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Abstract

For n > 1, let &,, be the symmetric group on [n] = {1,...,n}, R
klx1,...,2z,] be the standard polynomial ring over a field k& and x7

T, 27" be a monomial in R for 0 € &,. For any non-empty subset

T C 8y, It = (x? :0€T) is a monomial ideal of R. We consider
the monomial ideal I of R for a subgroup G of G,,. Many properties
of the monomial ideal I and its Alexander dual Igl ] (with respect to
n=(n,...,n) € N") are obtained. Let A,, be the Alternating subgroup
of &,,. A cellular resolution of the Alexander dual IL?}L of 14, supported
on a nice subdivision of an n — 1-simplex A,,_1 is obtained by modifying
the first barycentric subdivision Bd(A,,—1) of the n — 1-simplex A,,_;.

Subject class [2010]:05E40, 13D02
Keywords: Cellular resolutions; standard monomials; alternating subgroup; barycentric
subdivision.

1 Introduction

Let &,, be the symmetric group on [n] = {1,...,n} and R = k[x1,...,x,] be the standard
polynomial ring over a field k. The monomial ideal Ig, = <XU =1I, x?(l) to € 6n>
of R, called a permutohedron ideal, has many combinatorial properties. The convex hull
P, = P(6,) of n! points (c(1),...,0(n)) € R"; 0 € &, is a (n — 1)-dimensional polytope
in R", called a permutohedron. The minimal resolution of the permutohedron ideal Ig, is
the cellular resolution supported on the permutohedron P,, (see [1, 2]).

The Alexander dual I[ély]l of Is, with respect to n = (n,...,n) € N is the monomial

ideal of R given by
n—|A|+1
Igli:<<sz> :(Z)#Ag[n]>.
i€EA
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]

The minimal resolution of Ig]n is the cellular resolution supported on the first barycentric

subdivision Bd(A,,_1) of an n — 1-simplex A,,_1. Therefore, the i** Betti number ﬂz(l[ég)

of Igli is precisely, the number f;(Bd(A,_1)) of i-dimensional faces (or i-faces) of the
simplicial complex Bd(A,,_1) (see [5]). We have

51'(%2) = Bi+1 <I§’]> = fi(Bd(An—1)) = (i + DIS(n+ 1,i +2),

Sn

where S(n, k) is number of k-partitions of [n], called a Stirling number of the second kind.

The standard monomials of I[% correspond bijectively to the parking functions of length
&n

n and dimy, (@) = (n+1)""! [5]. By Cayley’s formula, the number of spanning trees of

the complete graph K, ;1 on [n+ 1] is precisely, (n + 1)"~!. Thus the monomial ideal Igli

is called a tree ideal. For more on cellular resolutions and Alexander duals of monomial
ideals, we refer to [4].

Let G be a subgroup of &,,. In this paper, we have investigated homological properties
of the monomial ideals I and its Alexander dual Ig I Let P(G) be the convex hull of
points (o(1),...,0(n)) € R™ for ¢ € G. Then P(G) is a polytope contained in the n — 1-
dimensional permutohedron P, = P(&,,). Let f;(P(G)) be the number of i-faces of P(G).
We observed that the minimal free resolution of I is the cellular resolution supported on
the polytope P(G) and the i Betti number 8;(Ig) = f;(P(G)) for 0 < i < dim(P(Q))
(Theorem 2.1).

Let w € 6,, — G and Gw (or w@) be the right (or left) coset of G in &,, determined
by w. Since the polytope P(Gw) (or P(w@)) is combinatorially equivalent to P(G), we
have fi(Igw) = f(lwg) = Bi(lg) for 0 < i < dim(P(G)). We also consider the Alexander

dual Igl I of I with respect to n. The quotient I[—E:;] is an Artinian k-algebra. Further,

dimy, (Nﬁ) = dimy, <I[IE]> (Theorem 2.3). Thus, for a normal subgroup G of &,, and
G G

w € &, we have (Coroll.;ry 2.2)

dimk % :dimk % :dimk % .
IG IGw IwG

Finally, we construct a cellular resolution of the Alexander dual I,[fd of the monomial
ideal 14, associated to the Alternating subgroup A, of G,,. Let AS = &,, — A,, be the set

