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Abstract

The main aim of this expository article is to present the notion of
convex sets and to highlight the differences in certain properties of convex
sets in finite and infinite dimensional spaces. This article also provides
glimpses of some unsolved and recently solved problems regarding convex
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1 Introduction

Convex set theory is a vibrant field of modern mathematics with rich applications in ge-
ometry, analysis, economics and optimization. The first monograph on convex sets was
published by Bonnesen and Fenchel [2] in 1934. Over the past few decades many useful
applications of convex sets were discovered. According to the importance of these appli-
cations convexity is a prosperous subject even today. There is a fascination to understand
convex sets and several attempts are being made to solve many conjectures and unsolved
problems related to convex sets.

There are many good books on convex sets. For finite dimensional treatment one
may refer to books by Rockafellar [14], Hiriart-Urruty and Lemarchal [7] and Boyd and
Vandenberghe [3]. For a geometrical view of convex sets one may refer to the books by
Lay [9], Leonard and Lewis [10] and Soltan [15].

In this presentation the focus is to provide a brief introduction to convex sets from
various books listed in the references. The aim is to study various properties of convex sets
and highlight the differences in finite and infinite dimensional setting. We only provide the
statements of theorems without going into the proof. However, references are provided for
the readers interested in their proofs. Many illustrative examples are also provided in the
paper. We also provide some unsolved and recently solved problems related to convexity

notion.
The rest of the paper is organised as follows. Section 2 deals with the notion of convex

sets and various algebraic and topological properties of convex sets. Section 3 deals with
some motivating problems related to convex sets.
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2 Convex sets

Intuitively, a convex set is connected in the sense one can pass between any two points
without leaving the set. We now provide a mathematical definition of a convex set.

Definition 2.1. (Definition 1.10 in [1]) A nonempty set C' in a real linear space X is
said to be a convex set if for x and y in C| the line segment joining = and y is contained
in C, that is,

z,ye C={1-XNz+Ay : Ae]0,1]} CC.

For example, a circular disk is a convex set but a circle is not a convex set in R%. Some
examples of convex and nonconvex sets in finite dimensional spaces are given in Figure 1.
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Fig. 1

The following examples are from infinite dimensional spaces.

Example 2.2. (i) The set C = {u € L9[0,1] : fol(u(s))st = 1} is a convex set in
L»[0,1].

(13) The set C = {u € l2(N) : |u,| < 27"} is a convex set in la(N).

(731) The set C = {u € [5(N) : u, = 0 except for finitely many n} is a convex set in l2(N)
with int(C') = 0 and c|(C) = l2(N).

Affine subspaces (affine sets) are translations of linear subspaces.

Definition 2.3. (Definition 1.11 in [1]) A nonempty set A in a real linear space X is
said to be an affine set if for x and y in A, the line passing through = and ¥ is contained
in A, that is,

zayeA={(1-Nz+ Xy : Ae R} C A

If z;,i = 1,2,...,k are points in X, an affine combination of {x1,x2,...,z} is any
point of the form Zle)\i:vi, Ei-“:l)\i = 1. Moreover, if \; > 0, the affine combination is
called a convex combination.

For instance, a singleton, a line, a plane and the space R? are all affine subsets of R>.
The set of all affine combinations of three noncollinear points in R? is the plane passing
through these points whereas the set of all convex combinations is the triangle (including
the interior) having vertices at the three points.

The next proposition characterizes a convex (affine) set in terms of convex (affine)
combinations.
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Proposition 2.4. (Proposition 1.12 in [1]) A set S in real linear space is convex (affine)
if and only if it contains every (convex) affine combination of points of S.

The convex (affine) hull of a nonempty set S in a real linear space, denoted by co(S5)
(aff(S)), is the intersection of all convex (affine) sets containing S, that is

co(S) = ﬂ{A : S C A, Ais convex}

and
aff(S) = [ {A: S C A, Ais affine}.

The convex hull of a set is illustrated in Figure 2.
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Fig. 2: Set and its convex hull

In fact, co(S) (aff(S)) is the smallest convex (affine) set containing S. Moreover, it can
be seen from the following theorem that the elements of co(S) (aff(S)) can be represented
only with the elements of S.

Theorem 2.5. (Theorem 1.13 in [1]) The convex (affine) hull of a nonempty set S in
a real linear space coincides with the set of all convex (affine) combinations of elements
belonging to S, that is,

k k
CO(S) :{Z)\isi s, €SN ER N >0,i= 1,2,...,]@',2)\2‘ =1,k € N}
=1 1=1

and

i=1 i=1

k k
aH(S):{Z/\isi:siES,/\ieR,i:1,2,...,k,Z)\i:1,keN}.

