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Abstract

For n ≥ 1, let Sn be the symmetric group on [n] = {1, . . . , n}, R =
k[x1, . . . , xn] be the standard polynomial ring over a field k and xσ =∏n
i=1 x

σ(i)
i be a monomial in R for σ ∈ Sn. For any non-empty subset

T ⊆ Sn, IT = 〈xσ : σ ∈ T 〉 is a monomial ideal of R. We consider
the monomial ideal IG of R for a subgroup G of Sn. Many properties

of the monomial ideal IG and its Alexander dual I
[n]
G (with respect to

n = (n, . . . , n) ∈ Nn) are obtained. Let An be the Alternating subgroup

of Sn. A cellular resolution of the Alexander dual I
[n]
An

of IAn
supported

on a nice subdivision of an n− 1-simplex ∆n−1 is obtained by modifying
the first barycentric subdivision Bd(∆n−1) of the n− 1-simplex ∆n−1.

Subject class [2010]:05E40, 13D02
Keywords: Cellular resolutions; standard monomials; alternating subgroup; barycentric
subdivision.

1 Introduction

Let Sn be the symmetric group on [n] = {1, . . . , n} and R = k[x1, . . . , xn] be the standard

polynomial ring over a field k. The monomial ideal ISn =
〈
xσ =

∏n
i=1 x

σ(i)
i : σ ∈ Sn

〉
of R, called a permutohedron ideal, has many combinatorial properties. The convex hull
Pn = P (Sn) of n! points (σ(1), . . . , σ(n)) ∈ Rn; σ ∈ Sn is a (n− 1)-dimensional polytope
in Rn, called a permutohedron. The minimal resolution of the permutohedron ideal ISn is
the cellular resolution supported on the permutohedron Pn (see [1, 2]).

The Alexander dual I
[n]
Sn

of ISn with respect to n = (n, . . . , n) ∈ Nn is the monomial
ideal of R given by

I
[n]
Sn

=

〈(∏
i∈A

xi

)n−|A|+1

: ∅ 6= A ⊆ [n]

〉
.
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The minimal resolution of I
[n]
Sn

is the cellular resolution supported on the first barycentric

subdivision Bd(∆n−1) of an n− 1-simplex ∆n−1. Therefore, the ith Betti number βi(I
[n]
Sn

)

of I
[n]
Sn

is precisely, the number fi(Bd(∆n−1)) of i-dimensional faces (or i-faces) of the

simplicial complex Bd(∆n−1) (see [5]). We have

βi(I
[n]
Sn

) = βi+1

(
R

I
[n]
Sn

)
= fi(Bd(∆n−1)) = (i+ 1)!S(n+ 1, i+ 2),

where S(n, k) is number of k-partitions of [n], called a Stirling number of the second kind.
The standard monomials of R

I
[n]
Sn

correspond bijectively to the parking functions of length

n and dimk

(
R

I
[n]
Sn

)
= (n+ 1)n−1 [5]. By Cayley’s formula, the number of spanning trees of

the complete graph Kn+1 on [n+ 1] is precisely, (n+ 1)n−1. Thus the monomial ideal I
[n]
Sn

is called a tree ideal. For more on cellular resolutions and Alexander duals of monomial
ideals, we refer to [4].

Let G be a subgroup of Sn. In this paper, we have investigated homological properties

of the monomial ideals IG and its Alexander dual I
[n]
G . Let P(G) be the convex hull of

points (σ(1), . . . , σ(n)) ∈ Rn for σ ∈ G. Then P(G) is a polytope contained in the n − 1-
dimensional permutohedron Pn = P(Sn). Let fi(P(G)) be the number of i-faces of P(G).
We observed that the minimal free resolution of IG is the cellular resolution supported on
the polytope P(G) and the ith Betti number βi(IG) = fi(P(G)) for 0 ≤ i ≤ dim(P(G))
(Theorem 2.1).