of odd permutations of &,,. The minimal generators of the monomial ideals Iglj and Igls]l
are given in Proposition 3.1. We construct a simplicial complex Y by modifying the first
barycentric subdivision Bd(A,_1) of the n — 1-simplex A, _; as follows. Each facet F' of
Bd(A,_1) is given by a chain C of subsets of [n] of the form C : 0 = Ag C A1 C A2 C ... C
A, = [n], where |A;| = i. We also say that the facet F' given by the chain C is spanned
by vertices Ay, ..., A, = [n] and write F' = (41,...,A,). The facets of Bd(A,,_1) are in
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one-to-one correspondence with the permutations of [n]. In fact, if A; — A;,_1 = {b;}, then
the permutation o corresponding to the facet F' = (Aj,...,A,) is given by op(b;) = i
for 1 <i < mn. If op € A,, then the facet F' of Bd(A,_1) is also a facet of the simplicial
complex Y. If o ¢ A, then the centroid vp of the n—2-face (Ay,..., A,—_1) of the facet F
is a vertex added to the simplicial complex Y. Further, the extra vertex vg is joined to all
the vertices of the n — 1-dimensional facet F. Thus a facet F' = (A41,...,A4,) of Bd(A,_1)
such that op ¢ A, is subdivided into exactly n — 1 facets ofAY. These n — 1-facets of Y
obtained by subdividing F' are of the form F; = (vp, A1,..., Ajy ..., Ap) for 1 <i<n-—1,
where A; indicates that the vertex A; is deleted.

A vertex of Y corresponding to a non-empty subset A C [n] is labelled with the mono-

mial (Hze A wi)n_lAHl, while the extra vertex corresponding to the centroid vg of the
n — 2-face (Ay,...,A,—1) of the facet F with op ¢ A, is labelled with the monomial

xror =0, a:?_UF U). Let fi(Y) be the number of i-faces of Y. Then we proved that

|
Fi(Y) = (i +1)1S(n+1,i+2)+ <?>2 for 0 <i<n—3,

while f,—2(Y) = (";")% and f,—1(Y) = (})% (Proposition 3.2).

The free complex associated to the labelled simplicial complex Y is a cellular resolution
of the monomial ideal I«[ﬁ for n > 4 (Theorem 3.1). But the cellular resolution supported
on Y is non-minimal. For n = 4, by deleting appropriate faces of Y, we obtained a
labelled polyhedral cell complex X such that the minimal free resolution of IE& is the
cellular resolution supported on X.

2 Finite Groups and Monomial ldeals

Let G be a subgroup of the symmetric group &,,. We consider the monomial ideal
I = (x? : 0 € G) of the polynomial ring R = k[x1,...,x,]| associated to the subgroup
G. We consider a polytope P(G) obtained by the convex hull of points (o(1),...,0(n)) €
R™ o € G. As stated in the Introduction, P(G) is a polytope contained in the permu-
tohedron P(&,,). Let f;(P(G)) be the number of i-dimensional faces of P(G) and 8;(Ig)
be the " Betti number of the monomial ideal Ig. The polytope P(G) is naturally a
labelled polyhedral cell complex, with monomial label x? on the vertex (o(1),...,0(n))
corresponding to o € G. The monomial label x*(*) on a face F of P(G) is given by the
least common multiple (LCM) of labels on vertices of F.

It is well known that the minimal resolution of the permutohedron ideal Ig, is the
cellular resolution supported on the permutohedron P,, (see [2]). Thus, we have 5;(Ig,) =
fi(Py). We recall that an ¢ — 1-face of the permutohedron P, is represented by a chain of
subsets of [n] of the form 0 = Ay C A; C ... C A; of length i (see [4]).

Theorem 2.1. The minimal free resolution of the monomial ideal I is the cellular reso-
lution supported on the polytope P(G). In particular, ith Betti number B;(I1g) of I equals
[i(P(G)) for 0 <i < dim(P(G)).
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Proof. In view of Proposition 4.5 of [4], we need to show that the subcomplex P(G)<p
{F € P(G) : x*F) divides xP} is either empty or acyclic. The subcomplex P(&,)<
if non-empty, is contractible (see [2]). On similar lines, it is easy to see that P(G)<p
P(&,,)<p is contractible, if nonempty. O

=2

i

N

Remark 2.1. 1. The subgroup G = G, x 6, C &,, with 7+ s = n has been considered
in [3].

2. It would be an interesting problem to obtain a combinatorial description of the faces
of the polytope P(G) similar to that of permutohedron P(&,,).

Corollary 2.1. Let G = (o) be a cyclic group generated by o € S,,.
1) Let o be an r-cycle. Then it" Betti number B;(1g) = (zfrl) for0<i<r-—1.

