylor map T : C∞(Rd,R) → R[[x1·; ;xd]] and
this is onto and ker T = ideal I of smooth function whose all partial derivatives at origin
vanish and hence

J∞0 (Rd,R) ∼= C∞(Rd,R)/I ∼= R[[x1, x2, · · · , xd]]. (6.1)

We can extend this identification to Rd-valued smooth functions component wise using
(6.1) and so we get P (d) as two equivalent definitions we gave before and it has the Frechet
manifold structure.
3. Remark: There is a natural duality between R[[x1, · · · , xd]] formal poly ring and
polynomial ring R[x1, · · · , xd] of finite degree polys [23]. via distributions on Rd.
4. We saw in the study of P (d) in §2 in P (d) there is a sequence P (k)(d) (k = 1, 2, · · · )
of normal sub groups (P (k)(d) = ker jk : P (d) → Pk(d)) namely P (k)(d) consists of jets of
diffeomorphism that agree to the identity upto order k (or in formal power series sense,

f i(x) = δijx
j+ 1

(k+1)!f
i
j1
, · · · jk+1x

j1xj2 · · ·xjk +· · · ) such that P (d)/P (k)(d) ∼= Pk(d) =group

of k-jets of local diffeomorphism of Rd fixing the origin. these Pk(d)s are finite dimensional
Lie groups ∀ k = 1, 2, · · · .
If P (d) is given the pointwise convergence topology (Frechet) so that each jk : P (d) →
Pk(d) is continuous. In fact this is the projective limit topology on P (d) making each
jk continuous map and hence P (d) is an infinite dimensional Frechet Lie group with the
underlying manifold a Frechet manifold.
5. Remark: If M is a Frechet manifold then (1) Inversion function theorem (ii) Uniqueness
of solutions of OD Eqns. fail. Hence in P (d) or more generally in any Frechet Lie group
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G exponential map: LG → G may not exist (open problem) here LG denotes the Lie
algebra of G. Omori [8] proved P (d) is a regular Frechet Lie group (that is, an analogue of
primitive or indefinite integral called C1-hair which is a limit of sequences of areas defined
by a sequence of step functions exists).
Then the Lie algebra LP (d) = Te(P (d)) = the space of jets at 0 of vector field X on Rd
with

X =
∑
i

Xi ∂

∂xi
(6.2)

where Xi ∈ R[[x1, · · · , xd]] with constant term zero i.e., X is zero at the origin (LP (d), [ ])
is the Lie algebra of P (d)).
6. Remark: origin is a singularity and Omori classified these expansive singularities using
Lie algebra techniques and using the regular Frechet Lie group P (d) structure [8].

Since P (d) is the projective limit of f.d. Lie groups Pk(d) which all have the expo-
nential map, P (d) also get an exponential map which is smooth. On the other hand,

exp : LP
(1)
k (d)→ P

(1)
k (d) is a diffeom [24].

Claim: expLP (r)(d) → P (r)(d) (r ≥ 1) is a smooth bijection. Infact one can show this

by proving exponent on LP (r)(d) is restriction of exponential on LP (d) which is smooth

and its image is precisely P (r)(d).
7. Relation between representations of P (d) and of its Lie algebra LP (d):
Let ρ : P (d)→ GL(V ) be a representation of P (d) on a Frechet space V and that the map
P (d)×V → V is smooth, then on differentiation ρ gives a representation ρ̃ : LP (d)→ gl(V )
and the map: LP (d)× V → V is smooth.

