# Finite Groups, Monomial Ideals and a Subdivision of a Simplex

Sonica Ananda<sup>1</sup> & Chanchal Kumar<sup>2</sup>

<sup>1</sup>MCM DAV College for Women, Sector-36A, Chandigarh-160036, India <sup>2</sup> IISER Mohali, Knowledge City, Sectro 81, SAS Nagar, Punjab-140306, India

 $sonica.anand@qmail.com^1 & chanchal@iisermohali.ac.in^2$ 

#### Abstract

For  $n \geq 1$ , let  $\mathfrak{S}_n$  be the symmetric group on  $[n] = \{1, \ldots, n\}, R = k[x_1, \ldots, x_n]$  be the standard polynomial ring over a field k and  $\mathbf{x}^{\sigma} = \prod_{i=1}^n x_i^{\sigma(i)}$  be a monomial in R for  $\sigma \in \mathfrak{S}_n$ . For any non-empty subset  $T \subseteq \mathfrak{S}_n$ ,  $I_T = \langle \mathbf{x}^{\sigma} : \sigma \in T \rangle$  is a monomial ideal of R. We consider the monomial ideal  $I_G$  of R for a subgroup G of  $\mathfrak{S}_n$ . Many properties of the monomial ideal  $I_G$  and its Alexander dual  $I_G^{[\mathbf{n}]}$  (with respect to  $\mathbf{n} = (n, \ldots, n) \in \mathbb{N}^n$ ) are obtained. Let  $\mathcal{A}_n$  be the Alternating subgroup of  $\mathfrak{S}_n$ . A cellular resolution of the Alexander dual  $I_{\mathcal{A}_n}^{[\mathbf{n}]}$  of  $I_{\mathcal{A}_n}$  supported on a nice subdivision of an n-1-simplex  $\Delta_{n-1}$  is obtained by modifying the first barycentric subdivision  $\mathbf{Bd}(\Delta_{n-1})$  of the n-1-simplex  $\Delta_{n-1}$ .

Subject class [2010]:05E40, 13D02

**Keywords:** Cellular resolutions; standard monomials; alternating subgroup; barycentric subdivision.

#### 1 Introduction

Let  $\mathfrak{S}_n$  be the symmetric group on  $[n] = \{1, \ldots, n\}$  and  $R = k[x_1, \ldots, x_n]$  be the standard polynomial ring over a field k. The monomial ideal  $I_{\mathfrak{S}_n} = \left\langle \mathbf{x}^{\sigma} = \prod_{i=1}^n x_i^{\sigma(i)} : \sigma \in \mathfrak{S}_n \right\rangle$ of R, called a *permutohedron ideal*, has many combinatorial properties. The convex hull  $\mathbf{P}_n = P(\mathfrak{S}_n)$  of n! points  $(\sigma(1), \ldots, \sigma(n)) \in \mathbb{R}^n$ ;  $\sigma \in \mathfrak{S}_n$  is a (n-1)-dimensional polytope in  $\mathbb{R}^n$ , called a *permutohedron*. The minimal resolution of the permutohedron ideal  $I_{\mathfrak{S}_n}$  is the cellular resolution supported on the permutohedron  $\mathbf{P}_n$  (see [1, 2]).

The Alexander dual  $I_{\mathfrak{S}_n}^{[\mathbf{n}]}$  of  $I_{\mathfrak{S}_n}$  with respect to  $\mathbf{n} = (n, \ldots, n) \in \mathbb{N}^n$  is the monomial ideal of R given by

$$I_{\mathfrak{S}_n}^{[\mathbf{n}]} = \left\langle \left(\prod_{i \in A} x_i\right)^{n-|A|+1} : \emptyset \neq A \subseteq [n] \right\rangle.$$

The minimal resolution of  $I_{\mathfrak{S}_n}^{[\mathbf{n}]}$  is the cellular resolution supported on the first barycentric subdivision  $\mathbf{Bd}(\Delta_{n-1})$  of an n-1-simplex  $\Delta_{n-1}$ . Therefore, the  $i^{th}$  Betti number  $\beta_i(I_{\mathfrak{S}_n}^{[\mathbf{n}]})$ of  $I_{\mathfrak{S}_n}^{[\mathbf{n}]}$  is precisely, the number  $f_i(\mathbf{Bd}(\Delta_{n-1}))$  of *i*-dimensional faces (or *i*-faces) of the simplicial complex  $\mathbf{Bd}(\Delta_{n-1})$  (see [5]). We have

$$\beta_i(I_{\mathfrak{S}_n}^{[\mathbf{n}]}) = \beta_{i+1}\left(\frac{R}{I_{\mathfrak{S}_n}^{[\mathbf{n}]}}\right) = f_i(\mathbf{Bd}(\Delta_{n-1})) = (i+1)!S(n+1,i+2),$$

where S(n,k) is number of k-partitions of [n], called a *Stirling number of the second kind*. The standard monomials of  $\frac{R}{I_{\mathfrak{S}_n}^{[n]}}$  correspond bijectively to the parking functions of length n and dime  $\binom{R}{r} = (n+1)^{n-1}$  [5]. By Caylov's formula, the number of spanning trees of

 $n \text{ and } \dim_k \left(\frac{R}{I_{\mathfrak{S}_n}^{[\mathbf{n}]}}\right) = (n+1)^{n-1}$  [5]. By Cayley's formula, the number of spanning trees of the complete graph  $K_{n+1}$  on [n+1] is precisely,  $(n+1)^{n-1}$ . Thus the monomial ideal  $I_{\mathfrak{S}_n}^{[\mathbf{n}]}$ 

the complete graph  $K_{n+1}$  on [n+1] is precisely,  $(n+1)^{n-1}$ . Thus the monomial ideal  $I_{\mathfrak{S}_n}^{[\mathbf{n}]}$  is called a *tree ideal*. For more on cellular resolutions and Alexander duals of monomial ideals, we refer to [4].