Let ω ∈ Sn − G and Gω (or ωG) be the right (or left) coset of G in Sn determined
by ω. Since the polytope P(Gω) (or P(ωG)) is combinatorially equivalent to P(G), we
have βi(IGω) = β(IωG) = βi(IG) for 0 ≤ i ≤ dim(P(G)). We also consider the Alexander

dual I
[n]
G of IG with respect to n. The quotient R

I
[n]
G

is an Artinian k-algebra. Further,

dimk

(
R

I
[n]
G

)
= dimk

(
R

I
[n]
Gω

)
(Theorem 2.3). Thus, for a normal subgroup G of Sn and

ω ∈ Sn, we have (Corollary 2.2)

dimk

(
R

I
[n]
G

)
= dimk

(
R

I
[n]
Gω

)
= dimk

(
R

I
[n]
ωG

)
.

Finally, we construct a cellular resolution of the Alexander dual I
[n]
An

of the monomial
ideal IAn associated to the Alternating subgroup An of Sn. Let Acn = Sn −An be the set

of odd permutations of Sn. The minimal generators of the monomial ideals I
[n]
An

and I
[n]
Ac

n

are given in Proposition 3.1. We construct a simplicial complex Y by modifying the first
barycentric subdivision Bd(∆n−1) of the n − 1-simplex ∆n−1 as follows. Each facet F of
Bd(∆n−1) is given by a chain C of subsets of [n] of the form C : ∅ = A0 ( A1 ( A2 ( . . . (
An = [n], where |Ai| = i. We also say that the facet F given by the chain C is spanned
by vertices A1, . . . , An = [n] and write F = 〈A1, . . . , An〉. The facets of Bd(∆n−1) are in
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one-to-one correspondence with the permutations of [n]. In fact, if Ai −Ai−1 = {bi}, then
the permutation σF corresponding to the facet F = 〈A1, . . . , An〉 is given by σF (bi) = i
for 1 ≤ i ≤ n. If σF ∈ An, then the facet F of Bd(∆n−1) is also a facet of the simplicial
complex Y. If σF /∈ An, then the centroid vF of the n−2-face 〈A1, . . . , An−1〉 of the facet F
is a vertex added to the simplicial complex Y. Further, the extra vertex vF is joined to all
the vertices of the n− 1-dimensional facet F . Thus a facet F = 〈A1, . . . , An〉 of Bd(∆n−1)
such that σF /∈ An is subdivided into exactly n − 1 facets of Y. These n − 1-facets of Y

obtained by subdividing F are of the form Fi = 〈vF , A1, . . . , Âi, . . . , An〉 for 1 ≤ i ≤ n− 1,

where Âi indicates that the vertex Ai is deleted.
A vertex of Y corresponding to a non-empty subset A ⊆ [n] is labelled with the mono-

mial
(∏

i∈A xi
)n−|A|+1

, while the extra vertex corresponding to the centroid vF of the
n − 2-face 〈A1, . . . , An−1〉 of the facet F with σF /∈ An is labelled with the monomial

xn−σF =
∏n
j=1 x

n−σF (j)
j . Let fi(Y) be the number of i-faces of Y. Then we proved that

fi(Y) = (i+ 1)!S(n+ 1, i+ 2) +

(
n

i

)
n!

2
; for 0 ≤ i ≤ n− 3,

while fn−2(Y) =
(
n+1
2

)
n!
2 and fn−1(Y) =

(
n
1

)
n!
2 (Proposition 3.2).

The free complex associated to the labelled simplicial complex Y is a cellular resolution

of the monomial ideal I
[n]
An

for n ≥ 4 (Theorem 3.1). But the cellular resolution supported
on Y is non-minimal. For n = 4, by deleting appropriate faces of Y, we obtained a

labelled polyhedral cell complex X such that the minimal free resolution of I
[4]
A4

is the
cellular resolution supported on X.

2 Finite Groups and Monomial Ideals

Let G be a subgroup of the symmetric group Sn. We consider the monomial ideal
IG = 〈xσ : σ ∈ G〉 of the polynomial ring R = k[x1, . . . , xn] associated to the subgroup
G. We consider a polytope P(G) obtained by the convex hull of points (σ(1), . . . , σ(n)) ∈
Rn; σ ∈ G. As stated in the Introduction, P(G) is a polytope contained in the permu-
tohedron P(Sn). Let fi(P(G)) be the number of i-dimensional faces of P(G) and βi(IG)
be the ith Betti number of the monomial ideal IG. The polytope P(G) is naturally a
labelled polyhedral cell complex, with monomial label xσ on the vertex (σ(1), . . . , σ(n))

corresponding to σ ∈ G. The monomial label xα(F ) on a face F of P(G) is given by the
least common multiple (LCM) of labels on vertices of F .