Let W be a closed subspace of finite co-dimension in V . Then we have the following:

Proposition 8: Let W be a closed subspace of finite codimension in a vector space V
on which the phylon group P (d) acts smoothly. Then (i) If LP (k)(d) stabilizes W then

group P (k)(d) also stabilizes W . (ii) if LP (k)(d)(V ) ⊂W then the induced action of group

P (k)(d) on V/W is trivial. (k = 1, 2, · · · )
Proof: For X ∈ LP (k)(d) consider the curve gt = exp(tX) and apply it to v ∈ V and then
differentiation gives

d

dt
(gt · v) = X(gt · v) (6.3)

Let π : V → V/W be the projection map. Then

d

dt
π(gt · v) = π(X(gt · v)) (6.4)

Then if either LP (k)(d) stabilizes W or LP (k)(d)(V ) ⊂W give π(gt · v) = 0. Since go = I,
uniqueness of solutions of first order differential equations with values in V/W implies then
π(gt · v) = π(v) for all t. q.e.d
9. Infinite diemsnsional representation of P (d): We studied the structure of finite
dimensional (algebraic) representations of the phylon group P (d) by projecting P (d) onto
P1(d) = GL(d). Now we define infinite dimensional representations of P (d). First we give
a definition following Terng [11]. Note that there exists a 1-dimensional sub group H of
dilations of Rd, namely H = {λId|λ ∈ R∗} ⊂ GL(d) ⊂ P (d). So if P (d) acts linearly on a
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vector space V then H also acts on V .
Definition 10: We say an element v ∈ V is homogeneous of degree n if λ · 1 · v = λnv. All
such vs form a subspace Vn of V called the homogeneous subspace of degree n.

From Terng’s characterization result of §5 (theorem 5) we define
Definition 11: An infinite dimensional phylon representation on a Frechet space V is a
group homomorphism:

P (d)→ GL(V ) (6.5)

such that (i) V =
∏∞
i=1 Vni (ii) Vni is the subspace of all elements of homogeneous degree

ni of V and n1 > n2 > n3 > · · · . (iii) for i = 1, 2, · · · , each Vni is a finite dimensional
GL(d)-module (iv) the map P (d)×V → V is smooth as a map between Frechet manifolds.
(6.6)
12. Remarks (i): The decomposition in (i) V =

∏∞
i=1 Vni is called the homogeneous

decomposition of V .
(ii) More generally, any continuous action of P (d) on a Frechet space V is called a phylon
representation if V decomposes into a direct product of finite dimensional homogeneous
subspaces whose degrees are bounded above.
13. Example of an infinite dimensional phylon representation: Let P (d) be the
infinite dimensional phylon group and LP (d) is its Lie algebra. Let P (d) act on LP (d) by
conjugation (g,X)→ gXg−1, g ∈ P (d), X ∈ LP (d). In this case we have the homogeneous
decomposition

LP (d) =
∞∏
k=1

[Rd ⊗ Sk(Rd)∗] (6.7)

and the homogeneous degrees are 0,−1,−2, · · · with LP (d)−k = Rd ⊗ Sk+1(Rd)∗ for all k.

The vector space structure of the subalgebra LP (k)(d) of LP (d) is

LP (k)(d) =
∏
j≥k

LP (d)−j (6.8)

Thus the adjoint representation of P (d) in LP (d) is an infinite phylon representation.
Theorem 14: Every phylon representation of P (d) is a projective limit of finite dimen-
sional representations of the phylon group.
Proof: Consider the dilation λ · 1 ∈ P (d). As λ varies over R∗, we get a curve in phylon
group P (d) and its tangent vector at λ = 1 is the vector field

Z =
∑
i

xi
∂

∂xi
(6.9)

in the Lie algebra LP (d).
Let v be an element of homogeneous degree n in a phylon representation (as in defini-

tion). Then λ · v = λnv (6.10), · is action on left and salar multiplication on the right side.
Differentiating (6.10) at λ = 1 gives Zv = nv (6.11)
In particular, if X is an element of LP (d) of homogeneous degree −k, then we have
[Z,X] = −kX (6.12). Thus v has homogeneous degree n and X has homogeneous degree
−k and X act on v. Then Z(Xv) = [Z,X]v+X(Zv) = −kXv+nXv = (n−k)Xv, ∀ v ∈ Vn
and so we have

∀ v ∈ Vn, ∀ X ∈ LP (d)−k, Xv ∈ Vn−k i.e. LP (d)−kVn ⊂ Vn−k (6.12)
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Then from (6.8) using the vector space structure of LP (k)(d) and (6.12) we get