2) Let 0 = 0109 -0y is a product of disjoint cycles of lengths r1,72, ..., T, Tespectively.
Suppose that ged(ri,rj) =1 for all1 <i < j <t, and G; = (o).

Bille)= Y Bi(G1)B(Ga)--- B, (Gr).

(j1'7j27"'7j§)€Nta
it +Je=t

Proof. 1. We see that the polytope P(G) is an r — 1-simplex spanned by the vertices o7
for 1 < j < r. Clearly,

it = @) = (1)

2. In this case, we see that the polytope P(G) is the product P(G1) x - - - x P(Gy), where
P(G;) is an r; — 1-simplex for 1 < j <t. Now

LFP@) = D f(P(G)-- £, (P(G)).

(.]:17"'7jt)'€Nt'7
Jit..Fji=t

This completes the proof. O O

Let w € 6,,—G and let Gw (or w@G) be the right (or left) coset of G in &,, determined by
w. The monomial ideal I, = (x°“ : 0 € G) (or I,qg = (x¥? : 0 € G)) has the same Betti
numbers as I¢. In fact, the polytopes P(Gw) and P(G) are combinatorially equivalent and
the minimal resolution of I, is the cellular resolution supported on P(Gw).

We consider the Alexander dual Igl I of the monomial ideal I with respect to n =
(n,...,n) € N*. Let b = (b1,...,b,) € N" such that b < n(i.e. b; <n; Vi). Then b is a

maximal vector such that xP ¢ I if and only if x*~P ¢ Igl J'is a minimal generator (see
Proposition 5.23 of [4]).
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Theorem 2.2. The Alexander dual Igl} is a monomial ideal of R such that the quotient

I[—]E] is an Artinian k-algebra. Further, the group G acts on the minimal generators of Igl]
G

Proof. Let di = min{o (i) : 0 € G} for 1 <i < n. Consider b; = (n,...,d;—1,...,n) e N"

(ie., i" place d; — 1 and elsewhere n). Clearly, b; is maximal with x® ¢ I5. Thus,

x?_d it — xn-bi ¢ Iy is a minimal generator. This shows that % is Artinian. Let
G

x¢ = z{'--- 25 be a minimal generator of Igl ], We shall show that ox© = :Eil(l) e l’?&n)

for o € G, is also a minimal generator of Igj]. As x" ¢ ¢ Igl] if and only if ox™7¢ ¢ Igﬂ,
the second assertion follows.

R is Artinian. Thus there are only finitely many monomials xP =

(n]

G

a:lil -2 of R such that xP ¢ T, gl ! Such monomials xP are called standard monomials of

The quotient ring

%. In fact, the set of standard monomials forms a k-basis of the finite dimensional vector
G

R

space ek

Theorem 2.3. For any w € &,, — GG, we have dimy, (Iﬁ]) = dimy, (I[]E]>
G

G

Proof. We have Ig = (x? : 0 € G) and Ig, = (x°“ : 0 € G). Now,

xOW — H U(W(Z H 'rg(jl)(j) _ H y?(j) _ ya,
j=1

=1

where y; = z,-1(;). Thus the monomial 1deal Iq,, coincides with I on changing variable
Ty-1(j) with z; for all 1 < j < n. Also, under the same permutation of variables, the
Alexander dual I([z]) will coincide with Alexander dual Ig I, Therefore, the number of

standard monomials of % and ﬂ% are the same. O O
G Gw

[n
wG

The number of standard monomials of % need not equal dimy <Iﬁ]>

G
Let o be a 3-cycle in &4 given by o = 2314 in word notation. Let G = (o) be the cyclic
group of order 3 generated by o. Choose w = 2431 € &4. Then Alexander duals Ig]

and [ L%, are given by

M _ , 4 4 4 2.3 32 23 929292
I = (x7, T3, T3, T4, TITY, TI T3, THT3, TITT3),

and al
_ 3 .3 .3 4 _2 2 2
IwG - <IL‘1, Loy, X3, LyyT1X2,T1T3, LToX3, 1'13321:3)-

It can be easily checked that dimy < 0 > = 44, while dimy, ( F] ) = 52.

G
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Corollary 2.2. Let G be a normal subgroup of S, and w € &,. Then

IG IGw IwG

Proof. For a normal subgroup G of &,,, wG = Guw for all w € &,,. In view of Theorem 2.3,
we are through. O O

It is interesting to note that the top Betti number 3,1 (Igl]) of the Alexander dual

I gl ] gives the order |G| of the subgroup G.

