Finite Groups, Monomial Ideals and a Subdivision of a Simplex

Sonica Ananda ${ }^{1}$ \& Chanchal Kumar ${ }^{2}$
${ }^{1}$ MCM DAV College for Women, Sector-36A, Chandigarh-160036, India
2 IISER Mohali, Knowledge City, Sectro 81, SAS Nagar, Punjab-140306, India
sonica.anand@gmail.com ${ }^{1}$ छ chanchal@iisermohali.ac.in ${ }^{2}$

Abstract

For $n \geq 1$, let \mathfrak{S}_{n} be the symmetric group on $[n]=\{1, \ldots, n\}, R=$ $k\left[x_{1}, \ldots, x_{n}\right]$ be the standard polynomial ring over a field k and $\mathbf{x}^{\sigma}=$ $\prod_{i=1}^{n} x_{i}^{\sigma(i)}$ be a monomial in R for $\sigma \in \mathfrak{S}_{n}$. For any non-empty subset $T \subseteq \mathfrak{S}_{n}, I_{T}=\left\langle\mathbf{x}^{\sigma}: \sigma \in T\right\rangle$ is a monomial ideal of R. We consider the monomial ideal I_{G} of R for a subgroup G of \mathfrak{S}_{n}. Many properties of the monomial ideal I_{G} and its Alexander dual $I_{G}^{[\mathrm{n}]}$ (with respect to $\left.\mathbf{n}=(n, \ldots, n) \in \mathbb{N}^{n}\right)$ are obtained. Let \mathcal{A}_{n} be the Alternating subgroup of \mathfrak{S}_{n}. A cellular resolution of the Alexander dual $I_{\mathcal{A}_{n}}^{[\mathbf{n}]}$ of $I_{\mathcal{A}_{n}}$ supported on a nice subdivision of an $n-1$-simplex Δ_{n-1} is obtained by modifying the first barycentric subdivision $\operatorname{Bd}\left(\Delta_{n-1}\right)$ of the $n-1$-simplex Δ_{n-1}.

Subject class [2010]:05E40, 13D02
Keywords: Cellular resolutions; standard monomials; alternating subgroup; barycentric subdivision.

1 Introduction

Let \mathfrak{S}_{n} be the symmetric group on $[n]=\{1, \ldots, n\}$ and $R=k\left[x_{1}, \ldots, x_{n}\right]$ be the standard polynomial ring over a field k. The monomial ideal $I_{\mathfrak{S}_{n}}=\left\langle\mathbf{x}^{\sigma}=\prod_{i=1}^{n} x_{i}^{\sigma(i)}: \sigma \in \mathfrak{S}_{n}\right\rangle$ of R, called a permutohedron ideal, has many combinatorial properties. The convex hull $\mathbf{P}_{n}=P\left(\mathfrak{S}_{n}\right)$ of $n!$ points $(\sigma(1), \ldots, \sigma(n)) \in \mathbb{R}^{n} ; \sigma \in \mathfrak{S}_{n}$ is a ($n-1$)-dimensional polytope in \mathbb{R}^{n}, called a permutohedron. The minimal resolution of the permutohedron ideal $I_{\mathfrak{S}_{n}}$ is the cellular resolution supported on the permutohedron \mathbf{P}_{n} (see $[1,2]$).

The Alexander dual $I_{\mathfrak{S}_{n}}^{[\mathbf{n}]}$ of $I_{\mathfrak{S}_{n}}$ with respect to $\mathbf{n}=(n, \ldots, n) \in \mathbb{N}^{n}$ is the monomial ideal of R given by

$$
I_{\mathfrak{S}_{n}}^{[\mathbf{n}]}=\left\langle\left(\prod_{i \in A} x_{i}\right)^{n-|A|+1}: \emptyset \neq A \subseteq[n]\right\rangle .
$$

The minimal resolution of $I_{\mathfrak{S}_{n}}^{[\mathbf{n}]}$ is the cellular resolution supported on the first barycentric subdivision $\mathbf{B d}\left(\Delta_{n-1}\right)$ of an $n-1$-simplex Δ_{n-1}. Therefore, the $i^{\text {th }}$ Betti number $\beta_{i}\left(I_{\mathfrak{S}_{n}}^{[\mathbf{n}]}\right)$ of $I_{\mathfrak{S}_{n}}^{[\mathbf{n}]}$ is precisely, the number $f_{i}\left(\mathbf{B d}\left(\Delta_{n-1}\right)\right)$ of i-dimensional faces (or i-faces) of the simplicial complex $\mathbf{B d}\left(\Delta_{n-1}\right)$ (see [5]). We have

$$
\beta_{i}\left(I_{\mathfrak{S}_{n}}^{[\mathbf{n}]}\right)=\beta_{i+1}\left(\frac{R}{I_{\mathfrak{S}_{n}}^{[\mathbf{n}]}}\right)=f_{i}\left(\mathbf{B d}\left(\Delta_{n-1}\right)\right)=(i+1)!S(n+1, i+2),
$$

where $S(n, k)$ is number of k-partitions of $[n]$, called a Stirling number of the second kind. The standard monomials of $\frac{R}{I_{\mathfrak{E} n}^{[n]}}$ correspond bijectively to the parking functions of length n and $\operatorname{dim}_{k}\left(\frac{R}{I_{\mathfrak{S}_{n}}^{[\mathrm{n}}}\right)=(n+1)^{n-1}$ [5]. By Cayley's formula, the number of spanning trees of the complete graph K_{n+1} on $[n+1]$ is precisely, $(n+1)^{n-1}$. Thus the monomial ideal $I_{\mathfrak{S}_{n}}^{[\mathbf{n}]}$ is called a tree ideal. For more on cellular resolutions and Alexander duals of monomial ideals, we refer to [4].

Let G be a subgroup of \mathfrak{S}_{n}. In this paper, we have investigated homological properties of the monomial ideals I_{G} and its Alexander dual $I_{G}^{[\mathbf{n}]}$. Let $\mathbf{P}(G)$ be the convex hull of points $(\sigma(1), \ldots, \sigma(n)) \in \mathbb{R}^{n}$ for $\sigma \in G$. Then $\mathbf{P}(G)$ is a polytope contained in the $n-1$ dimensional permutohedron $\mathbf{P}_{n}=\mathbf{P}\left(\mathfrak{S}_{n}\right)$. Let $f_{i}(\mathbf{P}(G))$ be the number of i-faces of $\mathbf{P}(G)$. We observed that the minimal free resolution of I_{G} is the cellular resolution supported on the polytope $\mathbf{P}(G)$ and the $i^{\text {th }}$ Betti number $\beta_{i}\left(I_{G}\right)=f_{i}(\mathbf{P}(G))$ for $0 \leq i \leq \operatorname{dim}(\mathbf{P}(G))$ (Theorem 2.1).