Let G be a subgroup of  $\mathfrak{S}_n$ . In this paper, we have investigated homological properties of the monomial ideals  $I_G$  and its Alexander dual  $I_G^{[\mathbf{n}]}$ . Let  $\mathbf{P}(G)$  be the convex hull of points  $(\sigma(1), \ldots, \sigma(n)) \in \mathbb{R}^n$  for  $\sigma \in G$ . Then  $\mathbf{P}(G)$  is a polytope contained in the n-1dimensional permutohedron  $\mathbf{P}_n = \mathbf{P}(\mathfrak{S}_n)$ . Let  $f_i(\mathbf{P}(G))$  be the number of *i*-faces of  $\mathbf{P}(G)$ . We observed that the minimal free resolution of  $I_G$  is the cellular resolution supported on the polytope  $\mathbf{P}(G)$  and the *i*<sup>th</sup> Betti number  $\beta_i(I_G) = f_i(\mathbf{P}(G))$  for  $0 \leq i \leq \dim(\mathbf{P}(G))$ (Theorem 2.1).

Let  $\omega \in \mathfrak{S}_n - G$  and  $G\omega$  (or  $\omega G$ ) be the right (or left) coset of G in  $\mathfrak{S}_n$  determined by  $\omega$ . Since the polytope  $\mathbf{P}(G\omega)$  (or  $\mathbf{P}(\omega G)$ ) is combinatorially equivalent to  $\mathbf{P}(G)$ , we have  $\beta_i(I_{G\omega}) = \beta(I_{\omega G}) = \beta_i(I_G)$  for  $0 \le i \le \dim(\mathbf{P}(G))$ . We also consider the Alexander dual  $I_G^{[\mathbf{n}]}$  of  $I_G$  with respect to  $\mathbf{n}$ . The quotient  $\frac{R}{I_G^{[\mathbf{n}]}}$  is an Artinian k-algebra. Further,  $\dim_k\left(\frac{R}{I_G^{[\mathbf{n}]}}\right) = \dim_k\left(\frac{R}{I_{G\omega}^{[\mathbf{n}]}}\right)$  (Theorem 2.3). Thus, for a normal subgroup G of  $\mathfrak{S}_n$  and  $\omega \in \mathfrak{S}_n$ , we have (Corollary 2.2)

$$\dim_k \left(\frac{R}{I_G^{[\mathbf{n}]}}\right) = \dim_k \left(\frac{R}{I_{G\omega}^{[\mathbf{n}]}}\right) = \dim_k \left(\frac{R}{I_{\omega G}^{[\mathbf{n}]}}\right).$$

Finally, we construct a cellular resolution of the Alexander dual  $I_{\mathcal{A}_n}^{[\mathbf{n}]}$  of the monomial ideal  $I_{\mathcal{A}_n}$  associated to the Alternating subgroup  $\mathcal{A}_n$  of  $\mathfrak{S}_n$ . Let  $\mathcal{A}_n^c = \mathfrak{S}_n - \mathcal{A}_n$  be the set of odd permutations of  $\mathfrak{S}_n$ . The minimal generators of the monomial ideals  $I_{\mathcal{A}_n}^{[\mathbf{n}]}$  and  $I_{\mathcal{A}_n^c}^{[\mathbf{n}]}$ are given in Proposition 3.1. We construct a simplicial complex  $\mathbf{Y}$  by modifying the first barycentric subdivision  $\mathbf{Bd}(\Delta_{n-1})$  of the n-1-simplex  $\Delta_{n-1}$  as follows. Each facet F of  $\mathbf{Bd}(\Delta_{n-1})$  is given by a chain  $\mathcal{C}$  of subsets of [n] of the form  $\mathcal{C} : \emptyset = A_0 \subsetneq A_1 \subsetneq A_2 \subsetneq \ldots \subsetneq$  $A_n = [n]$ , where  $|A_i| = i$ . We also say that the facet F given by the chain  $\mathcal{C}$  is spanned by vertices  $A_1, \ldots, A_n = [n]$  and write  $F = \langle A_1, \ldots, A_n \rangle$ . The facets of  $\mathbf{Bd}(\Delta_{n-1})$  are in one-to-one correspondence with the permutations of [n]. In fact, if  $A_i - A_{i-1} = \{b_i\}$ , then the permutation  $\sigma_F$  corresponding to the facet  $F = \langle A_1, \ldots, A_n \rangle$  is given by  $\sigma_F(b_i) = i$ for  $1 \leq i \leq n$ . If  $\sigma_F \in \mathcal{A}_n$ , then the facet F of  $\mathbf{Bd}(\Delta_{n-1})$  is also a facet of the simplicial complex  $\mathbf{Y}$ . If  $\sigma_F \notin \mathcal{A}_n$ , then the centroid  $v_F$  of the n-2-face  $\langle A_1, \ldots, A_{n-1} \rangle$  of the facet Fis a vertex added to the simplicial complex  $\mathbf{Y}$ . Further, the extra vertex  $v_F$  is joined to all the vertices of the n-1-dimensional facet F. Thus a facet  $F = \langle A_1, \ldots, A_n \rangle$  of  $\mathbf{Bd}(\Delta_{n-1})$ such that  $\sigma_F \notin \mathcal{A}_n$  is subdivided into exactly n-1 facets of  $\mathbf{Y}$ . These n-1-facets of  $\mathbf{Y}$ obtained by subdividing F are of the form  $F_i = \langle v_F, A_1, \ldots, \widehat{A}_i, \ldots, A_n \rangle$  for  $1 \leq i \leq n-1$ , where  $\widehat{A}_i$  indicates that the vertex  $A_i$  is deleted.

A vertex of **Y** corresponding to a non-empty subset  $A \subseteq [n]$  is labelled with the monomial  $(\prod_{i \in A} x_i)^{n-|A|+1}$ , while the extra vertex corresponding to the centroid  $v_F$  of the n-2-face  $\langle A_1, \ldots, A_{n-1} \rangle$  of the facet F with  $\sigma_F \notin \mathcal{A}_n$  is labelled with the monomial  $\mathbf{x}^{\mathbf{n}-\sigma_F} = \prod_{j=1}^n x_j^{n-\sigma_F(j)}$ . Let  $f_i(\mathbf{Y})$  be the number of *i*-faces of **Y**. Then we proved that

$$f_i(\mathbf{Y}) = (i+1)!S(n+1, i+2) + \binom{n}{i}\frac{n!}{2}; \text{ for } 0 \le i \le n-3,$$

while  $f_{n-2}(\mathbf{Y}) = \binom{n+1}{2} \frac{n!}{2}$  and  $f_{n-1}(\mathbf{Y}) = \binom{n}{2} \frac{n!}{2}$  (Proposition 3.2). The free complex associated to the labelled simplicial complex  $\mathbf{Y}$  is a cellular resolution

The free complex associated to the labelled simplicial complex  $\mathbf{Y}$  is a cellular resolution of the monomial ideal  $I_{\mathcal{A}_n}^{[\mathbf{n}]}$  for  $n \geq 4$  (Theorem 3.1). But the cellular resolution supported on  $\mathbf{Y}$  is non-minimal. For n = 4, by deleting appropriate faces of  $\mathbf{Y}$ , we obtained a labelled polyhedral cell complex  $\mathbf{X}$  such that the minimal free resolution of  $I_{\mathcal{A}_4}^{[\mathbf{4}]}$  is the cellular resolution supported on  $\mathbf{X}$ .