LP (k)(d)

(∏
n<m

Vn

)
=

∏
j≥k

LP (d)−j

(∏
n<m

Vn

)
⊂

∏
n<m−k

Vn (6.13)

By proposition 8 (i) part on group action

P (k)(d)

(∏
n<m

V n

)
⊂
∏
n<m

Vn (6.14)

Since n1 > n2 > · · · and using (6.13) and propostion 8 (ii) part with W =
∏
n≤n1−k Vn we

see that Pk(d) acts on the quotient space

Wk = V

/ ∏
n≤n1−k

Vn (6.15)

Since V is the projective limit of these Wks and these Wks are the representations of the
finite phylon groups Pk(d), the given phylon representation is a projective limit of f.d.
phylon representations of P (d) q.e.d.
15. Twisted phylon representations:

Let V be a phylon representation with decomposition

V =

∞∏
i=1

Vni , Vni homogeneous subspace of degree ni (6.16)

Consider the space V [[t]] of all formal asymptotic power series in

t : v = v0 + v1t+ v2t
2 + · · · (6.17)

where each vi ∈ V . From (6.16), V [[t]] is bigraded as∏
i≥1

∏
m≥0

Vni t
m (6.18)

Hence ∀ v ∈ V [t] is of the form

v =
∑
i≥1

∑
m≥0

vit
m (6.19)

with vi ∈ Vni .
Given an element w = vit

a with vi ∈ Vni , we call ni the homogeneous degree of w and a
the asymptotic degree of w.
We define the twisted action of P (d) on V [[t]] by

g ∗ v = t−1gt · v (6.20)
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For example, let X ∈ LP (d)−k and v ∈ Vni . Then the twisted Lie algebra action is given
by

X ∗ vta = t−1Xt · vta = t−1Xvta+ni = (Xv)ta+k (6.21)

so that the homogeneous degree decreases and the asymptotic degree increases and hence

LP (d)−kVnit
m ⊂ Vni−kt

m+k (6.22)

This tells how the twisted action ∗ works.
Now if we filter V [[t]] by the subspaces V (a) = V [[t]]ta (by asymptotic degree filtration)

so that
V [[t]] = V (0) ⊃ V (1) ⊃ V (2) ⊃ · · · (6.23)

then
LP (d)−kV (a) ⊂ V (a+ k). (6.24)

Hence by proposition 8 (i) and (ii) parts we get an action of P (d) on the quotient spaces

V (a)/V (a+ k) (6.25)

and the LP (k)(d) acts trivially on V (a)/V (a+k). Hence the action of P (d) on V (a)/V (a+k)
factors through an action of Pk(d) (6.25a).
16. Remark: This has a deep application to the MLE in statistical inference relating the
asymptotic order and parametric order in asymptotic expansions (see Appendix A).
17. The Coadjoint action of P (d) on LP (d)∗: We saw the regular Frechet Lie group
P (d) has its Lie algebra LP (d) as a direct product, its dual LP (d)∗ is a direct sum and
hence it is not a Banach space and by a theorem that the dual F ∗ of a Frechet space
F such that F ∗ is not a Banach space is never a Frechet space ([17]), LP (d)∗ is not a
Frechet space and hence P (d) has no action on LP (d)∗ and hence the coadjoint action
ρ : P (d)×LP (d)∗ → LP (d)∗ is not a phylon representation as we defined. That is, LP (d)∗

is not a good space for the action of P (d) by coadjoint action on LP (d)∗.
18. Remark: Interpreting infinite dimensional strings when interpreted as phylons, the
contravariant and covariant infinite strings behave quite differently.
19. Remark: Kirilov [25]’s orbit theory for infinite Lie groups provides a method for
constructing a class of representations.

