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Abstract

This paper is based on existance of coupled fixed point on Modular
space or weak normed linear spaces. In this space we have generalized
Branciari integral contraction to get coupled fixed point.

Subject Classification: 47H09, 47H10, 54H25.

Keywords:Coupled fixed Point, Integral contraction, Modular space.

1 Introduction

In 1950 Naknol8] introduced modular space by generalizing normed linear space. In 1959
Musielak[7] and Orlic redefined it. Latter some authors extended clasical Banach contrac-
tion principle in this space to get fixed point results. The present paper we have generalized
Branciari integral contraction in this space to get coupled fixed point.

Theorem 1.1. (Branciari integral contraction) Let (X,d) be a complete metric space,
f be a map on X satisfying,

d(f(x),f(y)) d(z,y)
(1.1) / p(t)dt < k:/ o(t)dt,
0 0

forall z,y € X, for k € (0,1), then f has a fized point in X.

The function ¢(t) used by Branciari integral contraction has the following properties:
(i) ¢(t) is Lebesgue integrable and summable on each compact subset of R,
(ii) [y @(t)dt > 0, for each r > 0,
(iii) If (rn) be a +ve sequence with lim 7, = a, then lim [;" ¢(t)dt = [ ¢(t)dt,
(iv) If () be a +ve sequence with lim r,, = 0, then lim [;™ ¢(t)dt = 0.

Definition 1 (8). Let X be a arbitrary vector space, R be a map on X to [0, 00| satisfying:
(i) R(x) =0 iff z =0,
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(i1) R(ax) = R(x), for all z € X, any scalar a with |a| =1,

(i1i) R(azx + by) < R(z) + R(y), for all x,y € X, for all scalar a,b with a +b =1 and
a,b>0.

Then R is called modular and Xg s called modular space.

Theorem 1.2 (8). Let X be a modular space and (x,,) be a sequence in Xpr, then we
have the following:
(i) (zyn) converges to x, if R(xy, —x) converges to 0 as n tends to co.
(i) (zy,) is Cauchy, if R(xzy, — xm,) converges to 0 as n tends to oo,
(iii) X is complete, if every Cauchy sequence is convergent in Xpg.
(iv) B a subset of Xg, is called closed, if for any sequence (xy,) converging to x, v € B.
(v) B a subset of Xg, is called bounded, if for all x,y € B sup R(x —y) < 0.
(vi) R is said to have Fatou property, if R(x —y) < liminf R(z, — yn).
(vii) R is called to satisfy Ao condition, if R(2xy,) converges to 0 whenever R(x,) converges
to 0.

2 Main result

Theorem 2.1. Let Xg be a modular space satisfying No condition and c,l,d be positive
numbers with é + é =1 and ¢(t) be integrand function in Branciari integral contraction.
Suppose f be a map from Xr X Xgr to Xg satisfying the following properties:

RO ()~ (F ) Ril(z—u)
/ ¢@ﬁ§a/ o(t)dt
0

0
and
/R(C(f(y,r) —(f(v,u))

R(l(y—v))
o(t)dt < a/ o(t)dt, for all x,y,u,v € X and some a € (0,1),
0 0

then f has a coupled fized point in Xg.

Proof: Let (x9,yo) be a arbitrary point of Xg x Xpg.
Define zp11 = f(Tn, yn) and yny1 = f(Yn, Tn).

Now
R(l($n+1_$n)) R(£C($n+1—$n))
/ o(t)dt = / o(t)dt
0 0

R(c(f(zn,yn)—f(®n—1,yn—1)))
<),

< o(t)dt
0
R(l(f($n711yn71)_f(33n727yn72)))
< a/ o(t)dt
0
R(Z(f(n—1,yn—1)—f(n—2,yn—2))
:a/ \o(t)dt
0
R(C(f(xnfl7yn71)_f(mn72yyn72)))
g/ $(t)dt < ...a" A,
0
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where
R(I((z1,91)—(%0,%0)))
A= / o(t)dt.
0

Taking limt as n tends to oo we have
lim a"A =0
R(l(Znt1—7n))
= lim / S(t)dt = 0
0
= limR(l(xp41 — xy)) = 0.