Let $\omega \in \mathfrak{S}_{n}-G$ and $G \omega$ (or ωG) be the right (or left) coset of G in \mathfrak{S}_{n} determined by ω. Since the polytope $\mathbf{P}(G \omega)$ (or $\mathbf{P}(\omega G)$) is combinatorially equivalent to $\mathbf{P}(G)$, we have $\beta_{i}\left(I_{G \omega}\right)=\beta\left(I_{\omega G}\right)=\beta_{i}\left(I_{G}\right)$ for $0 \leq i \leq \operatorname{dim}(\mathbf{P}(G))$. We also consider the Alexander dual $I_{G}^{[\mathbf{n}]}$ of I_{G} with respect to \mathbf{n}. The quotient $\frac{R}{I_{G}^{[\mathbf{n}]}}$ is an Artinian k-algebra. Further, $\operatorname{dim}_{k}\left(\frac{R}{I_{G}^{\mathbf{n]}}}\right)=\operatorname{dim}_{k}\left(\frac{R}{I_{G \omega}^{\mathrm{nj}}}\right)$ (Theorem 2.3). Thus, for a normal subgroup G of \mathfrak{S}_{n} and $\omega \in \mathfrak{S}_{n}$, we have (Corollary 2.2)

$$
\operatorname{dim}_{k}\left(\frac{R}{I_{G}^{[\mathbf{n}]}}\right)=\operatorname{dim}_{k}\left(\frac{R}{I_{G \omega}^{[\mathbf{n}]}}\right)=\operatorname{dim}_{k}\left(\frac{R}{I_{\omega G}^{[\mathbf{n}]}}\right) .
$$

Finally, we construct a cellular resolution of the Alexander dual $I_{\mathcal{A}_{n}}^{[\mathbf{n}]}$ of the monomial ideal $I_{\mathcal{A}_{n}}$ associated to the Alternating subgroup \mathcal{A}_{n} of \mathfrak{S}_{n}. Let $\mathcal{A}_{n}^{c}=\mathfrak{S}_{n}-\mathcal{A}_{n}$ be the set of odd permutations of \mathfrak{S}_{n}. The minimal generators of the monomial ideals $I_{\mathcal{A}_{n}}^{[\mathbf{n}]}$ and $I_{\mathcal{A}_{n}^{c}}^{[\mathbf{n}]}$ are given in Proposition 3.1. We construct a simplicial complex \mathbf{Y} by modifying the first barycentric subdivision $\operatorname{Bd}\left(\Delta_{n-1}\right)$ of the $n-1$-simplex Δ_{n-1} as follows. Each facet F of $\operatorname{Bd}\left(\Delta_{n-1}\right)$ is given by a chain \mathcal{C} of subsets of $[n]$ of the form $\mathcal{C}: \emptyset=A_{0} \subsetneq A_{1} \subsetneq A_{2} \subsetneq \ldots \subsetneq$ $A_{n}=[n]$, where $\left|A_{i}\right|=i$. We also say that the facet F given by the chain \mathcal{C} is spanned by vertices $A_{1}, \ldots, A_{n}=[n]$ and write $F=\left\langle A_{1}, \ldots, A_{n}\right\rangle$. The facets of $\mathbf{B d}\left(\Delta_{n-1}\right)$ are in
one-to-one correspondence with the permutations of $[n]$. In fact, if $A_{i}-A_{i-1}=\left\{b_{i}\right\}$, then the permutation σ_{F} corresponding to the facet $F=\left\langle A_{1}, \ldots, A_{n}\right\rangle$ is given by $\sigma_{F}\left(b_{i}\right)=i$ for $1 \leq i \leq n$. If $\sigma_{F} \in \mathcal{A}_{n}$, then the facet F of $\operatorname{Bd}\left(\Delta_{n-1}\right)$ is also a facet of the simplicial complex \mathbf{Y}. If $\sigma_{F} \notin \mathcal{A}_{n}$, then the centroid v_{F} of the $n-2$-face $\left\langle A_{1}, \ldots, A_{n-1}\right\rangle$ of the facet F is a vertex added to the simplicial complex \mathbf{Y}. Further, the extra vertex v_{F} is joined to all the vertices of the n-1-dimensional facet F. Thus a facet $F=\left\langle A_{1}, \ldots, A_{n}\right\rangle$ of $\mathbf{B d}\left(\Delta_{n-1}\right)$ such that $\sigma_{F} \notin \mathcal{A}_{n}$ is subdivided into exactly $n-1$ facets of \mathbf{Y}. These $n-1$-facets of \mathbf{Y} obtained by subdividing F are of the form $F_{i}=\left\langle v_{F}, A_{1}, \ldots, \widehat{A}_{i}, \ldots, A_{n}\right\rangle$ for $1 \leq i \leq n-1$, where \widehat{A}_{i} indicates that the vertex A_{i} is deleted.

A vertex of \mathbf{Y} corresponding to a non-empty subset $A \subseteq[n]$ is labelled with the monomial $\left(\prod_{i \in A} x_{i}\right)^{n-|A|+1}$, while the extra vertex corresponding to the centroid v_{F} of the n - 2-face $\left\langle A_{1}, \ldots, A_{n-1}\right\rangle$ of the facet F with $\sigma_{F} \notin \mathcal{A}_{n}$ is labelled with the monomial $\mathbf{x}^{\mathbf{n}-\sigma_{F}}=\prod_{j=1}^{n} x_{j}^{n-\sigma_{F}(j)}$. Let $f_{i}(\mathbf{Y})$ be the number of i-faces of \mathbf{Y}. Then we proved that

$$
f_{i}(\mathbf{Y})=(i+1)!S(n+1, i+2)+\binom{n}{i} \frac{n!}{2} ; \quad \text { for } 0 \leq i \leq n-3
$$

while $f_{n-2}(\mathbf{Y})=\binom{n+1}{2} \frac{n!}{2}$ and $f_{n-1}(\mathbf{Y})=\binom{n}{1} \frac{n!}{2}$ (Proposition 3.2).
The free complex associated to the labelled simplicial complex \mathbf{Y} is a cellular resolution of the monomial ideal $I_{\mathcal{A}_{n}}^{[\mathbf{n}]}$ for $n \geq 4$ (Theorem 3.1). But the cellular resolution supported on \mathbf{Y} is non-minimal. For $n=4$, by deleting appropriate faces of \mathbf{Y}, we obtained a labelled polyhedral cell complex \mathbf{X} such that the minimal free resolution of $I_{\mathcal{A}_{4}}^{[4]}$ is the cellular resolution supported on \mathbf{X}.