Let ξ be an element of LP (d)∗. We want to find the P (d)-orbit of ξ under coadjoint
action. Let <,> be the pairing map of V and V ∗. Then P (d) × LP (d)∗ → LP (d)∗

sending (g, ξ) → g−1ξg where < g−1ξg,X >=< ξ, g−1Xg > for all X ∈ LP (d). We have
projections

jk : LP (d)→ LPk(d) (6.26)

and hence we have dual inclusions

jk∗ : LPk(d)∗ ↪→ LP (d)∗ (6.27)

Since the dual of the Lie algebra is a a direct sum (i.e. LP (d)∗ = ⊕i≥1[Rd ⊗ Si(Rd)∗]) if
ξ 6= 0 then

ξ = (ξ1, ξ2, · · · , ξk, 0, 0 · · · ) for some k (6.28)

with ξi ∈ Rd ⊗ Si(Rd)∗ and ξk 6= 0 and so ξ = jk∗(ξ′) where

ξ′ = (ξ1, ξ2, · · · , ξi, ; · · · ξk) ∈ LPk(d)∗ (6.29)
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with k being the smallest integer such that (6.29) is true; k is called the order of ξ.
Then for g ∈ P (d) and X ∈ LP (d) we have

< g−1ξg,X > =< g−1jk∗(ξ′)g,X) =< ξ′, jk(g−1Xg) >

==< ξ′, jk(g)−1jk(X)jk(g) >

=< jk∗(jk(g)−1ξ′jk(g)), X > . (6.30)

Hence we get the identity

g−1ξg = jk∗(jk(g)−1ξ′jk(g)) (6.31)

and hence the stabilizer of ξ, Ωξ = {h ∈ P (d)|h−1ξh = ξ} contains P (k)(d) = ker of jk and

use (6.31) and Pk(d) ∼= P (d)/P (k)(d) and so the group Pk(d) acts transitively on P (d)-orbit
of ξ and this orbit is finite dimensional. Movreover the coadjoint orbit of ξ is the image
under jk∗ : LPk(d)∗ ↪→ LP (d)∗ of the coadjoint orbit of ξ′ (under Pk(d)-coadjoint action)
. Hence the representations of P (d) obtained from the coadjoint orbits are actually repre-
sentations of the finite dimensional phylon groups Pk(d). Hence we proved the following.
Proposition 20: The orbit theory obtained from coadjoint orbits gives only finite di-
mensional phylon representations. i.e. Kirilov orbit theory gives no infinite dimensional
phylon representations of P (d).
21: We close this article with examples of P (d)-action on some other important spaces.
(1) Construct a P (d)- tensor field given by the projection j1 : P (d) → GL(d) = P1(d) as
[f ]→ f ijv

j = f.v , v ∈ Rd.
This gives the classical tensor analysis i.e. P (d)-action restricted to 1-jet which gives

linear action on Rd.
(2) C=space of all power series with no constant terms as

ϕ = ϕjz
j +

1

2!
ϕjkz

jzk + · · · (6.32)

Let P (d) act on C by composition as f.ϕ = ϕ ◦ f−1 C can also be understood as the vector
space of functions defined about zero in Rd and vanishing at 0, upto jet equivalence.
Similarly Pr(d) acts on Cr space of power series upto order r giving Pr(d)-tensor fields or
representations of Pr(d) on the vector space Cr.
We also get Tensor fields of type C and its dual C∗ as phylons from phylon representations
of P (d) on C or C∗, which are structurally symmetric string fields.
General Problem 1: Determine all the indecomposable representations of P (d).
(3) Let S denote the space of infinite contravariant strings with basis the set of all
monomials in the coordinate vector fields ∂

∂za and a general element of S is of the form

Γ =
∑

Γa1a2···ad
∂

∂za1
∂

∂za2
· · · ∂

∂zad

then P (d) acts on S : (f,Γ) → Γ · f obeying some rules of differentiation giving S-
representations of P (d).
(4) On the dual space S∗, the space of infinite covariant strings or the space of certain
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linear differential operators D on germs of vector fields obeying certain differentiations
rules, with costring coefficients