Now we have to show that (z,,11) is a Cauchy sequence with respect to R.

Suppose (z,+1) is not a Cauchy sequence with respect to modular metric, then there exists
€ > 0 such that we have two sequences of integer m(s) and n(s) such that R(I(x,) —
Tp(s))) = € with n(s) > m(s) > s and n(s) should be least positive integer for which the
above inequality happens otherwise

R(C(xm(s) - xn(s)—l)) <e

Now
R(U@m(s)+1—Tn(s)+1))
/ o(t)d
0
R(l(f(wm(s)’ym(s))_f(l'n(s)7xn(s)))
— / (t)dt
0
R(l(xm(s)fl_xn(s)fl))
<a / o(t)dt.
0
Now

R(l(xm(s)fl - xn(s)fl))
= R(l(xm(s)—l = Tn(s) T Tm(s) — In(s)—l))

dl cl
- R(E(xm(s)—l - xm(s)) + ;(xm(s) - xn(s)—l))

< R(dl(xm(s)—l - wm(s))) + R(C(xm(s) - xn(s)—l))'
By using A, condition and limit as s tends to oo, we get

Hm R(dL(2(5)-1 — Tm(s))) = 0.
= UmR((Tp(s)—1 — Tn(s)-1)) < €.
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Now

R(l($m(5),1—$n(s>,1))
lim / B(t)dt
0
R(e)
< / o(t)dt
0
R(l(xm(s)_xn(s)))
< / ¢(t)dt
0

R(l(xm(s)—lfmn(s)—l))
<a / o(t)dt
0

R(e) R(e)
;x/o gb(t)dtga/o o(t)dt

=1<a,

which is a contradiction. Hence (z,,) is a Cauchy sequence. Since X is complete we have
a point x € X such that (x,) converges to .
Now

o(t)dt
R(cl/c(f(xn+1,Ynt1)—f(z,y))
= lim/
0

RO(f(Tnt1:Yn+1)—F(2,9))
lim/
0

o(t)dt
R(e(za—))
< lim a /0 (1))

R(c(an—2))
= lim / o(t)dt =0,
0

= (z,,) converges to f(x,y).

Since the limit is unique f(z,y) = z. In a similar way we can prove that f(y,z) = v.
Hence (z,y) is a coupled fixed point of f.

Our next result is following.

Theorem 2.2. Let Xg be a modular space satisfying No condition and c,l,d be positive
numbers such that é—l—% = 1 and ¢(t) be integrand function of Branciari integral contraction.
Suppose f be a map from Xr X Xgr to Xg satisfying the following properties:

R(e(T (2,y)—(T (u,v)) R(l(z—u)) R(l(y—v))

/ S(t)dt < a / S(t)dt + b / o(t)dt
0 0

0
with

lim[(ﬁ) a"k + <T> a" Yok + -+ (Z) b'k] =0
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where

R(l(xl—xo) R(l(y1—y0)
k= maw{/ <b(t)dt,/ o(t)dt}
0 0

defined in the proof of Theorem 2.1, then f has a coupled fixed point.

Proof: Let (z,,) and (y,) be two sequences defined in Theorem 2.1
Now we claim that

< n n—1 . n
/0 o(t)dt < <O>a k—i—<1>a b + +<n>b
R((yn+1—yn)
/ o(t)dt < (”) a"k + <”> a1k 4 -+ (”) b
0 0 1 n

We have to show it by method of induction. Suppose p,, is a statement which stands for

R(c(xn+1—2n) n n n
< n n—1 L. n
/O gb(t)dt_(o)a k:~l—<1>a bl + +<n>b
R(U(yn+1—yn)
/ o(t)dt < <n> a"k + (n) a" k44 (n) b,
0 0 1 n

Suppose n = 1 then

R(c(z2—21)
/ B(t)dt
0

R(l(l‘l—:ﬂo) R(l(yl_yo)
< a/ ¢(t)dt+b/ o(t)dt
0 0
< ak + bk

and

and

So it is true for p = 1. . o
Suppose p,, is true for some n, we wish to show that it is true for n + 1.