Clearly, any affine subset is convex but the converse is not true. It is important to
notice that any affine subset A of a real linear space X is the translate of a linear subspace
L. For every a € A, the translate L = A — a is a real linear subspace of X and in fact,
L = A — A. The dimension of an affine set A is the dimension of the real linear subspace
A— A, that is, dim(A) = dim(A — A). The dimension of a convez set in X is the dimension
of its affine hull. The dimension of a disk in R? is 2 whereas the dimension of a line segment
joining two points in R3 is 1.

We now recall the notion of an affine map. Let X and Y be two real linear spaces.
A map T : X — Y is called an affine map if for z,y € X we have T((1 — Nz + \y) =
(1 =XNT(z)+ X\T'(y), for A € R.

The following easily follows from the definition of convexity.
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Theorem 2.6. The following hold:

(i) If (Cy)ier is a family of convex sets in a real linear space X then [;c; C; is a convex
set in X.

(i) If C1,Cy,...,C) are convex sets in a real linear space X and Aj, Ag, ..., \x are real
numbers then \;C7 + A2C5 + ... + A\, C is a convex set in X.

(#i7) If C1, Cy, ..., C}, are convex sets in a real linear space X then co(Cy+Cay+ ...+ C)) C
co(Ch) + co(Cy) + ... + co(Cy).

(iv) If C; is a convex set in a real linear space X;,i = 1,2,...,k then C; x Cy x ... x C} is
a convex set in X7 x X9 x ... x X}.

(v) f T: X — Y is an affine map from a real linear space X to a real linear space Y and
C is a convex set in X then T'(C) is a convex set in Y. If D is a convex set in Y then
T-1(D) is a convex set in X.

Geometrically we illustrate the (Minkowski) sum of two convex sets in
Figure 3.

Fig. 3: Sum of two convex sets

We now recall some topological nature of convex sets.

Theorem 2.7. (Theorem 2.2 in [4]) If C' is a nonempty convex subset of a real normed
linear space X then

(7) cl(C) and int(C) are convex sets in X;
(73) z € cl(C) and y € int(C) implies that ]z, y] C int(C);
(i4i) int(C) # 0 implies that cl(C) = cl(intC) and int(C) = int(cl(C)).

In the characterization of convex hull of a set in Theorem 2.5 there is no restriction on
the positive integer k and 1t may have to go upto +oo. However, the following powertul the-
orem states that any point in convex

hull of a set with finite dimension can be represented by restricting the value of k.

Theorem 2.8. (Carathéodory Theorem, Theorem 3.1.2 in [12]) Suppose that S is
a subset of a real linear space X and co(S) has dimension n. Then each point in co(S) can
be represented as a convex combination of at most n + 1 points of S.

From the above theorem it is clear that, if S is a nonempty subset of a finite dimensional
real linear space X having dimension say n, then every element of co(S) can be represented
as a convex combination of at most n + 1 elements of S. For the proof of the finite
dimensional version refer to Theorem 1.3.6 in [].

We now state Hellys theorem which is based on the intersection of convex sets.
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Theorem 2.9. (Hellys Theorem, Exercise 7 on Page 108 in []) Let (C;)ier be a finite
collection of convex sets in a finite dimensional real linear space X of dimension n where
|I| > n + 1. If every subcollection of at most n + 1 sets has a nonempty intersection, then
the entire collection has a nonempty intersection.

In general, convex hull of a closed set is not always closed. For instance the set S =
{(z1,1) : z1 € R} U{(0,0)} is a closed set but its convex hull co(S) = {(z1,22) : 1 €
R,z2 > 0} U {(0,0)} is not a closed set. This argument leads to the following notion of
closed convex hull.

Definition 2.10. (Page 29 in [4], Definition 1.4.1 in [7]) If S is a nonempty subset of
a real normed linear space X then the closed convex hull of S, denoted by ¢o(S) is the
intersection of all closed convex sets containing S.

In fact, closed convex hull of a set can be obtained by taking the closure of the convex
hull of the set.

Proposition 2.11. (Exercise 2.5 in [4], Proposition 1.4.2 in [7]) If S is a nonempty
subset of a real normed linear space X then ¢o(S) = cl(co(95)).

It can be easily observed that the convex hull of closure of a set is contained in the
closed convex hull of that set. However, the equality holds in finite dimensional spaces if
the given set is bounded.

Lemma 2.12. (Corollary 4.15 in [6], Theorem 1.4.3 in [7]) If X is finite dimensional real

normed linear space and S is a compact set in X then its convex hull co(S) is a compact
set.