2 Finite Groups and Monomial Ideals

Let G be a subgroup of the symmetric group \mathfrak{S}_{n}. We consider the monomial ideal $I_{G}=\left\langle\mathbf{x}^{\sigma}: \sigma \in G\right\rangle$ of the polynomial ring $R=k\left[x_{1}, \ldots, x_{n}\right]$ associated to the subgroup G. We consider a polytope $\mathbf{P}(G)$ obtained by the convex hull of points $(\sigma(1), \ldots, \sigma(n)) \in$ $\mathbb{R}^{n} ; \sigma \in G$. As stated in the Introduction, $\mathbf{P}(G)$ is a polytope contained in the permutohedron $\mathbf{P}\left(\mathfrak{S}_{n}\right)$. Let $f_{i}(\mathbf{P}(G))$ be the number of i-dimensional faces of $\mathbf{P}(G)$ and $\beta_{i}\left(I_{G}\right)$ be the $i^{t h}$ Betti number of the monomial ideal I_{G}. The polytope $\mathbf{P}(G)$ is naturally a labelled polyhedral cell complex, with monomial label \mathbf{x}^{σ} on the vertex $(\sigma(1), \ldots, \sigma(n))$ corresponding to $\sigma \in G$. The monomial label $\mathbf{x}^{\alpha(F)}$ on a face F of $\mathbf{P}(G)$ is given by the least common multiple (LCM) of labels on vertices of F.

It is well known that the minimal resolution of the permutohedron ideal $I_{\mathfrak{S}_{n}}$ is the cellular resolution supported on the permutohedron \mathbf{P}_{n} (see [2]). Thus, we have $\beta_{i}\left(I_{\mathfrak{S}_{n}}\right)=$ $f_{i}\left(\mathbf{P}_{n}\right)$. We recall that an i - 1-face of the permutohedron \mathbf{P}_{n} is represented by a chain of subsets of $[n]$ of the form $\emptyset=A_{0} \subsetneq A_{1} \subsetneq \ldots \subsetneq A_{i}$ of length i (see [4]).

Theorem 2.1. The minimal free resolution of the monomial ideal I_{G} is the cellular resolution supported on the polytope $\mathbf{P}(G)$. In particular, $i^{\text {th }}$ Betti number $\beta_{i}\left(I_{G}\right)$ of I_{G} equals $f_{i}(\mathbf{P}(G))$ for $0 \leq i \leq \operatorname{dim}(\mathbf{P}(G))$.

Proof. In view of Proposition 4.5 of [4], we need to show that the subcomplex $\mathbf{P}(G)_{\leq \mathbf{b}}=$ $\left\{F \in \mathbf{P}(G): \mathbf{x}^{\alpha(F)}\right.$ divides $\left.\mathbf{x}^{\mathbf{b}}\right\}$ is either empty or acyclic. The subcomplex $\mathbf{P}\left(\mathfrak{S}_{n}\right)_{\leq \mathbf{b}}$, if non-empty, is contractible (see [2]). On similar lines, it is easy to see that $\mathbf{P}(G)_{\leq \mathbf{b}} \subseteq$ $\mathbf{P}\left(\mathfrak{S}_{n}\right)_{\leq \mathbf{b}}$ is contractible, if nonempty.

Remark 2.1. 1. The subgroup $G=\mathfrak{S}_{r} \times \mathfrak{S}_{s} \subseteq \mathfrak{S}_{n}$ with $r+s=n$ has been considered in [3].
2. It would be an interesting problem to obtain a combinatorial description of the faces of the polytope $\mathbf{P}(G)$ similar to that of permutohedron $\mathbf{P}\left(\mathfrak{S}_{n}\right)$.

Corollary 2.1. Let $G=\langle\sigma\rangle$ be a cyclic group generated by $\sigma \in \mathfrak{S}_{n}$.

1) Let σ be an r-cycle. Then $i^{\text {th }}$ Betti number $\beta_{i}\left(I_{G}\right)=\binom{r}{i+1}$ for $0 \leq i \leq r-1$.
2) Let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{t}$ is a product of disjoint cycles of lengths $r_{1}, r_{2}, \ldots, r_{t}$, respectively. Suppose that $\operatorname{gcd}\left(r_{i}, r_{j}\right)=1$ for all $1 \leq i<j \leq t$, and $G_{j}=\left\langle\sigma_{j}\right\rangle$.

$$
\beta_{i}\left(I_{G}\right)=\sum_{\substack{\left(j_{1}, j_{2}, \ldots, j_{t}\right) \in \mathbb{N}^{t}, j_{1}+\ldots+j_{t}=i}} \beta_{j_{1}}\left(G_{1}\right) \beta_{j_{2}}\left(G_{2}\right) \cdots \beta_{j_{t}}\left(G_{t}\right) .
$$

Proof. 1. We see that the polytope $\mathbf{P}(G)$ is an $r-1$-simplex spanned by the vertices σ^{j} for $1 \leq j \leq r$. Clearly,

$$
\beta_{i}\left(I_{G}\right)=f_{i}(\mathbf{P}(G))=\binom{r}{i+1}
$$

2. In this case, we see that the polytope $\mathbf{P}(G)$ is the product $\mathbf{P}\left(G_{1}\right) \times \cdots \times \mathbf{P}\left(G_{t}\right)$, where $\mathbf{P}\left(G_{j}\right)$ is an $r_{j}-1$-simplex for $1 \leq j \leq t$. Now

$$
f_{i}(\mathbf{P}(G))=\sum_{\substack{\left(j_{1}, \ldots, j_{t}\right) \in \mathbb{N}^{t}, j_{1}+\ldots+j_{t}=i}} f_{j_{1}}\left(\mathbf{P}\left(G_{1}\right)\right) \cdots f_{j_{t}}\left(\mathbf{P}\left(G_{t}\right)\right) .
$$

This completes the proof.
Let $\omega \in \mathfrak{S}_{n}-G$ and let $G \omega$ (or ωG) be the right (or left) coset of G in \mathfrak{S}_{n} determined by ω. The monomial ideal $I_{G \omega}=\left\langle\mathbf{x}^{\sigma \omega}: \sigma \in G\right\rangle$ (or $I_{\omega G}=\left\langle\mathbf{x}^{\omega \sigma}: \sigma \in G\right\rangle$) has the same Betti numbers as I_{G}. In fact, the polytopes $\mathbf{P}(G \omega)$ and $\mathbf{P}(G)$ are combinatorially equivalent and the minimal resolution of $I_{G \omega}$ is the cellular resolution supported on $P(G \omega)$.