Proposition 2.1. Let G be a subgroup of &,,. Then [, (Igl]> =|G]|.

Proof. Let b = (by,...,b,) € N”. Then (n — 1)** Betti number Brn-1b (Igl]> of Igl] in mul-
tidegree b is given by £,_1p (Igl]> = dimy, H, - (Kb (Igl]) ;k:) # 0, where KP (Igl]) =

square — free 7 C [n] : xP77 € Igl]}
b (see [4]). Since KP (Igl]) is a subcomplex of the n—1-simplex Ap_1, Hp_2 (Kb (Igl]) ;kz) #
0 if and only if KP <Igl]) = 0A,,_1 is the boundary complex of n — 1-simplex A,,_1. This

shows that [n] ¢ KP (Igﬂ) and for every A C [n], A € KP (Igﬂ). Thus, b—(1,1,...,1) <n

is the upper Koszul simplicial complex of I, gl lin degree

n n\ . -
is maximal with xP~(11-1) ¢ I[G]. Equivalently, x?+1=b ¢ (Ig]) = [ is a minimal
generator. Thus, B,_1p (I@) # 0 if and only if b = n+ 1 — ¢ for some ¢ € G. As,
Bn_17n+1_g(lgq]) =1 for every 0 € G, we have (3,1 (I@) =|G|. O O

Remark 2.2. 1. Proposition 2.1 can also be deduced from a general duality theorem
for Betti numbers (see Theorem 5.48 of [4]).
2. If the minimal resolution of Igl l'is the cellular resolution supported on an n — 1-
dimensional Polyhedral cell complex P, then G acts on P. In particular, G acts on
the facets of P freely and transitively. Hence, f,—1(P) = |G|.

3 Cellular resolution of [4,

In this section, we consider the alternating subgroup A,, of &,,. We would like to construct

a cellular resolution of the Alexander dual Izljl of the monomial ideal I 4, . First, we consider

the cases for n < 3.
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We see that 14, = (1) and I4, = (z123) are the monomial ideals in the polynomial
rings k[z1] and k[z1, z2], respectively. Clearly, Alexander duals Ifﬁ)} = <x1>,1§2’2)] =

2
3,3,3 .. .
(z?, x5) and, I[( - (x3, 23, 03, 2123, 2922, 2313, ¥17973). The minimal resolutions

of Ixn and IL(lQ 2l are supported on a 0-simplex and 1-simplex, respectively. Further,
(3,3,3)]

the minimal resolution of IJ[43
in figure-1.

is supported on the labelled polyhedral complex shown

%3 XX32 X33

Fig. 1: Labelled polyhedral complex

Proposition 3.1. Forn > 4, the minimal generators of the monomial ideals IJ[E and IJ[:!

are given by
n—|Al+1
() essacmees)
€A

n—|Al+1
IL{Z—<<H:CZ> , x“—T:w¢Ag[n];TeAn>.

€A

and

Proof. As 14, C Is,, we see that Igi - Igljl Clearly, (HieA xi)n_‘AHl is also a minimal

generator of Izli If 7 ¢ Ay, then x*77 =[]}, x?_a(]) is a minimal generator of IJ[E in

view of Proposition 5.23 of [4], the second part is proved on the similar lines. [ O

Corollary 3.1. Forn > 2,

R R !
Iy I 2
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Proof. As A, is a normal subgroup of &,,, we have dimy, < o > = dimy, < o > Also, we

‘An A’?L

recall that I [n] -y [njl and the standard monomials of [n] are of the form xP for ordinary
Is,,
parking functlons p of length n. In view of Proposition 3.1, we see that xP is not a standard

monomial of I[i;] if and only if p = n — 7, for some 7 §§ A,,. This completes the proof.
Ap,

O O

The Alexander dual I[Gni of the permutohedron ideal Ig, is a generic monomial ideal

and hence its minimal resolution is the cellular resolution supported on its Scarf complez

(see Theorem 6.13 of [4]). Since the Alexander dual I} 0] i not a generic monomial ideal,

construction of its minimal resolution is not straight forward We now proceed to construct

an explicit cellular resolution of the Alexander dual I Bl for n > 4. Let Y be the simplicial

complex obtained by modifying the first barycentrlc subdivision Bd(A,_1) as described
in the Introduction. Let f;(Y) be the number of i-faces of Y and S(n, k) be the Stirling
number of the second kind.