## 2 Finite Groups and Monomial Ideals

Let G be a subgroup of the symmetric group  $\mathfrak{S}_n$ . We consider the monomial ideal  $I_G = \langle \mathbf{x}^{\sigma} : \sigma \in G \rangle$  of the polynomial ring  $R = k[x_1, \ldots, x_n]$  associated to the subgroup G. We consider a polytope  $\mathbf{P}(G)$  obtained by the convex hull of points  $(\sigma(1), \ldots, \sigma(n)) \in \mathbb{R}^n$ ;  $\sigma \in G$ . As stated in the Introduction,  $\mathbf{P}(G)$  is a polytope contained in the permutohedron  $\mathbf{P}(\mathfrak{S}_n)$ . Let  $f_i(\mathbf{P}(G))$  be the number of *i*-dimensional faces of  $\mathbf{P}(G)$  and  $\beta_i(I_G)$  be the *i*<sup>th</sup> Betti number of the monomial ideal  $I_G$ . The polytope  $\mathbf{P}(G)$  is naturally a labelled polyhedral cell complex, with monomial label  $\mathbf{x}^{\sigma}$  on the vertex  $(\sigma(1), \ldots, \sigma(n))$  corresponding to  $\sigma \in G$ . The monomial label  $\mathbf{x}^{\alpha(F)}$  on a face F of  $\mathbf{P}(G)$  is given by the least common multiple (LCM) of labels on vertices of F.

It is well known that the minimal resolution of the permutohedron ideal  $I_{\mathfrak{S}_n}$  is the cellular resolution supported on the permutohedron  $\mathbf{P}_n$  (see [2]). Thus, we have  $\beta_i(I_{\mathfrak{S}_n}) = f_i(\mathbf{P}_n)$ . We recall that an i-1-face of the permutohedron  $\mathbf{P}_n$  is represented by a chain of subsets of [n] of the form  $\emptyset = A_0 \subsetneq A_1 \subsetneq \ldots \subsetneq A_i$  of length i (see [4]).

**Theorem 2.1.** The minimal free resolution of the monomial ideal  $I_G$  is the cellular resolution supported on the polytope  $\mathbf{P}(G)$ . In particular,  $i^{\text{th}}$  Betti number  $\beta_i(I_G)$  of  $I_G$  equals  $f_i(\mathbf{P}(G))$  for  $0 \le i \le \dim(\mathbf{P}(G))$ .

*Proof.* In view of Proposition 4.5 of [4], we need to show that the subcomplex  $\mathbf{P}(G)_{\leq \mathbf{b}} = \{F \in \mathbf{P}(G) : \mathbf{x}^{\alpha(F)} \text{ divides } \mathbf{x}^{\mathbf{b}}\}$  is either empty or acyclic. The subcomplex  $\mathbf{P}(\mathfrak{S}_n)_{\leq \mathbf{b}}$ , if non-empty, is contractible (see [2]). On similar lines, it is easy to see that  $\mathbf{P}(G)_{\leq \mathbf{b}} \subseteq \mathbf{P}(\mathfrak{S}_n)_{<\mathbf{b}}$  is contractible, if nonempty.  $\Box$ 

- **Remark 2.1.** 1. The subgroup  $G = \mathfrak{S}_r \times \mathfrak{S}_s \subseteq \mathfrak{S}_n$  with r + s = n has been considered in [3].
  - 2. It would be an interesting problem to obtain a combinatorial description of the faces of the polytope  $\mathbf{P}(G)$  similar to that of permutohedron  $\mathbf{P}(\mathfrak{S}_n)$ .

**Corollary 2.1.** Let  $G = \langle \sigma \rangle$  be a cyclic group generated by  $\sigma \in \mathfrak{S}_n$ .

- 1) Let  $\sigma$  be an r-cycle. Then  $i^{th}$  Betti number  $\beta_i(I_G) = \binom{r}{i+1}$  for  $0 \le i \le r-1$ .
- 2) Let  $\sigma = \sigma_1 \sigma_2 \cdots \sigma_t$  is a product of disjoint cycles of lengths  $r_1, r_2, \ldots, r_t$ , respectively. Suppose that  $gcd(r_i, r_j) = 1$  for all  $1 \le i < j \le t$ , and  $G_j = \langle \sigma_j \rangle$ .

$$\beta_i(I_G) = \sum_{\substack{(j_1, j_2, \dots, j_t) \in \mathbb{N}^t, \\ j_1 + \dots + j_t = i}} \beta_{j_1}(G_1) \beta_{j_2}(G_2) \cdots \beta_{j_t}(G_t).$$

*Proof.* 1. We see that the polytope  $\mathbf{P}(G)$  is an r-1-simplex spanned by the vertices  $\sigma^j$  for  $1 \leq j \leq r$ . Clearly,

$$\beta_i(I_G) = f_i(\mathbf{P}(G)) = \binom{r}{i+1}.$$

2. In this case, we see that the polytope  $\mathbf{P}(G)$  is the product  $\mathbf{P}(G_1) \times \cdots \times \mathbf{P}(G_t)$ , where  $\mathbf{P}(G_j)$  is an  $r_j - 1$ -simplex for  $1 \le j \le t$ . Now

$$f_i(\mathbf{P}(G)) = \sum_{\substack{(j_1, \dots, j_t) \in \mathbb{N}^t, \\ j_1 + \dots + j_t = i}} f_{j_1}(\mathbf{P}(G_1)) \cdots f_{j_t}(\mathbf{P}(G_t)).$$

This completes the proof.