We consider the Alexander dual $I_{G}^{[\mathbf{n}]}$ of the monomial ideal I_{G} with respect to $\mathbf{n}=$ $(n, \ldots, n) \in \mathbb{N}^{n}$. Let $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{N}^{n}$ such that $\mathbf{b} \preceq \mathbf{n}\left(\right.$ i.e. $\left.b_{i} \leq n ; \forall i\right)$. Then \mathbf{b} is a maximal vector such that $\mathbf{x}^{\mathbf{b}} \notin I_{G}$ if and only if $\mathbf{x}^{\mathbf{n}-\mathbf{b}} \in I_{G}^{[\mathbf{n}]}$ is a minimal generator (see Proposition 5.23 of [4]).

Theorem 2.2. The Alexander dual $I_{G}^{[\mathbf{n}]}$ is a monomial ideal of R such that the quotient $\frac{R}{I_{G}^{[\mathbf{n]}]}}$ is an Artinian k-algebra. Further, the group G acts on the minimal generators of $I_{G}^{[\mathbf{n}]}$.
Proof. Let $d_{i}=\min \{\sigma(i): \sigma \in G\}$ for $1 \leq i \leq n$. Consider $\mathbf{b}_{i}=\left(n, \ldots, d_{i}-1, \ldots, n\right) \in \mathbb{N}^{n}$ (i.e., $i^{\text {th }}$ place $d_{i}-1$ and elsewhere n). Clearly, \mathbf{b}_{i} is maximal with $\mathbf{x}^{\mathbf{b}_{i}} \notin I_{G}$. Thus, $x_{i}^{n-d_{i}+1}=\mathbf{x}^{\mathbf{n}-\mathbf{b}_{i}} \in I_{G}^{[\mathbf{n}]}$ is a minimal generator. This shows that $\frac{R}{I_{G}^{[\mathbf{n}]}}$ is Artinian. Let $\mathbf{x}^{\mathbf{c}}=x_{1}^{c_{1}} \cdots x_{n}^{c_{n}}$ be a minimal generator of $I_{G}^{[\mathbf{n}]}$. We shall show that $\sigma \mathbf{x}^{\mathbf{c}}=x_{\sigma(1)}^{c_{1}} \cdots x_{\sigma(n)}^{c_{n}}$ for $\sigma \in G$, is also a minimal generator of $I_{G}^{[\mathbf{n}]}$. As $\mathbf{x}^{\mathbf{n}-\mathbf{c}} \notin I_{G}^{[\mathbf{n}]}$ if and only if $\sigma \mathbf{x}^{\mathbf{n}-\mathbf{c}} \notin I_{G}^{[\mathbf{n}]}$, the second assertion follows.

The quotient ring $\frac{R}{I_{G}^{(n]}}$ is Artinian. Thus there are only finitely many monomials $\mathbf{x}^{\mathbf{b}}=$ $x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$ of R such that $\mathbf{x}^{\mathbf{b}} \notin I_{G}^{[\mathbf{n}]}$. Such monomials $\mathbf{x}^{\mathbf{b}}$ are called standard monomials of $\frac{R}{I_{G}^{\mathrm{nm}}}$. In fact, the set of standard monomials forms a k-basis of the finite dimensional vector space $\frac{R}{I_{G}^{\mathrm{nm}}}$.
Theorem 2.3. For any $\omega \in \mathfrak{S}_{n}-G$, we have $\operatorname{dim}_{k}\left(\frac{R}{I_{G}^{[\mathbf{n j}}}\right)=\operatorname{dim}_{k}\left(\frac{R}{I_{G \omega}^{[\mathbf{n j}}}\right)$.
Proof. We have $I_{G}=\left\langle\mathbf{x}^{\sigma}: \sigma \in G\right\rangle$ and $I_{G \omega}=\left\langle\mathbf{x}^{\sigma \omega}: \sigma \in G\right\rangle$. Now,

$$
\mathbf{x}^{\sigma \omega}=\prod_{i=1}^{n} x_{i}^{\sigma(\omega(i))}=\prod_{j=1}^{n} x_{\omega^{-1}(j)}^{\sigma(j)}=\prod_{j=1}^{n} y_{j}^{\sigma(j)}=\mathbf{y}^{\sigma}
$$

where $y_{j}=x_{\omega^{-1}(j)}$. Thus the monomial ideal $I_{G \omega}$ coincides with I_{G} on changing variable $x_{\omega^{-1}(j)}$ with x_{j} for all $1 \leq j \leq n$. Also, under the same permutation of variables, the Alexander dual $I_{G \omega}^{[\mathrm{n}]}$ will coincide with Alexander dual $I_{G}^{[\mathrm{n}]}$. Therefore, the number of standard monomials of $\frac{R}{I_{G}^{[(\mathrm{n}]}}$ and $\frac{R}{I_{G \omega}^{[n]}}$ are the same.

The number of standard monomials of $\frac{R}{I_{\omega G}^{[n]}}$ need not equal $\operatorname{dim}_{k}\left(\frac{R}{I_{G}^{(n]}}\right)$.
Let σ be a 3 -cycle in \mathfrak{S}_{4} given by $\sigma=2314$ in word notation. Let $G=\langle\sigma\rangle$ be the cyclic group of order 3 generated by σ. Choose $\omega=2431 \in \mathfrak{S}_{4}$. Then Alexander duals $I_{G}^{[4]}$ and $I_{\omega G}^{[4]}$ are given by

$$
I_{G}^{[4]}=\left\langle x_{1}^{4}, x_{2}^{4}, x_{3}^{4}, x_{4}, x_{1}^{2} x_{2}^{3}, x_{1}^{3} x_{3}^{2}, x_{2}^{2} x_{3}^{3}, x_{1}^{2} x_{2}^{2} x_{3}^{2}\right\rangle,
$$

and

$$
I_{\omega G}^{[4]}=\left\langle x_{1}^{3}, x_{2}^{3}, x_{3}^{3}, x_{4}^{4}, x_{1}^{2} x_{2}, x_{1} x_{3}^{2}, x_{2}^{2} x_{3}, x_{1} x_{2} x_{3}\right\rangle .
$$

It can be easily checked that $\operatorname{dim}_{k}\left(\frac{R}{I_{G}^{[4]}}\right)=44$, while $\operatorname{dim}_{k}\left(\frac{R}{I_{\omega G}^{4]}}\right)=52$.