Using the above lemma we have the following proposition.

Proposition 2.13. (Page 101 in [7]) If X is finite dimensional real normed linear space
and S is a bounded set in X then

co(S) = cl(co(S)) = co(cl(5)).

The above theorem fails to hold for infinite dimensional spaces as illustrated by the
following example.
Example 2.14. The set S = {u € [2(R) : u, = (*)} U {eo} is a compact set in l2(R),
where ¢; = (0,0,...,1,0,...) for all i, where 1 is at i*" place and ey = (0,0,...). It can
> (3)(5)
be seen that v = (0,%,%,...) € I2(R) but u ¢ co(S). Also, u = =22 e cl(co(S)).

1
217

3

i=1

Hence, co(S) # cl(co(5)), that is, co(S) is not compact.
An important class of convex sets are the convex cones.

Definition 2.15. (Definition 4.1 in [8]) A set K in a real linear space X is said to be a

cone if Ax € K for every x € K and A > 0. If K is a convex set then K is called a convex
cone.

Convex cones can be characterized as follows.
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Theorem 2.16. (Theorem 4.3 in [8]) A cone K in a real linear space is convex if and
only if K + K C K.

We now give some examples of cones.
Example 2.17. The following are some examples of cones which are not convex.
(i) K = {(z1,22) € R? : 2129 = 0}.
(1i) K ={x € l5(R) : 2, #0V n € N}.
(iii) K = {(21,72,73) € R : 23 = (22 + 22)"/*}.
Example 2.18. The following are some examples of cones which are convex.
(i) RY = {(z1,22,....,20p) ER" 1 2; > 0,0 =1,2,...,n}.
(i) RE = {(z1,22, ..., ) ER" 11 > 29 > -+ > 1y}

(1ii) ST ={A€S": (Az,x) > 0,Vx € R"} where S" is the set of all n x n real symmetric
matrices.

(iv) Ice-cream cone (Lorentz cone) {(x1,z2,73) € R3 :z3 > (22 + x%)%}
(v) C4]0,1] ={z € C[0,1] : z(t) > 0, ¥ ¢ € [0, 1]}.
(vi) K ={z €la(R):z, >0, Vn e N}

Fig. 4: Ice-cream cone
We now define the notion of relative interior of a nonempty set.
Definition 2.19. (Definition1.16 in [1]) Given a nonempty S in a real normed linear

space X, the relative interior of S, denoted by ri(.S), is the set of the interior points of S
with respect to the topology relative to aff(.S), that is,

ri(S) ={x € §:3e > 0, B(z,e) Naff(S) C S}.
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Thus, ri(S) = int(9) if aff(5) = X.

The following theorem states that the relative interior of a nonempty convex set is
nonempty in a finite dimensional setting.

Theorem 2.20. (Theorem 5.23 in [6]) If C' is a nonempty finite dimensional convex set
in a real normed linear space, then ri(C') # (. Moreover,

() ri(C) = ri(cl(C));
(17) cl(C) = cl(ri(C)).

The following example illustrates that the relative interior of a convex set may be empty
in infinite dimensional space.

Example 2.21. Let C' = co{ep, €1, e2, ...} C l2(R). For the convex set C' = {(x1, z2, ..., Tm,0...) :
z; >0,i=1,2,...,m;> " x; = 1;m € N} it can be seen that aff(C) = {(z1, 2, ..., Tm, 0, ...) :
r; € Ryi=1,2,...,m;m € N}. For any x € C, we can see that y = (z1, 22, ..., Zm, —5,...) €
B(z,e) N aff(C) for every € > 0 but y ¢ C. Hence ri(C) is an empty set.

It is easy to observe that if S; and Sy are nonempty convex subsets of a real normed
linear space such that ri(S1)N ri(S2) # 0, then the following hold:

(i) S1 C Sz = ri(S1) C 1i(S2),
(ii) ri(Sl N SQ) = ri(Sl) N l"i(SQ),
(111) Cl(Sl N Sg) = Cl(Sl) N CI(SQ)

One may refer to Proposition 2.1.10 in [6] for the proof of these facts in finite dimensional
spaces.

We now recall the notion of recession cone of a nonempty convex set.

Definition 2.22. (Definition 1.1.15 in [11]) Given a nonempty convex set C' in a real
normed linear space X, the recession cone to C, denoted by 07 (C) is defined as

0 (C):={de X :d+2z € CVxeC}

07 (0

Fig. 5: Set and its recession cone
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Proposition 2.23. (Proposition 1.1.16 in [11]) If C' is a nonempty closed convex set in
a real normed linear space X then 07(C) is a closed convex cone. If C' is bounded then
0% (C) = {0}. Converse is true if X has finite dimension.