Let  $\omega \in \mathfrak{S}_n - G$  and let  $G\omega$  (or  $\omega G$ ) be the right (or left) coset of G in  $\mathfrak{S}_n$  determined by  $\omega$ . The monomial ideal  $I_{G\omega} = \langle \mathbf{x}^{\sigma\omega} : \sigma \in G \rangle$  (or  $I_{\omega G} = \langle \mathbf{x}^{\omega\sigma} : \sigma \in G \rangle$ ) has the same Betti numbers as  $I_G$ . In fact, the polytopes  $\mathbf{P}(G\omega)$  and  $\mathbf{P}(G)$  are combinatorially equivalent and the minimal resolution of  $I_{G\omega}$  is the cellular resolution supported on  $P(G\omega)$ .

We consider the Alexander dual  $I_G^{[\mathbf{n}]}$  of the monomial ideal  $I_G$  with respect to  $\mathbf{n} = (n, \ldots, n) \in \mathbb{N}^n$ . Let  $\mathbf{b} = (b_1, \ldots, b_n) \in \mathbb{N}^n$  such that  $\mathbf{b} \preceq \mathbf{n}$  (i.e.  $b_i \leq n; \forall i$ ). Then  $\mathbf{b}$  is a maximal vector such that  $\mathbf{x}^{\mathbf{b}} \notin I_G$  if and only if  $\mathbf{x}^{\mathbf{n}-\mathbf{b}} \in I_G^{[\mathbf{n}]}$  is a minimal generator (see Proposition 5.23 of [4]).

**Theorem 2.2.** The Alexander dual  $I_G^{[\mathbf{n}]}$  is a monomial ideal of R such that the quotient  $\frac{R}{I_G^{[\mathbf{n}]}}$  is an Artinian k-algebra. Further, the group G acts on the minimal generators of  $I_G^{[\mathbf{n}]}$ .

Proof. Let  $d_i = \min\{\sigma(i) : \sigma \in G\}$  for  $1 \le i \le n$ . Consider  $\mathbf{b}_i = (n, \ldots, d_i - 1, \ldots, n) \in \mathbb{N}^n$ (i.e.,  $i^{th}$  place  $d_i - 1$  and elsewhere n). Clearly,  $\mathbf{b}_i$  is maximal with  $\mathbf{x}^{\mathbf{b}_i} \notin I_G$ . Thus,  $x_i^{n-d_i+1} = \mathbf{x}^{\mathbf{n}-\mathbf{b}_i} \in I_G^{[\mathbf{n}]}$  is a minimal generator. This shows that  $\frac{R}{I_G^{[\mathbf{n}]}}$  is Artinian. Let  $\mathbf{x}^{\mathbf{c}} = x_1^{c_1} \cdots x_n^{c_n}$  be a minimal generator of  $I_G^{[\mathbf{n}]}$ . We shall show that  $\sigma \mathbf{x}^{\mathbf{c}} = x_{\sigma(1)}^{c_1} \cdots x_{\sigma(n)}^{c_n}$ for  $\sigma \in G$ , is also a minimal generator of  $I_G^{[\mathbf{n}]}$ . As  $\mathbf{x}^{\mathbf{n}-\mathbf{c}} \notin I_G^{[\mathbf{n}]}$  if and only if  $\sigma \mathbf{x}^{\mathbf{n}-\mathbf{c}} \notin I_G^{[\mathbf{n}]}$ , the second assertion follows.

The quotient ring  $\frac{R}{I_G^{[\mathbf{n}]}}$  is Artinian. Thus there are only finitely many monomials  $\mathbf{x}^{\mathbf{b}} = x_1^{b_1} \cdots x_n^{b_n}$  of R such that  $\mathbf{x}^{\mathbf{b}} \notin I_G^{[\mathbf{n}]}$ . Such monomials  $\mathbf{x}^{\mathbf{b}}$  are called *standard monomials* of  $\frac{R}{I_G^{[\mathbf{n}]}}$ . In fact, the set of standard monomials forms a k-basis of the finite dimensional vector space  $\frac{R}{I_G^{[\mathbf{n}]}}$ .

**Theorem 2.3.** For any  $\omega \in \mathfrak{S}_n - G$ , we have  $\dim_k \left(\frac{R}{I_G^{[\mathbf{n}]}}\right) = \dim_k \left(\frac{R}{I_{G\omega}^{[\mathbf{n}]}}\right)$ . *Proof.* We have  $I_G = \langle \mathbf{x}^{\sigma} : \sigma \in G \rangle$  and  $I_{G\omega} = \langle \mathbf{x}^{\sigma\omega} : \sigma \in G \rangle$ . Now,

$$\mathbf{x}^{\sigma\omega} = \prod_{i=1}^{n} x_i^{\sigma(\omega(i))} = \prod_{j=1}^{n} x_{\omega^{-1}(j)}^{\sigma(j)} = \prod_{j=1}^{n} y_j^{\sigma(j)} = \mathbf{y}^{\sigma},$$

where  $y_j = x_{\omega^{-1}(j)}$ . Thus the monomial ideal  $I_{G\omega}$  coincides with  $I_G$  on changing variable  $x_{\omega^{-1}(j)}$  with  $x_j$  for all  $1 \leq j \leq n$ . Also, under the same permutation of variables, the Alexander dual  $I_{G\omega}^{[\mathbf{n}]}$  will coincide with Alexander dual  $I_G^{[\mathbf{n}]}$ . Therefore, the number of standard monomials of  $\frac{R}{I_G^{[\mathbf{n}]}}$  and  $\frac{R}{I_{G\omega}^{[\mathbf{n}]}}$  are the same.  $\Box$ 

The number of standard monomials of  $\frac{R}{I_{\omega G}^{[\mathbf{n}]}}$  need not equal  $\dim_k\left(\frac{R}{I_G^{[\mathbf{n}]}}\right)$ .