It is well known that the minimal resolution of the permutohedron ideal ISn is the
cellular resolution supported on the permutohedron Pn (see [2]). Thus, we have βi(ISn) =
fi(Pn). We recall that an i− 1-face of the permutohedron Pn is represented by a chain of
subsets of [n] of the form ∅ = A0 ( A1 ( . . . ( Ai of length i (see [4]).

Theorem 2.1. The minimal free resolution of the monomial ideal IG is the cellular reso-
lution supported on the polytope P(G). In particular, ith Betti number βi(IG) of IG equals
fi(P(G)) for 0 ≤ i ≤ dim(P(G)).
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Proof. In view of Proposition 4.5 of [4], we need to show that the subcomplex P(G)≤b =

{F ∈ P(G) : xα(F ) divides xb} is either empty or acyclic. The subcomplex P(Sn)≤b,
if non-empty, is contractible (see [2]). On similar lines, it is easy to see that P(G)≤b ⊆
P(Sn)≤b is contractible, if nonempty. �

Remark 2.1. 1. The subgroup G = Sr×Ss ⊆ Sn with r+ s = n has been considered
in [3].

2. It would be an interesting problem to obtain a combinatorial description of the faces
of the polytope P(G) similar to that of permutohedron P(Sn).

Corollary 2.1. Let G = 〈σ〉 be a cyclic group generated by σ ∈ Sn.

1) Let σ be an r-cycle. Then ith Betti number βi(IG) =
(
r
i+1

)
for 0 ≤ i ≤ r − 1.

2) Let σ = σ1σ2 · · ·σt is a product of disjoint cycles of lengths r1, r2, . . . , rt, respectively.
Suppose that gcd(ri, rj) = 1 for all 1 ≤ i < j ≤ t, and Gj = 〈σj〉.

βi(IG) =
∑

(j1,j2,...,jt)∈Nt,
j1+...+jt=i

βj1(G1)βj2(G2) · · ·βjt(Gt).

Proof. 1. We see that the polytope P(G) is an r − 1-simplex spanned by the vertices σj

for 1 ≤ j ≤ r. Clearly,

βi(IG) = fi(P(G)) =

(
r

i+ 1

)
.

2. In this case, we see that the polytope P(G) is the product P(G1)× · · · ×P(Gt), where
P(Gj) is an rj − 1-simplex for 1 ≤ j ≤ t. Now

fi(P(G)) =
∑

(j1,...,jt)∈Nt,
j1+...+jt=i

fj1(P(G1)) · · · fjt(P(Gt)).

This completes the proof. �

Let ω ∈ Sn−G and let Gω (or ωG) be the right (or left) coset of G in Sn determined by
ω. The monomial ideal IGω = 〈xσω : σ ∈ G〉 (or IωG = 〈xωσ : σ ∈ G〉) has the same Betti
numbers as IG. In fact, the polytopes P(Gω) and P(G) are combinatorially equivalent and
the minimal resolution of IGω is the cellular resolution supported on P (Gω).

We consider the Alexander dual I
[n]
G of the monomial ideal IG with respect to n =

(n, . . . , n) ∈ Nn. Let b = (b1, . . . , bn) ∈ Nn such that b � n(i.e. bi ≤ n; ∀i). Then b is a

maximal vector such that xb /∈ IG if and only if xn−b ∈ I [n]G is a minimal generator (see
Proposition 5.23 of [4]).
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Theorem 2.2. The Alexander dual I
[n]
G is a monomial ideal of R such that the quotient

R

I
[n]
G

is an Artinian k-algebra. Further, the group G acts on the minimal generators of I
[n]
G .