The following example illustrates that the converse of the above theorem fails in infinite
dimensional spaces.

Example 2.24. For C = co{eq, e1, €2, ...} C l5(R), we have 07 (C) = {0}.

Remark 2.25. In every infinite dimensional real normed linear space there exists an
unbounded closed convex set with trivial recession cone (see Phung [13]).

Hence a space has finite dimension if every bounded set in the space has a trivial
recession cone.

Definition 2.26. (Definition 3.3.4 in [12]) Given a nonempty set S in a real linear space
X, a point =x € S is sald to be an extreme point of S,
if there are no pints x1,x9 € S,x1 # x2 such that z = axy + (1 — a)xze, for « €]0,1].

We denote the set of extreme points of S by ext(.S).

The extreme points of a triangle (with its interior) are its vertices. More generally, every
polytope S = co({a1,az,...,ar}) has finitely many extreme points, and they are among
the points ag,az,...,ax. All boundary points of a disc D = {(z1,22) : 22 + 23 < 1} C R?
are extreme points of D.

We now state Krein—Milman theorem which provides a characterization of a compact
convex subset in terms of its extreme points.

Theorem 2.27. (KreinMilman, Theorem 10.1.2 in [5]) A compact convex set C' in a
real normed linear space coincides with the closed convex hull of its extreme points, that
is, C'=¢o(C).

From the above theorem it follows that every nonempty compact convex set in a real
normed linear space has an extreme point. Finite dimensional version of Krein—Milman
theorem is Minkowski theorem (Theorem 3.3.5. in [12]). The following example illustrates
that Krein—-Milman theorem fails to hold if the set C' is closed and bounded but not
compact.

Example 2.28. The closed unit ball L'([0,1]) is both closed and bounded (but not com-
pact) and has no extreme points. Let B be the closed unit ball of L*([0,1]). It is easy to
see that, f € B with || f||; < 1 is not an extreme point of B. Let f € B with || f||; = 1, that

is, [l |f(t)]dt =1. Let ¢ €]0,1[ be such that

c 1
/o’f(“'dt:/c )1 de = 1.

_ J2f(x), x€[0,
g(x) = {O, x € [e, 1],

Define

and

o, z € [0,c],
h(z) = {Qf(ac), z € [e, 1],

Then, it can be seen that ||g|l; = ||hll; =1 and f = (g + h).
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We now consider the notions of proximinal and Chebyshev sets.

Definition 2.29. (Definition 2.7 in [8]) A set S in a real normed linear space X is
referred to as proximinal if for each x € X there exists u € S such that

|z —ul| < ||z —vyl, forally € S.

The point u is referred to as best approximation of x from S. If the best approximation
point is unique for every point x € X then the set S is called as a Chebyshev set.

If we define Pg(z) := {u € S : ||z — u|| = infycs ||z — y[|}, then S is a proximinal set if
Pg(z) # 0 and Chebyshev set if Pg(x) is a singleton.

A

Proximinal x Chebyshev
Not Chebyshev

Fig. 6: Proximinal and Chebyshev sets

The following theorem shows that, the reflexivity of the Banach space plays an impor-
tant role for the solvability of approximation problems.

Theorem 2.30. (Theorem 2.9 in [8]) A real Banach space is reflexive if and only if
every nonempty convex closed subset is proximinal.

The following theorem shows that the space needs to be a Hilbert space for a nonempty
closed convex set to be Chebyshev.

Theorem 2.31. (Theorem 3.2.1 in [12]) A nonempty closed convex subset is Chebyshev
if the underlying space is a Hilbert space.

The above theorem may fail to hold if the space is not a Hilbert space.

Example 2.32. Let R? be endowed with ||| . defined by ||(z,y)||l, = max(|z|,|y|).

Clearly, C = {(1,t) : t € R} is a (closed) conver subset of R For all z € C we have
|zl > 1. However, for all t € [-1,1],(1,t) € C and ||(1,t)||,, = 1, so that there are
infinite number of elements with minimal norm in C. Hence, C is proriminal but not

Chebyshev.

In finite dimensional normed linear spaces with smooth and strictly convex unit spheres,
the closed convex sets coincide with the Chebyshev sets. The following theorem provides
a partial converse of Theorem 2.31.

Theorem 2.33. (Theorem 3.2.2 in [12]) Every Chebyshev subset of R" is convex.

We now recall a related notion of convexity namely star convexity.
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Fig. 7: Star shaped set and its kernel

Definition 2.34. (Page 235 in [10]) A nonempty set C' in a real linear space X is said
to be a star shaped set at « € C if for any y in C, the line segment joining z and y is
contained in C', that is,

(1—-Nz+ Xy eC, forxe0,1].