Let  $\sigma$  be a 3-cycle in  $\mathfrak{S}_4$  given by  $\sigma = 2314$  in word notation. Let  $G = \langle \sigma \rangle$  be the cyclic group of order 3 generated by  $\sigma$ . Choose  $\omega = 2431 \in \mathfrak{S}_4$ . Then Alexander duals  $I_G^{[4]}$ and  $I_{\omega G}^{[4]}$  are given by

$$I_G^{[\mathbf{4}]} = \langle x_1^4, x_2^4, x_3^4, x_4, x_1^2 x_2^3, x_1^3 x_3^2, x_2^2 x_3^3, x_1^2 x_2^2 x_3^2 \rangle,$$

and

$$I_{\omega G}^{[\mathbf{4}]} = \langle x_1^3, x_2^3, x_3^3, x_4^4, x_1^2 x_2, x_1 x_3^2, x_2^2 x_3, x_1 x_2 x_3 \rangle.$$

It can be easily checked that  $\dim_k \left(\frac{R}{I_G^{[4]}}\right) = 44$ , while  $\dim_k \left(\frac{R}{I_{\omega G}^{[4]}}\right) = 52$ .

**Corollary 2.2.** Let G be a normal subgroup of  $\mathfrak{S}_n$  and  $\omega \in \mathfrak{S}_n$ . Then

$$\dim_k \left(\frac{R}{I_G^{[\mathbf{n}]}}\right) = \dim_k \left(\frac{R}{I_{G\omega}^{[\mathbf{n}]}}\right) = \dim_k \left(\frac{R}{I_{\omega G}^{[\mathbf{n}]}}\right).$$

*Proof.* For a normal subgroup G of  $\mathfrak{S}_n$ ,  $\omega G = G\omega$  for all  $\omega \in \mathfrak{S}_n$ . In view of Theorem 2.3, we are through.

It is interesting to note that the top Betti number  $\beta_{n-1}\left(I_G^{[\mathbf{n}]}\right)$  of the Alexander dual  $I_G^{[\mathbf{n}]}$  gives the order |G| of the subgroup G.

**Proposition 2.1.** Let G be a subgroup of  $\mathfrak{S}_n$ . Then  $\beta_{n-1}\left(I_G^{[n]}\right) = |G|$ .

Proof. Let  $\mathbf{b} = (b_1, \ldots, b_n) \in \mathbb{N}^n$ . Then  $(n-1)^{th}$  Betti number  $\beta_{n-1,\mathbf{b}} \left(I_G^{[\mathbf{n}]}\right)$  of  $I_G^{[\mathbf{n}]}$  in multidegree  $\mathbf{b}$  is given by  $\beta_{n-1,\mathbf{b}} \left(I_G^{[\mathbf{n}]}\right) = \dim_k \widetilde{H}_{n-2} \left(K^{\mathbf{b}} \left(I_G^{[\mathbf{n}]}\right); k\right) \neq 0$ , where  $K^{\mathbf{b}} \left(I_G^{[\mathbf{n}]}\right) = \left\{ \text{square} - \text{free } \tau \subseteq [n] : \mathbf{x}^{\mathbf{b}-\tau} \in I_G^{[\mathbf{n}]} \right\}$  is the upper Koszul simplicial complex of  $I_G^{[\mathbf{n}]}$  in degree  $\mathbf{b}$  (see [4]). Since  $K^{\mathbf{b}} \left(I_G^{[\mathbf{n}]}\right)$  is a subcomplex of the n-1-simplex  $\Delta_{n-1}$ ,  $\widetilde{H}_{n-2} \left(K^{\mathbf{b}} \left(I_G^{[\mathbf{n}]}\right); k\right) \neq 0$  if and only if  $K^{\mathbf{b}} \left(I_G^{[\mathbf{n}]}\right) = \partial \Delta_{n-1}$  is the boundary complex of n-1-simplex  $\Delta_{n-1}$ . This shows that  $[n] \notin K^{\mathbf{b}} \left(I_G^{[\mathbf{n}]}\right)$  and for every  $A \subsetneq [n], A \in K^{\mathbf{b}} \left(I_G^{[\mathbf{n}]}\right)$ . Thus,  $\mathbf{b} - (1, 1, \dots, 1) \preceq \mathbf{n}$  is maximal with  $\mathbf{x}^{\mathbf{b} - (1, 1, \dots, 1)} \notin I_G^{[\mathbf{n}]}$ . Equivalently,  $\mathbf{x}^{\mathbf{n}+\mathbf{1}-\mathbf{b}} \in \left(I_G^{[\mathbf{n}]}\right)^{[\mathbf{n}]} = I_G$  is a minimal generator. Thus,  $\beta_{n-1,\mathbf{b}} \left(I_G^{[\mathbf{n}]}\right) \neq 0$  if and only if  $\mathbf{b} = \mathbf{n} + \mathbf{1} - \sigma$  for some  $\sigma \in G$ . As,  $\beta_{n-1,\mathbf{n}+\mathbf{1}-\sigma}(I_G^{[\mathbf{n}]}) = 1$  for every  $\sigma \in G$ , we have  $\beta_{n-1} \left(I_G^{[\mathbf{n}]}\right) = |G|$ .

- **Remark 2.2.** 1. Proposition 2.1 can also be deduced from a general duality theorem for Betti numbers (see Theorem 5.48 of [4]).
  - 2. If the minimal resolution of  $I_G^{[\mathbf{n}]}$  is the cellular resolution supported on an n-1-dimensional Polyhedral cell complex  $\mathbf{P}$ , then G acts on  $\mathbf{P}$ . In particular, G acts on the facets of  $\mathbf{P}$  freely and transitively. Hence,  $f_{n-1}(\mathbf{P}) = |G|$ .

#### 3 Cellular resolution of $I_{A_n}$

In this section, we consider the alternating subgroup  $\mathcal{A}_n$  of  $\mathfrak{S}_n$ . We would like to construct a cellular resolution of the Alexander dual  $I_{\mathcal{A}_n}^{[\mathbf{n}]}$  of the monomial ideal  $I_{\mathcal{A}_n}$ . First, we consider the cases for  $n \leq 3$ .

We see that  $I_{\mathcal{A}_1} = \langle x_1 \rangle$  and  $I_{\mathcal{A}_2} = \langle x_1 x_2^2 \rangle$  are the monomial ideals in the polynomial rings  $k[x_1]$  and  $k[x_1, x_2]$ , respectively. Clearly, Alexander duals  $I_{\mathcal{A}_1}^{[(1)]} = \langle x_1 \rangle$ ,  $I_{\mathcal{A}_2}^{[(2,2)]} = \langle x_1^2, x_2 \rangle$  and,  $I_{\mathcal{A}_3}^{[(3,3,3)]} = \langle x_1^3, x_2^3, x_3^3, x_1 x_2^2, x_2 x_3^2, x_1^2 x_3, x_1 x_2 x_3 \rangle$ . The minimal resolutions of  $I_{\mathcal{A}_1}^{[(1)]}$  and  $I_{\mathcal{A}_2}^{[(2,2)]}$  are supported on a 0-simplex and 1-simplex, respectively. Further, the minimal resolution of  $I_{\mathcal{A}_3}^{[(3,3,3)]}$  is supported on the labelled polyhedral complex shown in figure-1.