Di1···ik = D

(
∂

∂zi1
,
∂

∂zi2
, · · · , ∂

∂zik

)
fork = 1, 2, · · ·

The vector space S∗ contains the space C as a subspace under the identification f ↔ Df

with Df (X1, Xk) = X1(X2(· · · (Xk)))f,Xi: vector fields. Since the strings are structurally
symmetric co-strings P (d)-respects symmetry, and so C is a P (d)-invariant subspace of S∗.
Problem 2: Is S∗ indecomposable under P (d) action?
Problem 3: Are there other P (d)-invariant subspaces in S∗ other than C?
Proposition 22: Structurally symmetric strings are indecomposable, in otherwords, the
space C is an indecomposable representation of P (d).
Proof: Suppose C is the direct sum of two P (d)-invariant subspaces. Then one of these
must contain an element with non-vanishing derivative or their sum is inside the subspace
of C of functions with vanishing derivatives at the origin and hence is not all of C. But
then this subspace which contains a function with nonvanishing derivative at 0 contains all
functions with non-vanishing derivatives at 0 by P (d)-invariance and hence is all of C. So
the space C is indecomposable. q.e.d
23 Remark: Let Ik(C) be the subspace of functions in C vanishing to order k at 0 for
k ≥ 1.
Then we have a nested sequence of subspaces of C : C = I1(C) ⊃ I2(C) ⊃ · · ·
Problem 4: There are no other invariant subspaces in C under P (d)-action?
24. Remarks 1): Infact any P (d)-invariant subspace of C is either C or is inside I2(C) by
proposition 22. Using techniques of germ equivalence at 0 and catastrophe theory [21] it
may help for this problem.
Problem 5. Are there other P (d)-invariant subspaces of C∗ other than C and Ik(C)s?
25. Before closing it must be mentioned that Terng studies in a different context the
phylon group P (d) ([10][11]).
26. Definition: A natural vector bundle v over n-manifolds assigns to each n-dimensional
smooth manifold M a smooth fiber bundle over M with total space F (M) s.t. if ϕ : M → N
is an embedding then there is a bundle map F (ϕ) : F (M) → F (N) over ϕ on base mani-
folds such that F is continuous in some sense. Terng showed that natural vector bundles
with d-dimensional fiber are given by representations of P (d). i.e. finite dimensional phyla
are precisely the elements of algebraic natural vector bundles i.e. natural vector bundles
for which this representation is algebraic. For finite dimensional natural vector bundles
the continuity of F is automatic and that the phyla of dimension d have coordinate forms
which change by a representation of finite phylon group PT (d) with T ≤ 2d+ 1.
27. Remark: In fact Terng [11] studied phylon representations in her study of natural
vector bundles and natural differential operators between them. She reduced the study of
these problems to algebraic problems by showing that (i) natural vector bundles of order
T over d-dimensional manifolds correspond to PT (d)-modules (ii) natural differential oper-
ators of order k correspond to PT+k(d)-equivariant maps between such modules. She also
gave a general classification theorem for PT (d)-modules in terms of orbits of a group action
on the Lie algebra cohomology space. Our classification of phylon representations of P2(T )
of rank 2 is a simple illustration of this deep theorem.
28. Remark: The phylon representations we have studied has deeper applications in sta-
tistical inference such as parameter-invariance of (i) Likelihood ratio test (ii) score test for
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hypothesis and (iii) non-invariance of Wald [31] test. Also the asymptotic behavior of the
maximum likelihood estimator (MLE) under parametric change and also the interrelation
between the orders used there as (a) order of term in Taylor expansion w.r.t some param-
eters (b) order in the asymptotic expansion in terms of the size of the sample which are
related by jet of the coordinate change function of certain degree.
These applications to statistics we discuss with more details in another article (cf. Ap-
pendix A).