Corollary 2.2. Let G be a normal subgroup of \mathfrak{S}_{n} and $\omega \in \mathfrak{S}_{n}$. Then

$$
\operatorname{dim}_{k}\left(\frac{R}{I_{G}^{[\mathbf{n}]}}\right)=\operatorname{dim}_{k}\left(\frac{R}{I_{G \omega}^{[\mathbf{n}]}}\right)=\operatorname{dim}_{k}\left(\frac{R}{I_{\omega G}^{[\mathbf{n}]}}\right) .
$$

Proof. For a normal subgroup G of $\mathfrak{S}_{n}, \omega G=G \omega$ for all $\omega \in \mathfrak{S}_{n}$. In view of Theorem 2.3, we are through.

It is interesting to note that the top Betti number $\beta_{n-1}\left(I_{G}^{[\mathbf{n}]}\right)$ of the Alexander dual $I_{G}^{[\mathbf{n}]}$ gives the order $|G|$ of the subgroup G.

Proposition 2.1. Let G be a subgroup of \mathfrak{S}_{n}. Then $\beta_{n-1}\left(I_{G}^{[\mathbf{n}]}\right)=|G|$.
Proof. Let $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{N}^{n}$. Then $(n-1)^{t h}$ Betti number $\beta_{n-1, \mathbf{b}}\left(I_{G}^{[\mathbf{n}]}\right)$ of $I_{G}^{[\mathbf{n}]}$ in multidegree \mathbf{b} is given by $\beta_{n-1, \mathbf{b}}\left(I_{G}^{[\mathbf{n}]}\right)=\operatorname{dim}_{k} \widetilde{H}_{n-2}\left(K^{\mathbf{b}}\left(I_{G}^{[\mathbf{n}]}\right) ; k\right) \neq 0$, where $K^{\mathbf{b}}\left(I_{G}^{[\mathbf{n}]}\right)=$ $\left\{\right.$ square - free $\left.\tau \subseteq[n]: \mathbf{x}^{\mathbf{b}-\tau} \in I_{G}^{[\mathbf{n}]}\right\}$ is the upper Koszul simplicial complex of $I_{G}^{[\mathbf{n}]}$ in degree \mathbf{b} (see [4]). Since $K^{\mathbf{b}}\left(I_{G}^{[\mathbf{n}]}\right)$ is a subcomplex of the $n-1$-simplex $\Delta_{n-1}, \widetilde{H}_{n-2}\left(K^{\mathbf{b}}\left(I_{G}^{[\mathbf{n]}]}\right) ; k\right) \neq$ 0 if and only if $K^{\mathbf{b}}\left(I_{G}^{[\mathbf{n}]}\right)=\partial \Delta_{n-1}$ is the boundary complex of $n-1$-simplex Δ_{n-1}. This shows that $[n] \notin K^{\mathbf{b}}\left(I_{G}^{[\mathbf{n}]}\right)$ and for every $A \subsetneq[n], A \in K^{\mathbf{b}}\left(I_{G}^{[\mathbf{n}]}\right)$. Thus, $\mathbf{b}-(1,1, \ldots, 1) \preceq \mathbf{n}$ is maximal with $\mathbf{x}^{\mathbf{b}-(1,1, \ldots, 1)} \notin I_{G}^{[\mathbf{n}]}$. Equivalently, $\mathbf{x}^{\mathbf{n}+\mathbf{1 - b}} \in\left(I_{G}^{[\mathbf{n}]}\right)^{[\mathbf{n}]}=I_{G}$ is a minimal generator. Thus, $\beta_{n-1, \mathbf{b}}\left(I_{G}^{[\mathbf{n}]}\right) \neq 0$ if and only if $\mathbf{b}=\mathbf{n}+\mathbf{1}-\sigma$ for some $\sigma \in G$. As, $\beta_{n-1, \mathbf{n}+\mathbf{1}-\sigma}\left(I_{G}^{[\mathbf{n}]}\right)=1$ for every $\sigma \in G$, we have $\beta_{n-1}\left(I_{G}^{[\mathbf{n}]}\right)=|G|$.

Remark 2.2. 1. Proposition 2.1 can also be deduced from a general duality theorem for Betti numbers (see Theorem 5.48 of [4]).
2. If the minimal resolution of $I_{G}^{[\mathbf{n}]}$ is the cellular resolution supported on an $n-1$ dimensional Polyhedral cell complex \mathbf{P}, then G acts on \mathbf{P}. In particular, G acts on the facets of \mathbf{P} freely and transitively. Hence, $f_{n-1}(\mathbf{P})=|G|$.

3 Cellular resolution of $I_{\mathcal{A}_{n}}$

In this section, we consider the alternating subgroup \mathcal{A}_{n} of \mathfrak{S}_{n}. We would like to construct a cellular resolution of the Alexander dual $I_{\mathcal{A}_{n}}^{[\mathbf{n}]}$ of the monomial ideal $I_{\mathcal{A}_{n}}$. First, we consider the cases for $n \leq 3$.

We see that $I_{\mathcal{A}_{1}}=\left\langle x_{1}\right\rangle$ and $I_{\mathcal{A}_{2}}=\left\langle x_{1} x_{2}^{2}\right\rangle$ are the monomial ideals in the polynomial rings $k\left[x_{1}\right]$ and $k\left[x_{1}, x_{2}\right]$, respectively. Clearly, Alexander duals $I_{\mathcal{A}_{1}}^{[(1)]}=\left\langle x_{1}\right\rangle, I_{\mathcal{A}_{2}}^{[(2,2)]}=$ $\left\langle x_{1}^{2}, x_{2}\right\rangle$ and, $I_{\mathcal{A}_{3}}^{[(3,3,3)]}=\left\langle x_{1}^{3}, x_{2}^{3}, x_{3}^{3}, x_{1} x_{2}^{2}, x_{2} x_{3}^{2}, x_{1}^{2} x_{3}, x_{1} x_{2} x_{3}\right\rangle$. The minimal resolutions of $I_{\mathcal{A}_{1}}^{[(1)]}$ and $I_{\mathcal{A}_{2}}^{[(2,2)]}$ are supported on a 0 -simplex and 1 -simplex, respectively. Further, the minimal resolution of $I_{\mathcal{A}_{3}}^{[(3,3,3)]}$ is supported on the labelled polyhedral complex shown in figure-1.