Fig. 1: Labelled polyhedral complex

**Proposition 3.1.** For  $n \ge 4$ , the minimal generators of the monomial ideals  $I_{\mathcal{A}_n}^{[\mathbf{n}]}$  and  $I_{\mathcal{A}_n^c}^{[\mathbf{n}]}$  are given by

$$I_{\mathcal{A}_n}^{[\mathbf{n}]} = \left\langle \left(\prod_{i \in A} x_i\right)^{n-|A|+1}, \quad \mathbf{x}^{\mathbf{n}-\tau} : \emptyset \neq A \subseteq [n]; \tau \notin \mathcal{A}_n \right\rangle,$$

and

$$I_{\mathcal{A}_{n}^{c}}^{[\mathbf{n}]} = \left\langle \left(\prod_{i \in A} x_{i}\right)^{n-|A|+1}, \quad \mathbf{x}^{\mathbf{n}-\tau} : \emptyset \neq A \subseteq [n]; \tau \in \mathcal{A}_{n} \right\rangle.$$

*Proof.* As  $I_{\mathcal{A}_n} \subseteq I_{\mathfrak{S}_n}$ , we see that  $I_{\mathfrak{S}_n}^{[\mathbf{n}]} \subseteq I_{\mathcal{A}_n}^{[\mathbf{n}]}$ . Clearly,  $(\prod_{i \in A} x_i)^{n-|A|+1}$  is also a minimal generator of  $I_{\mathcal{A}_n}^{[\mathbf{n}]}$ . If  $\tau \notin \mathcal{A}_n$ , then  $\mathbf{x}^{\mathbf{n}-\tau} = \prod_{j=1}^n x_j^{n-\sigma(j)}$  is a minimal generator of  $I_{\mathcal{A}_n}^{[\mathbf{n}]}$  in view of Proposition 5.23 of [4], the second part is proved on the similar lines.  $\Box$ 

Corollary 3.1. For  $n \geq 2$ ,

$$\dim_k\left(\frac{R}{I_{\mathcal{A}_n}^{[\mathbf{n}]}}\right) = \dim_k\left(\frac{R}{I_{\mathcal{A}_n}^{[\mathbf{n}]}}\right) = (n+1)^{n-1} - \frac{n!}{2}.$$

Proof. As  $\mathcal{A}_n$  is a normal subgroup of  $\mathfrak{S}_n$ , we have  $\dim_k \left(\frac{R}{I_{\mathcal{A}_n}^{[\mathbf{n}]}}\right) = \dim_k \left(\frac{R}{I_{\mathcal{A}_n}^{[\mathbf{n}]}}\right)$ . Also, we recall that  $I_{\mathfrak{S}_n}^{[\mathbf{n}]} \subseteq I_{\mathcal{A}_n}^{[\mathbf{n}]}$  and the standard monomials of  $\frac{R}{I_{\mathfrak{S}_n}^{[\mathbf{n}]}}$  are of the form  $\mathbf{x}^{\mathbf{p}}$  for ordinary parking functions  $\mathbf{p}$  of length n. In view of Proposition 3.1, we see that  $\mathbf{x}^{\mathbf{p}}$  is not a standard monomial of  $\frac{R}{I_{\mathcal{A}_n}^{[\mathbf{n}]}}$  if and only if  $\mathbf{p} = \mathbf{n} - \tau$ , for some  $\tau \notin \mathcal{A}_n$ . This completes the proof.

The Alexander dual  $I_{\mathfrak{S}_n}^{[\mathbf{n}]}$  of the permutohedron ideal  $I_{\mathfrak{S}_n}$  is a generic monomial ideal and hence its minimal resolution is the cellular resolution supported on its *Scarf complex* (see Theorem 6.13 of [4]). Since the Alexander dual  $I_{\mathcal{A}_n}^{[\mathbf{n}]}$  is not a generic monomial ideal, construction of its minimal resolution is not straight forward. We now proceed to construct an explicit cellular resolution of the Alexander dual  $I_{\mathcal{A}_n}^{[\mathbf{n}]}$  for  $n \geq 4$ . Let  $\mathbf{Y}$  be the simplicial complex obtained by modifying the first barycentric subdivision  $\mathbf{Bd}(\Delta_{n-1})$  as described in the Introduction. Let  $f_i(\mathbf{Y})$  be the number of *i*-faces of  $\mathbf{Y}$  and S(n,k) be the Stirling number of the second kind.

**Proposition 3.2.** Let  $n \ge 4$ . Then

$$f_i(\mathbf{Y}) = (i+1)!S(n+1, i+2) + \binom{n}{i}\frac{n!}{2}; \text{ for } 0 \le i \le n-3,$$

while  $f_{n-2}(\mathbf{Y}) = \binom{n+1}{2} \frac{n!}{2}$  and  $f_{n-1}(\mathbf{Y}) = \binom{n}{1} \frac{n!}{2}$ .

Proof. Since,  $f_i(\mathbf{Bd}(\Delta_{n-1})) = (i+1)!S(n+1,i+2)$ , we need to show that the number of *i*-faces of **Y** not in  $\mathbf{Bd}(\Delta_{n-1})$  is precisely  $\binom{n}{i}\frac{n!}{2}$  for  $0 \le i \le n-3$ . Consider a facet  $F = \langle A_1, \ldots, A_n \rangle$  of  $\mathbf{Bd}(\Delta_{n-1})$  such that permutation  $\sigma_F \notin A_n$ . Then centroid  $v_F$  is an extra vertex of **Y** and  $F_i = \langle v_F, A_1, \ldots, \widehat{A_i}, \ldots, A_n \rangle$  for  $1 \le i \le n-1$  are the facets of **Y** containing  $v_F$ . An *i*-face of **Y** contained in any facets  $F_i$   $(1 \le i \le n)$ , must contain the vertex  $v_F$ , otherwise it will be a face of  $\mathbf{Bd}(\Delta_{n-1})$ . Each such *i*-face of **Y** is obtained by choosing *i* vertices out of  $A_1, \ldots, A_n$ . Thus the number of *i*-faces of **Y** containing  $v_F$  is precisely  $\binom{n}{i}$ . Since there are exactly  $\frac{n!}{2}$  vertices of the form  $v_F$ , we get the first part.