Finally the first author thanks Dr. T. Suman Kumar of our School of Mathematics and
Statistics for giving Xerox copies of research articles I needed in a printed size I can read.
Also the first author is grateful to Prof. Najmul Hasan Head, Department of Mathemat-
ics, Manu University for the excellent facilities provided during the writing of this paper
visiting that department. Some parts of this article were presented as an invited talk at
the Bharat Ganita Prarishad annual conference during Novemeber 10 and 11, 2018 at the
Department of Maths & Astronomy, Lucknow University, Lucknow.
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Applications to Statistical Asymptotics:
We are interested in Taylor expanding measures and so we assume the sample space Ω

is a smooth manifold of dimension r or an open subset of Rr so that the measure µ can be
taken as smooth function times Lebesgure measure.
(A.1) Definition: A density on a f.d. vector space is a map ω : F (V ) → R s.t. for two
bases v = (v1, v2, · · · , vr) and w = (w1, w2, · · · , wr), there exists X ∈ GL(r) satisfying

ω(v) = ω(Xw) = |det(X)|ω(w) (A.2)

Then the set ∆(V ) of all densities on V is a 1-dimensional vector space.
(b) Consider ∆(Ω) =

⋃
x∈Ω ∆Tx(Ω) which is a vector bundle of rank 1. Then a smooth

density on Ω is a smooth choice of density on each tangent space and so is a smooth section
of ∆(Ω) i.e. an element of Γ(∆(Ω)).
For Ω=open subset U ⊂ Rr, these are of the form

f(x)dx1dx2 · · · dxr (A.3)

Locally every density on manifold Ω is of this form. We can consider the infinite jet of
section in Γ(∆(Ω)) i.e. J∞x ∆(Ω)) denotes the vector space of infinite jets of section of ∆(Ω)
at x.

Let P be a family of (mutually absolutely continuous probability measures on the
sample space Ω [7]. Denote by f(w, p) the value at w of the Radon-Nikodym derivative of
the prob. measure p w.r.t. some reference measure (see [7]). Then the max· Likelihood
estimator (MLE) based on random samples of size N is the function MN : ΩN → P
defined by MN (w1, · · · , ωN ) being the element p ∈ P (assumed unique) which maximizes∏N
i=1 f(wi, p). If p is any point of P then the push-out MN

∗ (p) is a measure on P . We are
interested in its asymptotic behavior as N →∞. More generally it is of interest to study
the measure

(N1/2ϕ)∗M
N
∗ (p) (A.4)

where
ϕ : P → Tp(P ) (A.5)

is a map sending p to 0 which is a local diffeomorphism.
This measure (A.4) is asymptotically a normal distribution on Tp(P ) with mean 0 and
variance dual of Fisher metric [28] Cox and Hinkley 1974. We want to understand the way

in which the asymptotics of (N1/2ϕ)∗M
N
∗ (p) depends on the choice of ϕ.

For this we assume that MN
∗ (p) is a density on P that is a special push-out measure

and consider its infinite jet
J∞p (MN

∗ (p)) ∈ J∞p (∆(P )) (A.6)

Then we choose a set of coordinates at p or its infinite jet

J∞p (ϕ) ∈ J∞p (P,Rd)op (A.7)

Then define the element

J∞0

((
N1/2ϕ

)
∗
MN
∗ (p)

)
∈ J∞0 (∆(Rd) (A.8)
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Thus (N1/2ϕ)∗M
N
∗ (p) is sequence of measures on Rd denoted by µ(N).

We can associate to this sequence µ(N) of measures a formal asymptotic series as

µϕ = µ0 +
1

N1/2
µ1 +

1

(N1/2)2
µ2 + · · · (A.9)

where the µr are signed measures on Rd.
If we change the choice of coordinates from ϕ to χ we have then χ = g·ϕ for g ∈ P (d) the

infinite phylon group. The corresponding change in the asymptotic series can be computed
from(

N1/2χ
)
∗
M∗(p) =

(
N1/2g · ϕ

)
∗
M∗(p) =

(
N1/2g

1

N1/2

)
∗

(
N1/2(ϕ)∗M∗(p)

)
(A.10)

Thus if µ is the asymptotic series of measures µ(N) of (A.9) induced by coordinates ϕ then
the asymptotic series induced by coordinates χ is given by the sequence

µχ(N) =

(
N1/2 g

1

N1/2

)
∗
µϕ(N) (A.11)