Proposition 3.2. Let n > 4. Then

|
Fi(Y) =G+ DIS(n+1,i+2)+ (?)’; for 0<i<n-—3,

while frn—2(Y) = ("% and f,_1(Y) = (1)2.

Proof. Since, f;(Bd(An—1)) = (i + 1)!S(n + 1,7 4+ 2), we need to show that the number

of i-faces of Y not in Bd(A,_;) is precisely ( )”' for 0 < ¢ < n — 3. Consider a facet
= (A,...,A,) of BA(A,_1) such that permutation o ¢ A,,. Then centroid vp is an

extra vertex of Y and F; = (vp, A1,..., A4, ..., Ay) for 1 <i < n —1 are the facets of Y

containing vp. An i-face of Y contained in any facets F; (1 < ¢ < n), must contain the
vertex v, otherwise it will be a face of Bd(A,,_1). Each such i-face of Y is obtained by

choosing ¢ vertices out of Ay,...,A,. Thus the number of i-faces of Y containing vpg is
precisely (Z) Since there are exactly 2! vertices of the form vy, we get the first part.
An n—2-face of Y containing vg is obtained by choosing n—2 vertices out of A1,..., Ay,

but the n — 2-face (A41,..., A,—1) of BA(A,_1) is no longer a face of Y. Thus

n! n \n!

pr— — ' —_—— —_—
frn—2(Y)=(n—-1!S(n+1,n) 5 + <n B 2) 5

As S(n+1,n) = ("'QH), we see that f,_2(Y) = ("H) Similarly, an n — 1-face of Y con-
taining vy is obtained by choosing n — 1 vertices out of Al, .oy Ay except {Ar, ..., Ap1}e
Also, the n—1-face F = (A, ..., A,) of BA(A,—1) with op ¢ An is not a face of Y. Since,

|
there are 5 such facets F', we have

Fao1(Y) = nlS(n+1,n 4+ 1) _%!Jr Kn”1> _ 1} E'

As S(n+1,n+1) =1, we have f,—1(Y) =n (). . =
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The simplicial complex Y is labelled. The monomial label on a vertex corresponding
to a non-empty subset A C [n] is ([];c4 a:i)n_wﬂ, while monomial label on a vertex of

the form vp for a facet F of Bd(A,,_1) with op ¢ A, is x*~?F. The monomial label x )
on a face F’ of Y is the least common multiple of labels on the vertices of F’. Clearly, the

monomial ideal generated by the vertex labels of Y is precisely the Alexander dual I,[Zl,l‘
If the free complex F(Y) associated to the labelled simplicial complex (or polyhedral cell

complex) Y is exact, then we say that F(Y) is a cellular resolution of IL‘CT]L supported on Y
(2, 4].

Theorem 3.1. The free complex F(Y) is a cellular resolution of IR]L forn > 4.

Proof. We need to verify that for any b € N”, the subcomplexes Y <y, are either empty or
acyclic. Since Bd(A,,_1)<p is either empty or contractible, it can be easily verified that
Y <y, is also contractible, if non-empty. O O

The cellular resolution of Igli supported on Y is never minimal because there are faces
F' C F" of Y such that monomial labels x*(F") = x*(F") Further, the i-th Betti number

ﬁl(lfﬂb) = fi(Y), provided monomial levels on all i + 1-dimensional faces of Y are different
from monomial levels on their proper subfaces.

Corollary 3.2. Forn > 4, the i'" Betti number ﬁi(lgﬂ) satisfies

B < fi(Y) for0<i<n—1.

[

Proof. Since Y supports a cellular resolution F(Y') of I;&]L, the minimal resolution of ILE]I
is contained in the cellular resolution. Thus, Bl(IJ[fT]L) < fi(Y) Vi. O O

Clearly, BO(IR]L) = fo(Y). It may be an interesting problem to determine the Betti
numbers ﬂi(IBd) forall1 <i<mn-—1
Let X be a subdivision of an n — 1-simplex A, _1 obtained from the simplicial complex

Y by deleting all proper faces F such that x*¥) = x*(") for some face F’ 2FofY. A
face F' of Y with no deleted proper subfaces remains a face of X. Further, if a deleted face
F of Y is a common maximal proper face of the faces I’ and F” of Y, then the faces F”
and F” are merged along the common deleted face F'. On merging faces of Y along deleted
common faces, we get the other faces of X. Let f;(X) be the number of i-faces of X.