Fig. 1: Labelled polyhedral complex
Proposition 3.1. For $n \geq 4$, the minimal generators of the monomial ideals $I_{\mathcal{A}_{n}}^{[\mathbf{n}]}$ and $I_{\mathcal{A}_{n}^{e}}^{[\mathbf{n}]}$ are given by

$$
I_{\mathcal{A}_{n}}^{[\mathbf{n}]}=\left\langle\left(\prod_{i \in A} x_{i}\right)^{n-|A|+1}, \quad \mathbf{x}^{\mathbf{n}-\tau}: \emptyset \neq A \subseteq[n] ; \tau \notin \mathcal{A}_{n}\right\rangle,
$$

and

$$
I_{\mathcal{A}_{n}^{c}}^{[\mathbf{n}]}=\left\langle\left(\prod_{i \in A} x_{i}\right)^{n-|A|+1}, \quad \mathbf{x}^{\mathbf{n}-\tau}: \emptyset \neq A \subseteq[n] ; \tau \in \mathcal{A}_{n}\right\rangle .
$$

Proof. As $I_{\mathcal{A}_{n}} \subseteq I_{\mathfrak{S}_{n}}$, we see that $I_{\mathfrak{S}_{n}}^{[\mathbf{n}]} \subseteq I_{\mathcal{A}_{n}}^{[\mathbf{n}]}$. Clearly, $\left(\prod_{i \in A} x_{i}\right)^{n-|A|+1}$ is also a minimal generator of $I_{\mathcal{A}_{n}}^{[\mathbf{n}]}$. If $\tau \notin \mathcal{A}_{n}$, then $\mathbf{x}^{\mathbf{n}-\tau}=\prod_{j=1}^{n} x_{j}^{n-\sigma(j)}$ is a minimal generator of $I_{\mathcal{A}_{n}}^{[\mathbf{n}]}$ in view of Proposition 5.23 of [4], the second part is proved on the similar lines.
Corollary 3.1. For $n \geq 2$,

$$
\operatorname{dim}_{k}\left(\frac{R}{I_{\mathcal{A}_{n}}^{[n]}}\right)=\operatorname{dim}_{k}\left(\frac{R}{I_{\mathcal{A}_{n}^{d}}^{[\mathbf{n}]}}\right)=(n+1)^{n-1}-\frac{n!}{2} .
$$

Proof. As \mathcal{A}_{n} is a normal subgroup of \mathfrak{S}_{n}, we have $\operatorname{dim}_{k}\left(\frac{R}{I_{\mathcal{A}_{n}}^{[\mathbf{n}]}}\right)=\operatorname{dim}_{k}\left(\frac{R}{I_{\mathcal{A}_{n}^{己}}^{[\mathbf{[}]}}\right)$. Also, we recall that $I_{\mathfrak{S}_{n}}^{[\mathbf{n}]} \subseteq I_{\mathcal{A}_{n}}^{[\mathbf{n}]}$ and the standard monomials of $\frac{R}{I_{\mathfrak{S}_{n}}^{[\mathbf{n}]}}$ are of the form $\mathbf{x}^{\mathbf{p}}$ for ordinary parking functions \mathbf{p} of length n. In view of Proposition 3.1, we see that $\mathbf{x}^{\mathbf{p}}$ is not a standard monomial of $\frac{R}{I_{\mathcal{A}_{n}}^{[\mathbf{n}]}}$ if and only if $\mathbf{p}=\mathbf{n}-\tau$, for some $\tau \notin \mathcal{A}_{n}$. This completes the proof.

The Alexander dual $I_{\mathfrak{S}_{n}}^{[\mathbf{n}]}$ of the permutohedron ideal $I_{\mathfrak{S}_{n}}$ is a generic monomial ideal and hence its minimal resolution is the cellular resolution supported on its Scarf complex (see Theorem 6.13 of $[4]$). Since the Alexander dual $I_{\mathcal{A}_{n}}^{[\mathbf{n}]}$ is not a generic monomial ideal, construction of its minimal resolution is not straight forward. We now proceed to construct an explicit cellular resolution of the Alexander dual $I_{\mathcal{A}_{n}}^{[\mathbf{n}]}$ for $n \geq 4$. Let \mathbf{Y} be the simplicial complex obtained by modifying the first barycentric subdivision $\mathbf{B d}\left(\Delta_{n-1}\right)$ as described in the Introduction. Let $f_{i}(\mathbf{Y})$ be the number of i-faces of \mathbf{Y} and $S(n, k)$ be the Stirling number of the second kind.
Proposition 3.2. Let $n \geq 4$. Then

$$
f_{i}(\mathbf{Y})=(i+1)!S(n+1, i+2)+\binom{n}{i} \frac{n!}{2} ; \quad \text { for } 0 \leq i \leq n-3
$$

while $f_{n-2}(\mathbf{Y})=\binom{n+1}{2} \frac{n!}{2}$ and $f_{n-1}(\mathbf{Y})=\binom{n}{1} \frac{n!}{2}$.
Proof. Since, $f_{i}\left(\mathbf{B d}\left(\Delta_{n-1}\right)\right)=(i+1)!S(n+1, i+2)$, we need to show that the number of i-faces of \mathbf{Y} not in $\operatorname{Bd}\left(\Delta_{n-1}\right)$ is precisely $\binom{n}{i} \frac{n!}{2}$ for $0 \leq i \leq n-3$. Consider a facet $F=\left\langle A_{1}, \ldots, A_{n}\right\rangle$ of $\mathbf{B d}\left(\Delta_{n-1}\right)$ such that permutation $\sigma_{F} \notin \mathcal{A}_{n}$. Then centroid v_{F} is an extra vertex of \mathbf{Y} and $F_{i}=\left\langle v_{F}, A_{1}, \ldots, \widehat{A}_{i}, \ldots, A_{n}\right\rangle$ for $1 \leq i \leq n-1$ are the facets of \mathbf{Y} containing v_{F}. An i-face of \mathbf{Y} contained in any facets $F_{i}(1 \leq i \leq n)$, must contain the vertex v_{F}, otherwise it will be a face of $\mathbf{B d}\left(\Delta_{n-1}\right)$. Each such i-face of \mathbf{Y} is obtained by choosing i vertices out of A_{1}, \ldots, A_{n}. Thus the number of i-faces of \mathbf{Y} containing v_{F} is precisely $\binom{n}{i}$. Since there are exactly $\frac{n!}{2}$ vertices of the form v_{F}, we get the first part.