Proof. Let di = min{σ(i) : σ ∈ G} for 1 ≤ i ≤ n. Consider bi = (n, . . . , di− 1, . . . , n) ∈ Nn
(i.e., ith place di − 1 and elsewhere n). Clearly, bi is maximal with xbi /∈ IG. Thus,

xn−di+1
i = xn−bi ∈ I

[n]
G is a minimal generator. This shows that R

I
[n]
G

is Artinian. Let

xc = xc11 · · ·xcnn be a minimal generator of I
[n]
G . We shall show that σxc = xc1σ(1) · · ·x

cn
σ(n)

for σ ∈ G, is also a minimal generator of I
[n]
G . As xn−c /∈ I [n]G if and only if σxn−c /∈ I [n]G ,

the second assertion follows. �

The quotient ring R

I
[n]
G

is Artinian. Thus there are only finitely many monomials xb =

xb11 · · ·xbnn of R such that xb /∈ I [n]G . Such monomials xb are called standard monomials of
R

I
[n]
G

. In fact, the set of standard monomials forms a k-basis of the finite dimensional vector

space R

I
[n]
G

.

Theorem 2.3. For any ω ∈ Sn −G, we have dimk

(
R

I
[n]
G

)
= dimk

(
R

I
[n]
Gω

)
.

Proof. We have IG = 〈xσ : σ ∈ G〉 and IGω = 〈xσω : σ ∈ G〉. Now,

xσω =
n∏
i=1

x
σ(ω(i))
i =

n∏
j=1

x
σ(j)
ω−1(j)

=
n∏
j=1

y
σ(j)
j = yσ,

where yj = xω−1(j). Thus the monomial ideal IGω coincides with IG on changing variable
xω−1(j) with xj for all 1 ≤ j ≤ n. Also, under the same permutation of variables, the

Alexander dual I
[n]
Gω will coincide with Alexander dual I

[n]
G . Therefore, the number of

standard monomials of R

I
[n]
G

and R

I
[n]
Gω

are the same. �

The number of standard monomials of R

I
[n]
ωG

need not equal dimk

(
R

I
[n]
G

)
.

Let σ be a 3-cycle in S4 given by σ = 2314 in word notation. Let G = 〈σ〉 be the cyclic

group of order 3 generated by σ. Choose ω = 2431 ∈ S4. Then Alexander duals I
[4]
G

and I
[4]
ωG are given by

I
[4]
G = 〈x41, x42, x43, x4, x21x32, x31x23, x22x33, x21x22x23〉,

and
I
[4]
ωG = 〈x31, x32, x33, x44, x21x2, x1x23, x22x3, x1x2x3〉.

It can be easily checked that dimk

(
R

I
[4]
G

)
= 44, while dimk

(
R

I
[4]
ωG

)
= 52.
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Corollary 2.2. Let G be a normal subgroup of Sn and ω ∈ Sn. Then

dimk

(
R

I
[n]
G

)
= dimk

(
R

I
[n]
Gω

)
= dimk

(
R

I
[n]
ωG

)
.

Proof. For a normal subgroup G of Sn, ωG = Gω for all ω ∈ Sn. In view of Theorem 2.3,
we are through. �

It is interesting to note that the top Betti number βn−1

(
I
[n]
G

)
of the Alexander dual

I
[n]
G gives the order |G| of the subgroup G.

Proposition 2.1. Let G be a subgroup of Sn. Then βn−1

(
I
[n]
G

)
= |G|.

Proof. Let b = (b1, . . . , bn) ∈ Nn. Then (n− 1)th Betti number βn−1,b

(
I
[n]
G

)
of I

[n]
G in mul-

tidegree b is given by βn−1,b

(
I
[n]
G

)
= dimk H̃n−2

(
Kb

(
I
[n]
G

)
; k
)
6= 0, where Kb

(
I
[n]
G

)
={

square− free τ ⊆ [n] : xb−τ ∈ I [n]G

}
is the upper Koszul simplicial complex of I

[n]
G in degree

b (see [4]). SinceKb
(
I
[n]
G

)
is a subcomplex of the n−1-simplex ∆n−1, H̃n−2

(
Kb

(
I
[n]
G

)
; k
)
6=

0 if and only if Kb
(
I
[n]
G

)
= ∂∆n−1 is the boundary complex of n− 1-simplex ∆n−1. This

shows that [n] /∈ Kb
(
I
[n]
G

)
and for every A ( [n], A ∈ Kb

(
I
[n]
G

)
. Thus, b−(1, 1, . . . , 1) � n

is maximal with xb−(1,1,...,1) /∈ I [n]G . Equivalently, xn+1−b ∈
(
I
[n]
G

)[n]
= IG is a minimal

generator. Thus, βn−1,b

(
I
[n]
G

)
6= 0 if and only if b = n + 1 − σ for some σ ∈ G. As,

βn−1,n+1−σ(I
[n]
G ) = 1 for every σ ∈ G, we have βn−1

(
I
[n]
G

)
= |G|. �

Remark 2.2. 1. Proposition 2.1 can also be deduced from a general duality theorem
for Betti numbers (see Theorem 5.48 of [4]).