Let M denote the space J∞0 (∆(Rd)).
On passing to jets we obtain an action of P (d) on M and we call this action of P (d) the
twisted phylon action (inview of tgt−1-action of §6).
(Note that there is also a natural action of g ∈ P (d) on the measures µi). Let, ϕ : (P, p)→
(Rd, 0) be local diffeom sending p to 0 and χ : (P, p)→ (Rd, 0) local diffeom which are two

coordinate systems on P . Then χ = g · ϕ, g ∈ P (d) and g = J̇∞0 (ψ ◦ φ−1) and P (d) acts
on M = J∞0 (∆(Rd)) i.e. P (d)×M→M is such that

J∞0 (µχ(N)) = g · J∞0 (µϕ(N)) =

(√
N g

1√
N

)
∗
J∞0 (µϕ(N)) (A.12)

where (
√
N g 1√

N
)∗ denotes the composition of three elements of P (d) as

√
N · 1 and 1√

N
1

are dilations of Rd ∈ GL(d) ⊂ P (d) and g ∈ P (d).
(A.13) Interpretation of M = J∞0 (∆(Rd)) the space of infinite jets of measures
on Rd : We can interpret elements of M as infinite formal power series multiplied by the
Lebesqure measure and so they can be decomposed into sum of homogeneous terms of
degree k for each k ≥ 0. Hence the subspaces Ck consisting of homogeneous functions of
degree k for each k ≥ 0 are the irreducible GL(d)-factors of M. Recall that for g ∈ P (d),
f ∈ Ck, g.f = f ◦ g−1 and that the action of a dilation λ · 1 on the Lebesqure measure is
multiplied by λd and so g · (fµ) ∈ Cd−k where g = dialation λ · 1.

Recall the twisted phylon action of P (d) onM and the discussion of the twisted phylon
action of P (d) on the space of formal asymptotic series V [[t]] of §6 paragraph 15 using
t = 1√

N
and filtration by asymptotic degree gives M(0) ⊃M(1) ⊃ · · · ⊃ M(k) ⊃ · · · and

hence from that result (6.25a) of §6, the P (d)-action on M(0)/M(k) factors through an
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action of Pk(d).
In general LP (d)−k ∗M(m) ⊂M(m+ k) as

X∗clt
m = t−1Xt(clt

m) = (Xcl)t
k−(d−l)td−ltm ∈ LP (d)−kcl ∈ Cl (A.14)

for X ∈ LP (d)−k, and c∈Cl.
Now take m = 0.
So LP (d)k∗M(0) ⊂M(k) by (A.14) and so P (d)-action on the quotient spaceM(0)/M(k)

factors through Pk(d) as P (k)(d) acts trivially on Wk =M(0)/M(k) by (6.25a).
This means if we want to understand the behavior of the asymptotic expansion of the
sequence of measures µφ(N) say upto order ≤ k in t = 1√

N
(i.e. with asymptotic order

k) under the change of parameter ϕ to χ i.e. under the action of phylon group P (d) i.e.
χ = g ·ϕ, ∃g ∈ P (d) (infact g = J∞0 (f = χ◦ϕ−1)) then the twisted phylon action results in

µχ(N) = (N1/2g 1
N1/2 )∗µφ(N) the transformation formula for the corresponding coordinate

sequences of measures on Rd. By (6.25a) we need only to consider the Taylor expansion
of ψ = χ ◦ ϕ−1 upto order k i.e. Jk0 (ψ) = g in the ϕ-coordinates on Rd at origin that is
of parameteric order k. In otherwords the P (d)-phylon field {µϕ(N)}ϕ on P has a Pk(d)-
reduction.
This gives a relation between the asymptotic order and the parametric order of asymptotic
series expansion of parametric distributions with smooth density functions in signed mea-
sures.