An n-2-face of **Y** containing  $v_F$  is obtained by choosing n-2 vertices out of  $A_1, \ldots, A_n$ , but the n-2-face  $\langle A_1, \ldots, A_{n-1} \rangle$  of  $\mathbf{Bd}(\Delta_{n-1})$  is no longer a face of **Y**. Thus

$$f_{n-2}(\mathbf{Y}) = (n-1)!S(n+1,n) - \frac{n!}{2} + \binom{n}{n-2}\frac{n!}{2}$$

As  $S(n+1,n) = \binom{n+1}{2}$ , we see that  $f_{n-2}(\mathbf{Y}) = \binom{n+1}{2}\frac{n!}{2}$ . Similarly, an n-1-face of  $\mathbf{Y}$  containing  $v_F$  is obtained by choosing n-1 vertices out of  $A_1, \ldots, A_n$  except  $\{A_1, \ldots, A_{n-1}\}$ . Also, the n-1-face  $F = \langle A_1, \ldots, A_n \rangle$  of  $\mathbf{Bd}(\Delta_{n-1})$  with  $\sigma_F \notin A_n$  is not a face of  $\mathbf{Y}$ . Since, there are  $\frac{n!}{2}$  such facets F, we have

$$f_{n-1}(\mathbf{Y}) = n! S(n+1, n+1) - \frac{n!}{2} + \left[ \binom{n}{n-1} - 1 \right] \frac{n!}{2}.$$
  
As  $S(n+1, n+1) = 1$ , we have  $f_{n-1}(\mathbf{Y}) = n\left(\frac{n!}{2}\right).$ 

The simplicial complex  $\mathbf{Y}$  is labelled. The monomial label on a vertex corresponding to a non-empty subset  $A \subseteq [n]$  is  $(\prod_{i \in A} x_i)^{n-|A|+1}$ , while monomial label on a vertex of the form  $v_F$  for a facet F of  $\mathbf{Bd}(\Delta_{n-1})$  with  $\sigma_F \notin \mathcal{A}_n$  is  $\mathbf{x}^{\mathbf{n}-\sigma_F}$ . The monomial label  $\mathbf{x}^{\alpha(F')}$ on a face F' of **Y** is the least common multiple of labels on the vertices of F'. Clearly, the monomial ideal generated by the vertex labels of **Y** is precisely the Alexander dual  $I_{\mathcal{A}_{v}}^{[\mathbf{n}]}$ . If the free complex  $\mathbb{F}(\mathbf{Y})$  associated to the labelled simplicial complex (or polyhedral cell complex) **Y** is exact, then we say that  $\mathbb{F}(\mathbf{Y})$  is a *cellular resolution* of  $I_{A_{\mathbf{x}}}^{[\mathbf{n}]}$  supported on **Y** [2, 4].

**Theorem 3.1.** The free complex  $\mathbb{F}(\mathbf{Y})$  is a cellular resolution of  $I_{A_n}^{[\mathbf{n}]}$  for  $n \geq 4$ .

*Proof.* We need to verify that for any  $\mathbf{b} \in \mathbb{N}^n$ , the subcomplexes  $\mathbf{Y}_{\leq \mathbf{b}}$  are either empty or acyclic. Since  $\mathbf{Bd}(\Delta_{n-1})_{\leq \mathbf{b}}$  is either empty or contractible, it can be easily verified that  $\mathbf{Y}_{\leq \mathbf{b}}$  is also contractible, if non-empty. 

The cellular resolution of  $I_{\mathcal{A}_n}^{[\mathbf{n}]}$  supported on **Y** is never minimal because there are faces  $F' \subseteq F''$  of **Y** such that monomial labels  $\mathbf{x}^{\alpha(F')} = \mathbf{x}^{\alpha(F'')}$ . Further, the *i*-th Betti number  $\beta_i(I_{\mathcal{A}_n}^{[\mathbf{n}]}) = f_i(\mathbf{Y})$ , provided monomial levels on all i + 1-dimensional faces of **Y** are different from monomial levels on their proper subfaces.

**Corollary 3.2.** For  $n \geq 4$ , the *i*<sup>th</sup> Betti number  $\beta_i(I_{\mathcal{A}_n}^{[\mathbf{n}]})$  satisfies

$$\beta_i(I_{A_n}^{[\mathbf{n}]}) \le f_i(\mathbf{Y}) \quad \text{for } 0 \le i \le n-1$$

*Proof.* Since **Y** supports a cellular resolution  $\mathbb{F}(\mathbf{Y})$  of  $I_{\mathcal{A}_n}^{[\mathbf{n}]}$ , the minimal resolution of  $I_{\mathcal{A}_n}^{[\mathbf{n}]}$  is contained in the cellular resolution. Thus,  $\beta_i(I_{\mathcal{A}_n}^{[\mathbf{n}]}) \leq f_i(\mathbf{Y}) \ \forall i.$ 

Clearly,  $\beta_0(I_{\mathcal{A}_n}^{[\mathbf{n}]}) = f_0(\mathbf{Y})$ . It may be an interesting problem to determine the Betti

numbers  $\beta_i(I_{\mathcal{A}_n}^{[\mathbf{n}]})$  for all  $1 \le i \le n-1$ . Let  $\mathbf{X}$  be a subdivision of an n-1-simplex  $\Delta_{n-1}$  obtained from the simplicial complex  $\mathbf{Y}$  by deleting all proper faces F such that  $\mathbf{x}^{\alpha(F)} = \mathbf{x}^{\alpha(F')}$  for some face  $F' \supseteq F$  of  $\mathbf{Y}$ . A face F of **Y** with no deleted proper subfaces remains a face of **X**. Further, if a deleted face F of **Y** is a common maximal proper face of the faces F' and F'' of **Y**, then the faces F'and F'' are merged along the common deleted face F. On merging faces of **Y** along deleted common faces, we get the other faces of **X**. Let  $f_i(\mathbf{X})$  be the number of *i*-faces of **X**.