Proposition 3.3. Forn >4, f,_1(X) = %‘ Also, forn > 6,

(X)) =f1(Y)=3"+1 _gndl 4 :
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Proof. Consider a facet F' = (Aq,...,A,) of Bd(A,_1) such that A; = {2} and A; = [i]
for 2 < i < n. We see that the permutation o is the transposition interckianging 1 and
2. Then all the facets of Y containing vp are of the form F; = (vp, Ay,..., A;, ..., A,) for
1 <i < n—1. The monomial label x*¥9) is same as the label XO‘(Fi/), where F = F; —vp is
the maximal subface of F; not containing vp. This shows that F] is not a face of X for all
1 <1 < n—1. Hence, all the facets F; of Y are no longer faces of X. Since, the Alternating
group A, acts on Y, the same holds for all facets G of Y such that o ¢ A,. This shows
that fr,—1(X) = frn_1(Y) — (n— 1)%‘ = %’ Now, we show that if n > 6, then both X and
Y have the same edges. Again as above, it is enough to see that no edges contained in the
facet F; (1 <i < n—1) get deleted, where F' = (Ay,..., A,). If the edge L;; = (A;, A;)
gets deleted, then the monomial label on L;; is same as the label on the 2-face (A4;, Aj, vp).
This is not possible for n > 6. Since S(n +1,3) = LQH — 2", the second part follows.
O O

We see that 51(1'%]1) =fi(Y)=3"+1-2"" 4 @ Also, we have already seen that

Yy =14, =2
,anl( _An) - | n‘ - 9~

Finally, for n = 4 the subdivision X of a 3-simplex Agj is a labelled polyhedral cell
complex and the cellular resolution supported on the polyhedral cell complex X gives the

minimal free resolution of Iff&.

For n = 4, the simplicial complex Y obtained by modifying the first barycentric sub-
division of a 3-simplex has fo(Y) = 27, f1(Y) = 98, f2(Y) = 120, f3(Y) = 48. The edges
of Y represented by a chain ) = Ay C A1 C Ay of subsets of [4] = {1,2, 3,4} are deleted if
(|A1l, |Az2|) is either (1,3), or (2,3), or (2,4). There are exactly 12 edges of first type, 12
edges of second type and 6 edges of third type. Thus all together these 30 edges get deleted
and so f1(X) =98 —30 = 68. On deleting these edges from Y, the 2-faces containing these
edges get merged. For an edge of first or second type, the two faces of the form (A;, Ay, [4])
or (v, A1, Ag) get merged with another 2-faces. There are exactly 2(12 + 12) = 48 such 2-
faces. Now consider an edge (A1, Az) of the third type. A 2-face of Y containing an edge of
the third type is of the form either (A, A1, Ay = [4]) with 0 # A C Ay or (vp, A1, Ay = [4]).
Note that 2-faces of the form (A;, B, Ay = [4]) with A; C B C Ay = [4] has already been
counted. The number of these 2-faces is (2+1)(6) = 18. This shows that a total number of
2-faces of Y that get merged with another 2-faces is 66. Thus fo(X) = 120 — 66 = 54. We
have already seen that f3(X) = 12. The polyhedral cell complex X is shown in figure-2(a),
while one of its facet is described in the figure-2(b).

Every facet of X is a 3-dimensional polytope bounded by a pentagonal face, a quadri-
lateral face and five triangular faces as shown in figure-2(b). The polyhedral cell complex
X gives a nice subdivision of a regular tetrahedron.

References

[1] Bayer D., Peeva I. and Sturmfels B., Monomial resolutions, Mathematical Research
Letters 5 (1998), 31-46.

[2] Bayer D. and Sturmfels B., Cellular resolution of monomial modules, Journal fir die
Reine und Angewandte Mathematik 502 (1998), 123-140.



GANITA, Proceeding of NCMRT, Vol 68(3), 2018, 55-65 65

Figure -2(a) Figure-2(b)

[3] Kumar A. and Kumar C., Certain variants of multipermutohedron ideals, Proc. Indian
Acad. Sci.(Math Sci.) Vol.126 , No.4, November 2016, 479-500.

[4] Miller E. and Sturmfels B., Combinatorial commutative algebra, Graduate Texts in
Mathematics Vol 227, Springer 2004.

[5] Postnikov A. and Shapiro B., Trees, parking functions, syzygies, and deformation of
Monomial ideals, Trans. Amer. Math. Soc. 356, (2004), 3109-3142.