2. If the minimal resolution of I
[n]
G is the cellular resolution supported on an n − 1-

dimensional Polyhedral cell complex P, then G acts on P. In particular, G acts on
the facets of P freely and transitively. Hence, fn−1(P) = |G|.

3 Cellular resolution of IAn

In this section, we consider the alternating subgroup An of Sn. We would like to construct

a cellular resolution of the Alexander dual I
[n]
An

of the monomial ideal IAn . First, we consider
the cases for n ≤ 3.
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We see that IA1 = 〈x1〉 and IA2 = 〈x1x22〉 are the monomial ideals in the polynomial

rings k[x1] and k[x1, x2], respectively. Clearly, Alexander duals I
[(1)]
A1

= 〈x1〉, I [(2,2)]A2
=

〈x21, x2〉 and, I
[(3,3,3)]
A3

= 〈x31, x32, x33, x1x22, x2x23, x21x3, x1x2x3〉. The minimal resolutions

of I
[(1)]
A1

and I
[(2,2)]
A2

are supported on a 0-simplex and 1-simplex, respectively. Further,

the minimal resolution of I
[(3,3,3)]
A3

is supported on the labelled polyhedral complex shown
in figure-1.

Fig. 1: Labelled polyhedral complex

Proposition 3.1. For n ≥ 4, the minimal generators of the monomial ideals I
[n]
An

and I
[n]
Ac

n

are given by

I
[n]
An

=

〈(∏
i∈A

xi

)n−|A|+1

, xn−τ : ∅ 6= A ⊆ [n]; τ /∈ An

〉
,

and

I
[n]
Ac

n
=

〈(∏
i∈A

xi

)n−|A|+1

, xn−τ : ∅ 6= A ⊆ [n]; τ ∈ An

〉
.

Proof. As IAn ⊆ ISn , we see that I
[n]
Sn
⊆ I

[n]
An

. Clearly,
(∏

i∈A xi
)n−|A|+1

is also a minimal

generator of I
[n]
An

. If τ /∈ An, then xn−τ =
∏n
j=1 x

n−σ(j)
j is a minimal generator of I

[n]
An

in

view of Proposition 5.23 of [4], the second part is proved on the similar lines. �

Corollary 3.1. For n ≥ 2,

dimk

(
R

I
[n]
An

)
= dimk

 R

I
[n]
Ac

n

 = (n+ 1)n−1 − n!

2
.
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Proof. As An is a normal subgroup of Sn, we have dimk

(
R

I
[n]
An

)
= dimk

(
R

I
[n]

Ac
n

)
. Also, we

recall that I
[n]
Sn
⊆ I

[n]
An

and the standard monomials of R

I
[n]
Sn

are of the form xp for ordinary

parking functions p of length n. In view of Proposition 3.1, we see that xp is not a standard
monomial of R

I
[n]
An

if and only if p = n− τ , for some τ /∈ An. This completes the proof.

�

The Alexander dual I
[n]
Sn

of the permutohedron ideal ISn is a generic monomial ideal
and hence its minimal resolution is the cellular resolution supported on its Scarf complex

(see Theorem 6.13 of [4]). Since the Alexander dual I
[n]
An

is not a generic monomial ideal,
construction of its minimal resolution is not straight forward. We now proceed to construct

an explicit cellular resolution of the Alexander dual I
[n]
An

for n ≥ 4. Let Y be the simplicial
complex obtained by modifying the first barycentric subdivision Bd(∆n−1) as described
in the Introduction. Let fi(Y) be the number of i-faces of Y and S(n, k) be the Stirling
number of the second kind.

Proposition 3.2. Let n ≥ 4. Then

fi(Y) = (i+ 1)!S(n+ 1, i+ 2) +

(
n

i

)
n!

2
; for 0 ≤ i ≤ n− 3,

while fn−2(Y) =
(
n+1
2

)
n!
2 and fn−1(Y) =

(
n
1

)
n!
2 .