**Proposition 3.3.** For  $n \ge 4$ ,  $f_{n-1}(\mathbf{X}) = \frac{n!}{2}$ . Also, for  $n \ge 6$ ,

 $f_1(\mathbf{X}) = f_1(\mathbf{Y}) = 3^n + 1 - 2^{n+1} + \frac{n(n!)}{2}.$ 

*Proof.* Consider a facet  $F = \langle A_1, \ldots, A_n \rangle$  of  $\mathbf{Bd}(\Delta_{n-1})$  such that  $A_1 = \{2\}$  and  $A_i = [i]$ for  $2 \leq i \leq n$ . We see that the permutation  $\sigma_F$  is the transposition interchanging 1 and 2. Then all the facets of **Y** containing  $v_F$  are of the form  $F_i = \langle v_F, A_1, \ldots, \widehat{A}_i, \ldots, A_n \rangle$  for  $1 \leq i \leq n-1$ . The monomial label  $\mathbf{x}^{\alpha(F_i)}$  is same as the label  $\mathbf{x}^{\alpha(F_i')}$ , where  $F'_i = F_i - v_F$  is the maximal subface of  $F_i$  not containing  $v_F$ . This shows that  $F'_i$  is not a face of  $\mathbf{X}$  for all  $i \leq i \leq n-1$ . Hence, all the facets  $F_i$  of  $\mathbf{Y}$  are no longer faces of  $\mathbf{X}$ . Since, the Alternating group  $\mathcal{A}_n$  acts on  $\mathbf{Y}$ , the same holds for all facets G of  $\mathbf{Y}$  such that  $\sigma_G \notin \mathcal{A}_n$ . This shows that  $f_{n-1}(\mathbf{X}) = f_{n-1}(\mathbf{Y}) - (n-1)\frac{n!}{2} = \frac{n!}{2}$ . Now, we show that if  $n \ge 6$ , then both  $\mathbf{X}$  and  $\mathbf{Y}$  have the same edges. Again as above, it is enough to see that no edges contained in the facet  $F_i$   $(1 \le i \le n-1)$  get deleted, where  $F = \langle A_1, \ldots, A_n \rangle$ . If the edge  $L_{ij} = \langle A_i, A_j \rangle$ gets deleted, then the monomial label on  $L_{ij}$  is same as the label on the 2-face  $\langle A_i, A_j, v_F \rangle$ . This is not possible for  $n \ge 6$ . Since  $S(n+1,3) = \frac{3^n+1}{2} - 2^n$ , the second part follows. 

We see that  $\beta_1(I_{\mathcal{A}_n}^{[\mathbf{n}]}) = f_1(\mathbf{Y}) = 3^n + 1 - 2^{n+1} + \frac{n(n!)}{2}$ . Also, we have already seen that

 $\beta_{n-1}(I_{\mathcal{A}_n}^{[\mathbf{n}]}) = |\mathcal{A}_n| = \frac{n!}{2}.$ Finally, for n = 4 the subdivision **X** of a 3-simplex  $\Delta_3$  is a labelled polyhedral cell complex and the cellular resolution supported on the polyhedral cell complex **X** gives the minimal free resolution of  $I_{\mathcal{A}_{4}}^{[4]}$ .

For n = 4, the simplicial complex **Y** obtained by modifying the first barycentric sub-division of a 3-simplex has  $f_0(\mathbf{Y}) = 27$ ,  $f_1(\mathbf{Y}) = 98$ ,  $f_2(\mathbf{Y}) = 120$ ,  $f_3(\mathbf{Y}) = 48$ . The edges of **Y** represented by a chain  $\emptyset = A_0 \subsetneq A_1 \subsetneq A_2$  of subsets of  $[4] = \{1, 2, 3, 4\}$  are deleted if  $(|A_1|, |A_2|)$  is either (1,3), or (2,3), or (2,4). There are exactly 12 edges of first type, 12 edges of second type and 6 edges of third type. Thus all together these 30 edges get deleted and so  $f_1(\mathbf{X}) = 98 - 30 = 68$ . On deleting these edges from **Y**, the 2-faces containing these edges get merged. For an edge of first or second type, the two faces of the form  $\langle A_1, A_2, [4] \rangle$ or  $\langle v_F, A_1, A_2 \rangle$  get merged with another 2-faces. There are exactly 2(12+12) = 48 such 2faces. Now consider an edge  $\langle A_1, A_2 \rangle$  of the third type. A 2-face of **Y** containing an edge of the third type is of the form either  $\langle A, A_1, A_2 = [4] \rangle$  with  $\emptyset \neq A \subsetneq A_1$  or  $\langle v_F, A_1, A_2 = [4] \rangle$ . Note that 2-faces of the form  $\langle A_1, B, A_2 = [4] \rangle$  with  $A_1 \subsetneq B \subsetneq A_2 = [4]$  has already been counted. The number of these 2-faces is (2+1)(6) = 18. This shows that a total number of 2-faces of Y that get merged with another 2-faces is 66. Thus  $f_2(\mathbf{X}) = 120 - 66 = 54$ . We have already seen that  $f_3(\mathbf{X}) = 12$ . The polyhedral cell complex **X** is shown in figure-2(a), while one of its facet is described in the figure -2(b).

Every facet of  $\mathbf{X}$  is a 3-dimensional polytope bounded by a pentagonal face, a quadrilateral face and five triangular faces as shown in figure 2(b). The polyhedral cell complex **X** gives a nice subdivision of a regular tetrahedron.

## References

- [1] Bayer D., Peeva I. and Sturmfels B., Monomial resolutions, Mathematical Research Letters 5 (1998), 31-46.
- [2] Bayer D. and Sturmfels B., Cellular resolution of monomial modules, Journal für die Reine und Angewandte Mathematik **502** (1998), 123-140.



- [3] Kumar A. and Kumar C., Certain variants of multipermutohedron ideals, Proc. Indian Acad. Sci.(Math Sci.) Vol.126, No.4, November 2016, 479-500.
- [4] Miller E. and Sturmfels B., *Combinatorial commutative algebra*, Graduate Texts in Mathematics Vol **227**, Springer 2004.
- [5] Postnikov A. and Shapiro B., Trees, parking functions, syzygies, and deformation of Monomial ideals, Trans. Amer. Math. Soc. 356, (2004), 3109-3142.