An n - 2 -face of \mathbf{Y} containing v_{F} is obtained by choosing $n-2$ vertices out of A_{1}, \ldots, A_{n}, but the $n-2$-face $\left\langle A_{1}, \ldots, A_{n-1}\right\rangle$ of $\mathbf{B d}\left(\Delta_{n-1}\right)$ is no longer a face of \mathbf{Y}. Thus

$$
f_{n-2}(\mathbf{Y})=(n-1)!S(n+1, n)-\frac{n!}{2}+\binom{n}{n-2} \frac{n!}{2}
$$

As $S(n+1, n)=\binom{n+1}{2}$, we see that $f_{n-2}(\mathbf{Y})=\binom{n+1}{2} \frac{n!}{2}$. Similarly, an $n-1$-face of \mathbf{Y} containing v_{F} is obtained by choosing $n-1$ vertices out of A_{1}, \ldots, A_{n} except $\left\{A_{1}, \ldots, A_{n-1}\right\}$. Also, the n-1-face $F=\left\langle A_{1}, \ldots, A_{n}\right\rangle$ of $\mathbf{B d}\left(\Delta_{n-1}\right)$ with $\sigma_{F} \notin \mathcal{A}_{n}$ is not a face of \mathbf{Y}. Since, there are $\frac{n!}{2}$ such facets F, we have

$$
f_{n-1}(\mathbf{Y})=n!S(n+1, n+1)-\frac{n!}{2}+\left[\binom{n}{n-1}-1\right] \frac{n!}{2}
$$

As $S(n+1, n+1)=1$, we have $f_{n-1}(\mathbf{Y})=n\left(\frac{n!}{2}\right)$.

The simplicial complex \mathbf{Y} is labelled. The monomial label on a vertex corresponding to a non-empty subset $A \subseteq[n]$ is $\left(\prod_{i \in A} x_{i}\right)^{n-|A|+1}$, while monomial label on a vertex of the form v_{F} for a facet F of $\mathbf{B d}\left(\Delta_{n-1}\right)$ with $\sigma_{F} \notin \mathcal{A}_{n}$ is $\mathbf{x}^{\mathbf{n}-\sigma_{F}}$. The monomial label $\mathbf{x}^{\alpha\left(F^{\prime}\right)}$ on a face F^{\prime} of \mathbf{Y} is the least common multiple of labels on the vertices of F^{\prime}. Clearly, the monomial ideal generated by the vertex labels of \mathbf{Y} is precisely the Alexander dual $I_{\mathcal{A}_{n}}^{[\mathbf{n}]}$. If the free complex $\mathbb{F}(\mathbf{Y})$ associated to the labelled simplicial complex (or polyhedral cell complex) \mathbf{Y} is exact, then we say that $\mathbb{F}(\mathbf{Y})$ is a cellular resolution of $I_{\mathcal{A}_{n}}^{[\mathbf{n}]}$ supported on \mathbf{Y} $[2,4]$.

Theorem 3.1. The free complex $\mathbb{F}(\mathbf{Y})$ is a cellular resolution of $I_{\mathcal{A}_{n}}^{[\mathbf{n}]}$ for $n \geq 4$.
Proof. We need to verify that for any $\mathbf{b} \in \mathbb{N}^{n}$, the subcomplexes $\mathbf{Y}_{\leq \mathbf{b}}$ are either empty or acyclic. Since $\mathbf{B d}\left(\Delta_{n-1}\right)_{\leq \mathbf{b}}$ is either empty or contractible, it can be easily verified that $\mathbf{Y}_{\leq \mathbf{b}}$ is also contractible, if non-empty.

The cellular resolution of $I_{\mathcal{A}_{n}}^{[\mathbf{n}]}$ supported on \mathbf{Y} is never minimal because there are faces $F^{\prime} \subsetneq F^{\prime \prime}$ of \mathbf{Y} such that monomial labels $\mathbf{x}^{\alpha\left(F^{\prime}\right)}=\mathbf{x}^{\alpha\left(F^{\prime \prime}\right)}$. Further, the i-th Betti number $\beta_{i}\left(I_{\mathcal{A}_{n}}^{[\mathbf{n}]}\right)=f_{i}(\mathbf{Y})$, provided monomial levels on all $i+1$-dimensional faces of \mathbf{Y} are different from monomial levels on their proper subfaces.

Corollary 3.2. For $n \geq 4$, the $i^{\text {th }} \operatorname{Betti}$ number $\beta_{i}\left(I_{\mathcal{A}_{n}}^{[\mathbf{n}]}\right)$ satisfies

$$
\beta_{i}\left(I_{\mathcal{A}_{n}}^{[\mathbf{n}]}\right) \leq f_{i}(\mathbf{Y}) \quad \text { for } 0 \leq i \leq n-1 .
$$

Proof. Since \mathbf{Y} supports a cellular resolution $\mathbb{F}(\mathbf{Y})$ of $I_{\mathcal{A}_{n}}^{[\mathbf{n}]}$, the minimal resolution of $I_{\mathcal{A}_{n}}^{[\mathbf{n}]}$ is contained in the cellular resolution. Thus, $\beta_{i}\left(I_{\mathcal{A}_{n}}^{[\mathbf{n}]}\right) \leq f_{i}(\mathbf{Y}) \forall i$.

Clearly, $\beta_{0}\left(I_{\mathcal{A}_{n}}^{[\mathbf{n}]}\right)=f_{0}(\mathbf{Y})$. It may be an interesting problem to determine the Betti numbers $\beta_{i}\left(I_{\mathcal{A}_{n}}^{[\mathbf{n}]}\right)$ for all $1 \leq i \leq n-1$.

Let \mathbf{X} be a subdivision of an $n-1$-simplex Δ_{n-1} obtained from the simplicial complex \mathbf{Y} by deleting all proper faces F such that $\mathbf{x}^{\alpha(F)}=\mathbf{x}^{\alpha\left(F^{\prime}\right)}$ for some face $F^{\prime} \supsetneq F$ of \mathbf{Y}. A face F of \mathbf{Y} with no deleted proper subfaces remains a face of \mathbf{X}. Further, if a deleted face F of \mathbf{Y} is a common maximal proper face of the faces F^{\prime} and $F^{\prime \prime}$ of \mathbf{Y}, then the faces F^{\prime} and $F^{\prime \prime}$ are merged along the common deleted face F. On merging faces of \mathbf{Y} along deleted common faces, we get the other faces of \mathbf{X}. Let $f_{i}(\mathbf{X})$ be the number of i-faces of \mathbf{X}.