Now
R(c(znt2—Tn+1)
/ S(1)dt
0

R((zny1—7n) R(l(yn+1—yn)
< a/ o(t)dt + b/ o(t)dt
0 0
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R Cl/C Tp+1— Zn) R(Cl/c(y'rH»l*yn)
—a / S(t)dt +b / S(1)dt
0 0

R(c(zn—n-1) R(c(yn—yn—1)
a/ )dt+b/ o(t)dt
0 0

§a(< ) (71’) nlpk 4 .. ( )kb”)+b(<0> "k + <?)an—1bk+-~-+ (Z)kb")
_ (”gl>an+1k+ (”J{ 1>anbk+-~-+ <Zj: Db”*lk.

Similarly we can show

R((yn+2—yn+1)
/ (1) dt
0

R(ck(ynta—yny1)
< / S(t)dt
0

1 1 |
< <"+ )a”+1k+<"+ >a"bk+-~-+<n+ )kb"“.
0 1 n—+1

Hence it is true for n + 1. Now take limit as n tends to co in above inequality, we get

R(l(zn41—2n)
lim/ o(t)dt =0
0

= limR(l(xpy1 — xn) = 0.

IN

Now, we claim that (x,) is a Cauchy sequence. Suppose it is not cauchy, then there exists
€ > 0 such that we have two sequences m(s) and n(s) such that

R(l(wm(s) - xn(s))) > €
with
n(s) > m(s) > s and n(s) be the least +ve integer that the above inequality happens
otherwise

R(c(Tpn(s) = Tn(s)-1)) < €
Now
R(U(Zm(s)—1 ﬂfn(s)—1))
= R(l ( Trn(s)=1 = Tm(s) T Tm(s) = Tn(s)=1))

cl

= ( ( Tm(s)—1 — m(s)) + z(xm(s) - xn(s)fl))
< R( ( Tm(s)—1 — m(s))) + R(C(xm(s) - xn(s)fl))'
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Applying Ay condition and limit as s tends to oo, we get
limR(dl(T (51 — T(s))) = 0.
Then we have
imR(U(Tm(s)-1 = Tn(s)-1)) < €
Similarly we can show
R(I(Ym(s)—1 = Yn(s)—1)) < €.

Now

R(l(xm(s)fl_xn(s)fl))

(1) dt
0
R(e)
< / o(t)dt
0
< / o(t)dt
0
R(%(xm(s)fxn(s)))
- / (1) dt
0
R(c(%)(xm(s)_xn(s)))
_ / S(1)dt
0
R(c(@pn(s)=Tn(s)))
< / o(t)dt
0
R(l($m(s)71_$n(s)fl)) R(l(ym(s)fl_yn(s)fl))
<a / d(t)dt + b / o(t)dt
0 0
R(e) R(e) R(e) R(e)
=>/ o(t)dt < a/ o(t)dt < a/ ¢(t)+b/ o(t)
0 0 0 0
=1<a+b,

by contradiction, Hence (z,) is a Cauchy sequence,i.e., (z,) converges to some z € X.
Similarly we can show that (y,) converges to some y € X.

Next we have to show that (z,y) is a coupled fixed point of f.
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Now

o(t)dt
R(%(f(l’n+17yn+l)_f(mvy))
= lim/
0

R(l(f(anrl 7yn+1)*f($’y))
lim/
0

o(t)dt
R(c(zn—1)) R(c(yn—v))
<lim a/ p(t)dt+b lim/ o(t)dt
0 0

R(c(zn—1)) R(e(yn—y))
= lim a/ o(t)dt) +b lim/ o(t)dt) = 0.
0 0

Using Ay condition, we obtain (z,) converges to f(z,y). Since the limit is unique there-

fore, f(x,y) = x. In a similar way, we can prove f(y,x) = y. Hence (z,y) is a coupled
fixed point of f.
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