The collection of all points  with this property is called the kernel of C.
The set considered in Figure 1 is a star shaped set and its kernel is the dark shaded
portion in Figure 5.

Theorem 2.35. (Theorem 4.3.1. in [11]) A polygon in the plane is star shaped if and
only if for every three edges of the polygon, there is a point in the set from which all three
edges are visible.

3 Some Solved and Unsolved Problems

Theorem 2.35 in the previous section provides an answer to the famous art gallery problem
which relates to finding a place in the art gallery from where all the paintings can be
viewed. This problem was first in 1973 by geometer and topologist Victor Klee. The above
theorem implies that if for each three paintings in an art gallery, there is a place from
which all three can be viewed, then there must be a place in the gallery from which all of
its paintings can be viewed, that is, art gallery is star shaped.

Fig. 8: Art gallery problem
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The Carathodory conjecture, dating as early as 1920’s, states that any closed convex
surface in 3-dimensional Euclidean space must have at least 2 umbilic points (points where
the surface curves equally in all directions). A solution to the smooth case was announced
by Brendan Guilfoyle and Wilhelm Klingenberg in a paper posted on the arXiv in 2008
(https://arxiv.org/abs/0808.0851). That paper has been revised twice since then, but does
not appear to have been accepted for publication yet.

Another conjecture involving Chebyshev is the Chebyshev conjecture which is most
commonly posed as follows. Every Chebyshev subset of a Hilbert space is convex. This is
still and an unsolved open problem related to convexity notion.

Packing problems are a class of problems that deals with packing objects together in a
given space as densely as possible. These problems can easily be related to real life packag-
ing, storage and transportation issues. Packing problems are also analogous to the problem
of constructing optimal codes and the problem of understanding the structure of crystals. It
is known that dense packing of circles is the hexagonal packing. In three-dimensional space,
a Platonic solid is regular, convex polyhedron. It is constructed by congruent regular poly-
gon faces with the same number of faces meeting at each vertex. There are five platonic
solids namely tetrahedron, cube, octahedron, dodecahedron and icosahedron. Complete
packing in three dimensions is achieved by cubic platonic solids. Also it is achieved using
combination of both the platonic solids tetrahedrons and octahedrons.

It is also known that the best way to pack spheres together is the face-centred cubic
packing, which consists of layers of spheres such that each layer is positioned so that the
spheres rest on the ’holes’ of the layer below. This packing using spheres is termed as
”Kepler’s conjecture” after it was conjectured by Johannes Kepler who is best known for
his work on planetary orbits. This arrangement is not unique, even the hexagonal close
packing constructed in a similar way is also equally efficient.

In 1998 Thomas Hales, of the University of Michigan and his student Sam Ferguson
announced a 250 page proof in 1998. The proof was not accepted as a dozen referees gave it
up after spending some years. According to them the proof seemed to be correct, but they
just did not have the time or energy to verify everything comprehensively. The proof was
published in 2005 but it was still unsatisfactory and the proof was beyond the ability of
the mathematics community to check thoroughly. To address this situation and establish
certainty, Prof. Hales used computer program to check the proof in 2014 and the proof was
accepted by the journal Forum of Mathematics, Pi in 2017.The paper not only settles a
centuries-old mathematical problem, but is also a major advance in computer verification
of complex mathematical proofs.

The "happy ending problem”, states that any set of five points in the plane in general
position has a subset of four points that form the vertices of a convex quadrilateral. The
name happy ending problem was coined by Paul Erds as it led to the marriage of two
Hungarian mathematicians George Szekeres and Esther Klein in 1937. The couple in fact
led a happy life till end and died on the same day at a ripe age of 94 and 95 within a gap
of one hour on August 28, 2005.

The question of the existence of a convex and homogenous body with one unstable and
one stable equilibria in three dimensions was first raised by the Russian mathematician
Vladimir Arnold. Mathematicians were aware that no such shapes exist in two dimensions,
and the fact that every three-dimensional object has at least two equilibria. Two Hungar-
ian mathematicians GborDomokos and PterVrkonyinot only proved that its existence and
also built one. This convex body is termed as Gmbc and moves forward and then manages
to get back on its feet after it has been toppled over. When a Gmbc is placed on a hori-
zontal surface, it starts wobbling around until it reaches the equilibrium position, a bit like
a Weeble toy. In theory, it was known that one can balance it on the unstable equilibrium
point, but in practice it seemed as impossible since the slightest nudge will make it fall over.
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