Appendix B
The statisticians discovered several strings in statistical inference as arrays and gave their
transformation formula under coordinate change. These formulae can be interpreted as
global sections of certain vector bundles and infact they must be understood in this natu-
ral setting. We tabulated these statistical strings as sections of associated vector bundles
(ASVs) of some frame bundles:
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(1) (2) (3) (4) (5)
S.No. Manifold Tensor/String Action/reprn. Concerned bdle
1(a) P = Rd T = T ijk GL(d)-action on T (1,2)(P )

V (1,2) = Rd ⊗⊗2Rd∗

(b) P = Rd T = T rs = T i1i2···irj1j2,···js GL(d)-action on T (r,s)(P )

V (r,s) = ⊗rRd ⊗⊗sRd∗s
2(a) P = Rd H = HC ∈ S00

0T (P ) PT (d)-action HT (P ) :bdle of
spl. derivative string of T -frames on P
of length T

2(b) P = Rd H =
(
HIL
JK

)
∈ SrUsT (P ) Pλ(d)-action Hλ(P ): bdle of

general derivative λ = max(T,U) λ-frames on P
string (Table 3.2)

2(c) P : d-mfld H= same as above same as above same as above

3. P d-mfld H =
(
HILM
JKN

)
∈ DrUpsTq (P ) Pλ(d)-action

BJK [12] diffl. String,
T <∞ T.L (3.4)

4(a) P d-mfld H =
(
HAD
BC

)
∈ SrUsT (P ) same as in 2(c)

BB[30] str.symm.tensors,<∞
4(b) P d-mfld H =

(
HIL
JK

)
∈ SrUsT (P )

(JUPP) genl.str.(non-symm.) same as in 2(c)
1 ≤ T <∞, U <∞

4(c) P -d mfld. H =
(
HILM
JKN

)
general same as in 3 same as in 3

diffl.str., T <∞
5 P d-mfdl. H = (A1, A2, · · · ,∞)

T =∞ Case
Ai ∈ R[[x1, · · · , xd]]
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(6) (7)
Fibre of ve. bdle. Section realization of ASVs

V (1,2) {T (ω)}ω s.t. T (ω) = ρ( )T (ϕ)
V (r,s) same as above
L(⊗TRd,R) H = (HC)s.t HC = HKω

K
|C

F = LT,0(Rd,R)⊗ LU,0(Rd,R)∗ H = (HIL
jk ) as section of ASV

⊗rRd ⊗⊗sRd∗
same as above H as section of SrUsT (P ) = ⊗rTP ⊗⊗sTP ∗

⊗S00
0T (P )⊗ S00

0U (P )∗

F = ⊗rRd ⊗⊗sRd∗ H as section of Hλ(P ) DrU [
sTq(P ) =

⊗LT (Rd,Rdp)⊗ LT (Rd,Rdq)∗ ⊗rTP ⊗⊗sTP⊗
with Cauchy product or ⊗D00p

0T0(P )⊗D0Uq
000 (P )∗

convolutive multiplication
same as in 2(c) case except S00

0T (P ) and H as a section of ASV
S00

0U (P ) have jet bdle ⊗rTP ⊗s T ∗P ⊗ JT,0(P,R)⊗ JU,0(P,R)∗

interpretation by symmetry. where JT,0(P,R) =space of T -jet of
C∞0 (M,R) with 0-truncation
and f(x) = 0.

same as above F -complicated fiber H as section of
SrUsT (P ) ∼= ⊗4TP ⊗s T ∗P ⊗ J̄T,0(P,R)⊗ J̄U,0(P,R)∗

where J̄T,0(P,R) is space of 0-truncated
semi-holonomic jets of fns. in C∞(P,R).
6 and 7

4(c) H as section of DrUpsTq (P ) ∼= ⊗rTP ⊗s T ∗P ⊗ J̄T (⊗pTP )⊗ J̄T (⊗qT ∗P ), J̄ as in 4(b)
5) F∞(P ) pro. bdle of infinite, a) V :f.d. ve.sp.
frames in P ; P (d): str.gp, b) V : infinite ve.sp. (Frechet)
ρ : P (d)→ GL(V ) reprn. In case (a) H is realized as a spl. phylon reprn.

as a section of E = F∞(P )× V (P (d), ρ).
For (b), H is realized as an infinite phylon reprn.
action of E.