Proposition 3.3. For $n \geq 4, f_{n-1}(\mathbf{X})=\frac{n!}{2}$. Also, for $n \geq 6$,

$$
f_{1}(\mathbf{X})=f_{1}(\mathbf{Y})=3^{n}+1-2^{n+1}+\frac{n(n!)}{2} .
$$

Proof. Consider a facet $F=\left\langle A_{1}, \ldots, A_{n}\right\rangle$ of $\mathbf{B d}\left(\Delta_{n-1}\right)$ such that $A_{1}=\{2\}$ and $A_{i}=[i]$ for $2 \leq i \leq n$. We see that the permutation σ_{F} is the transposition interchanging 1 and 2. Then all the facets of \mathbf{Y} containing v_{F} are of the form $F_{i}=\left\langle v_{F}, A_{1}, \ldots, \widehat{A}_{i}, \ldots, A_{n}\right\rangle$ for $1 \leq i \leq n-1$. The monomial label $\mathbf{x}^{\alpha\left(F_{i}\right)}$ is same as the label $\mathbf{x}^{\alpha\left(F_{i}^{\prime}\right)}$, where $F_{i}^{\prime}=F_{i}-v_{F}$ is the maximal subface of F_{i} not containing v_{F}. This shows that F_{i}^{\prime} is not a face of \mathbf{X} for all $i \leq i \leq n-1$. Hence, all the facets F_{i} of \mathbf{Y} are no longer faces of \mathbf{X}. Since, the Alternating group \mathcal{A}_{n} acts on \mathbf{Y}, the same holds for all facets G of \mathbf{Y} such that $\sigma_{G} \notin \mathcal{A}_{n}$. This shows that $f_{n-1}(\mathbf{X})=f_{n-1}(\mathbf{Y})-(n-1) \frac{n!}{2}=\frac{n!}{2}$. Now, we show that if $n \geq 6$, then both \mathbf{X} and \mathbf{Y} have the same edges. Again as above, it is enough to see that no edges contained in the facet $F_{i}(1 \leq i \leq n-1)$ get deleted, where $F=\left\langle A_{1}, \ldots, A_{n}\right\rangle$. If the edge $L_{i j}=\left\langle A_{i}, A_{j}\right\rangle$ gets deleted, then the monomial label on $L_{i j}$ is same as the label on the 2-face $\left\langle A_{i}, A_{j}, v_{F}\right\rangle$. This is not possible for $n \geq 6$. Since $S(n+1,3)=\frac{3^{n}+1}{2}-2^{n}$, the second part follows.

We see that $\beta_{1}\left(I_{\mathcal{A}_{n}}^{[\mathbf{n}]}\right)=f_{1}(\mathbf{Y})=3^{n}+1-2^{n+1}+\frac{n(n!)}{2}$. Also, we have already seen that $\beta_{n-1}\left(I_{\mathcal{A}_{n}}^{[\mathbf{n}]}\right)=\left|\mathcal{A}_{n}\right|=\frac{n!}{2}$.

Finally, for $n=4$ the subdivision \mathbf{X} of a 3 -simplex Δ_{3} is a labelled polyhedral cell complex and the cellular resolution supported on the polyhedral cell complex \mathbf{X} gives the minimal free resolution of $I_{\mathcal{A}_{4}}^{[4]}$.

For $n=4$, the simplicial complex \mathbf{Y} obtained by modifying the first barycentric subdivision of a 3 -simplex has $f_{0}(\mathbf{Y})=27, f_{1}(\mathbf{Y})=98, f_{2}(\mathbf{Y})=120, f_{3}(\mathbf{Y})=48$. The edges of \mathbf{Y} represented by a chain $\emptyset=A_{0} \subsetneq A_{1} \subsetneq A_{2}$ of subsets of [4] $=\{1,2,3,4\}$ are deleted if $\left(\left|A_{1}\right|,\left|A_{2}\right|\right)$ is either $(1,3)$, or $(2,3)$, or $(2,4)$. There are exactly 12 edges of first type, 12 edges of second type and 6 edges of third type. Thus all together these 30 edges get deleted and so $f_{1}(\mathbf{X})=98-30=68$. On deleting these edges from \mathbf{Y}, the 2 -faces containing these edges get merged. For an edge of first or second type, the two faces of the form $\left\langle A_{1}, A_{2},[4]\right\rangle$ or $\left\langle v_{F}, A_{1}, A_{2}\right\rangle$ get merged with another 2 -faces. There are exactly $2(12+12)=48$ such 2 faces. Now consider an edge $\left\langle A_{1}, A_{2}\right\rangle$ of the third type. A 2-face of \mathbf{Y} containing an edge of the third type is of the form either $\left\langle A, A_{1}, A_{2}=[4]\right\rangle$ with $\emptyset \neq A \subsetneq A_{1}$ or $\left\langle v_{F}, A_{1}, A_{2}=[4]\right\rangle$. Note that 2-faces of the form $\left\langle A_{1}, B, A_{2}=[4]\right\rangle$ with $A_{1} \subsetneq B \subsetneq A_{2}=[4]$ has already been counted. The number of these 2 -faces is $(2+1)(6)=18$. This shows that a total number of 2 -faces of \mathbf{Y} that get merged with another 2-faces is 66 . Thus $f_{2}(\mathbf{X})=120-66=54$. We have already seen that $f_{3}(\mathbf{X})=12$. The polyhedral cell complex \mathbf{X} is shown in figure-2(a), while one of its facet is described in the figure-2(b).

Every facet of \mathbf{X} is a 3 -dimensional polytope bounded by a pentagonal face, a quadrilateral face and five triangular faces as shown in figure-2(b). The polyhedral cell complex \mathbf{X} gives a nice subdivision of a regular tetrahedron.

References

[1] Bayer D., Peeva I. and Sturmfels B., Monomial resolutions, Mathematical Research Letters 5 (1998), 31-46.
[2] Bayer D. and Sturmfels B., Cellular resolution of monomial modules, Journal für die Reine und Angewandte Mathematik 502 (1998), 123-140.

Figure - 2(a)

Figure-2(b)
[3] Kumar A. and Kumar C., Certain variants of multipermutohedron ideals, Proc. Indian Acad. Sci.(Math Sci.) Vol.126, No.4, November 2016, 479-500.
[4] Miller E. and Sturmfels B., Combinatorial commutative algebra, Graduate Texts in Mathematics Vol 227, Springer 2004.
[5] Postnikov A. and Shapiro B., Trees, parking functions, syzygies, and deformation of Monomial ideals, Trans. Amer. Math. Soc. 356, (2004), 3109-3142.