Proof. Since, fi(Bd(∆n−1)) = (i + 1)!S(n + 1, i + 2), we need to show that the number
of i-faces of Y not in Bd(∆n−1) is precisely

(
n
i

)
n!
2 for 0 ≤ i ≤ n − 3. Consider a facet

F = 〈A1, . . . , An〉 of Bd(∆n−1) such that permutation σF /∈ An. Then centroid vF is an

extra vertex of Y and Fi = 〈vF , A1, . . . , Âi, . . . , An〉 for 1 ≤ i ≤ n − 1 are the facets of Y
containing vF . An i-face of Y contained in any facets Fi (1 ≤ i ≤ n), must contain the
vertex vF , otherwise it will be a face of Bd(∆n−1). Each such i-face of Y is obtained by
choosing i vertices out of A1, . . . , An. Thus the number of i-faces of Y containing vF is
precisely

(
n
i

)
. Since there are exactly n!

2 vertices of the form vF , we get the first part.
An n−2-face of Y containing vF is obtained by choosing n−2 vertices out of A1, . . . , An,

but the n− 2-face 〈A1, . . . , An−1〉 of Bd(∆n−1) is no longer a face of Y. Thus

fn−2(Y) = (n− 1)!S(n+ 1, n)− n!

2
+

(
n

n− 2

)
n!

2
.

As S(n+ 1, n) =
(
n+1
2

)
, we see that fn−2(Y) =

(
n+1
2

)
n!
2 . Similarly, an n− 1-face of Y con-

taining vF is obtained by choosing n− 1 vertices out of A1, . . . , An except {A1, . . . , An−1}.
Also, the n−1-face F = 〈A1, . . . , An〉 of Bd(∆n−1) with σF /∈ An is not a face of Y. Since,
there are n!

2 such facets F , we have

fn−1(Y) = n!S(n+ 1, n+ 1)− n!

2
+

[(
n

n− 1

)
− 1

]
n!

2
.

As S(n+ 1, n+ 1) = 1, we have fn−1(Y) = n
(
n!
2

)
. �
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The simplicial complex Y is labelled. The monomial label on a vertex corresponding

to a non-empty subset A ⊆ [n] is
(∏

i∈A xi
)n−|A|+1

, while monomial label on a vertex of

the form vF for a facet F of Bd(∆n−1) with σF /∈ An is xn−σF . The monomial label xα(F
′)

on a face F ′ of Y is the least common multiple of labels on the vertices of F ′. Clearly, the

monomial ideal generated by the vertex labels of Y is precisely the Alexander dual I
[n]
An

.
If the free complex F(Y) associated to the labelled simplicial complex (or polyhedral cell

complex) Y is exact, then we say that F(Y) is a cellular resolution of I
[n]
An

supported on Y
[2, 4].

Theorem 3.1. The free complex F(Y) is a cellular resolution of I
[n]
An

for n ≥ 4.

Proof. We need to verify that for any b ∈ Nn, the subcomplexes Y≤b are either empty or
acyclic. Since Bd(∆n−1)≤b is either empty or contractible, it can be easily verified that
Y≤b is also contractible, if non-empty. �

The cellular resolution of I
[n]
An

supported on Y is never minimal because there are faces

F ′ ( F ′′ of Y such that monomial labels xα(F
′) = xα(F

′′). Further, the i-th Betti number

βi(I
[n]
An

) = fi(Y), provided monomial levels on all i+ 1-dimensional faces of Y are different
from monomial levels on their proper subfaces.

Corollary 3.2. For n ≥ 4, the ith Betti number βi(I
[n]
An

) satisfies

βi(I
[n]
An

) ≤ fi(Y) for 0 ≤ i ≤ n− 1.

Proof. Since Y supports a cellular resolution F(Y) of I
[n]
An

, the minimal resolution of I
[n]
An

is contained in the cellular resolution. Thus, βi(I
[n]
An

) ≤ fi(Y) ∀i. �

Clearly, β0(I
[n]
An

) = f0(Y). It may be an interesting problem to determine the Betti

numbers βi(I
[n]
An

) for all 1 ≤ i ≤ n− 1.
Let X be a subdivision of an n− 1-simplex ∆n−1 obtained from the simplicial complex

Y by deleting all proper faces F such that xα(F ) = xα(F
′) for some face F ′ ) F of Y. A

face F of Y with no deleted proper subfaces remains a face of X. Further, if a deleted face
F of Y is a common maximal proper face of the faces F ′ and F ′′ of Y, then the faces F ′

and F ′′ are merged along the common deleted face F . On merging faces of Y along deleted
common faces, we get the other faces of X. Let fi(X) be the number of i-faces of X.

Proposition 3.3. For n ≥ 4, fn−1(X) = n!
2 . Also, for n ≥ 6,

f1(X) = f1(Y) = 3n + 1− 2n+1 +
n(n!)

2
.
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Proof. Consider a facet F = 〈A1, . . . , An〉 of Bd(∆n−1) such that A1 = {2} and Ai = [i]
for 2 ≤ i ≤ n. We see that the permutation σF is the transposition interchanging 1 and

2. Then all the facets of Y containing vF are of the form Fi = 〈vF , A1, . . . , Âi, . . . , An〉 for

1 ≤ i ≤ n−1. The monomial label xα(Fi) is same as the label xα(F
′
i ), where F ′i = Fi−vF is

the maximal subface of Fi not containing vF . This shows that F ′i is not a face of X for all
i ≤ i ≤ n−1. Hence, all the facets Fi of Y are no longer faces of X. Since, the Alternating
group An acts on Y, the same holds for all facets G of Y such that σG /∈ An. This shows
that fn−1(X) = fn−1(Y)− (n− 1)n!2 = n!

2 . Now, we show that if n ≥ 6, then both X and
Y have the same edges. Again as above, it is enough to see that no edges contained in the
facet Fi (1 ≤ i ≤ n − 1) get deleted, where F = 〈A1, . . . , An〉. If the edge Lij = 〈Ai, Aj〉
gets deleted, then the monomial label on Lij is same as the label on the 2-face 〈Ai, Aj , vF 〉.
This is not possible for n ≥ 6. Since S(n + 1, 3) = 3n+1

2 − 2n, the second part follows.
�

We see that β1(I
[n]
An

) = f1(Y) = 3n + 1− 2n+1 + n(n!)
2 . Also, we have already seen that

βn−1(I
[n]
An

) = |An| = n!
2 .

Finally, for n = 4 the subdivision X of a 3-simplex ∆3 is a labelled polyhedral cell
complex and the cellular resolution supported on the polyhedral cell complex X gives the

minimal free resolution of I
[4]
A4

.

For n = 4, the simplicial complex Y obtained by modifying the first barycentric sub-
division of a 3-simplex has f0(Y) = 27, f1(Y) = 98, f2(Y) = 120, f3(Y) = 48. The edges
of Y represented by a chain ∅ = A0 ( A1 ( A2 of subsets of [4] = {1, 2, 3, 4} are deleted if
(|A1|, |A2|) is either (1, 3), or (2, 3), or (2, 4). There are exactly 12 edges of first type, 12
edges of second type and 6 edges of third type. Thus all together these 30 edges get deleted
and so f1(X) = 98−30 = 68. On deleting these edges from Y, the 2-faces containing these
edges get merged. For an edge of first or second type, the two faces of the form 〈A1, A2, [4]〉
or 〈vF , A1, A2〉 get merged with another 2-faces. There are exactly 2(12 + 12) = 48 such 2-
faces. Now consider an edge 〈A1, A2〉 of the third type. A 2-face of Y containing an edge of
the third type is of the form either 〈A,A1, A2 = [4]〉 with ∅ 6= A ( A1 or 〈vF , A1, A2 = [4]〉.
Note that 2-faces of the form 〈A1, B,A2 = [4]〉 with A1 ( B ( A2 = [4] has already been
counted. The number of these 2-faces is (2+1)(6) = 18. This shows that a total number of
2-faces of Y that get merged with another 2-faces is 66. Thus f2(X) = 120− 66 = 54. We
have already seen that f3(X) = 12. The polyhedral cell complex X is shown in figure-2(a),
while one of its facet is described in the figure-2(b).

Every facet of X is a 3-dimensional polytope bounded by a pentagonal face, a quadri-
lateral face and five triangular faces as shown in figure-2(b). The polyhedral cell complex
X gives a nice subdivision of a regular tetrahedron.
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