Maximal Numerical Range of Composition Operators on ℓ^2

Gyan Prakash Tripathi

Department of Mathematics, SGR PG College, Dobhi, Jaunpur gptbhu@gmail.com

Abstract

In this paper we obtain precisely when zero belongs to maximal numerical range of composition operators on ℓ^2 . By using this result we characterize the norm attainability of derivations on $B(\ell^2)$.

Subject Classification: 47B33, 47B47.

Keywords:maximal numerical range, composition operators, elementary operators, norm, derivations.

1 Introduction

Let ℓ^2 be the Hilbert space of all square summable sequences of complex numbers under standard inner product on it and be a function on \mathbb{N} into itself. We denote by n, characteristic function of n. Let $A_n = \phi^{-1}(n)$ and let \overline{A}_n denote the number of elements in A_n . Now we state the following result, which characterize the functions ϕ on \mathbb{N} into itself which induce composition operators on ℓ^2 .

Theorem 1.1. [10] A necessary and sufficient condition that a function ϕ on \mathbb{N} into itself induces a composition operator on ℓ^2 is the set $\{\overline{A}_n : n \in \mathbb{N}\}$ is bounded.

A composition operator on ℓ^2 has two representations, which are the following:

$$C_{\phi}(f) = \sum_{j=1}^{\infty} f(\phi(j))\chi_j$$
$$= \sum_{j=1}^{\infty} f(j)\chi_{\phi^{-1}(j)}, \quad \text{where } f = \sum_{j=1}^{\infty} f(j)\chi_j \in \ell^2.$$

The adjoint of C_{ϕ} is represented by $C^*_{\phi}(f) = \sum_{j=1}^{\infty} f(j) \chi_{\phi(j)}$

Theorem 1.2. Let C_{ϕ} be a composition operator on ℓ^2 then (i) range of C_{ϕ} is always closed. (ii) norm of C_{ϕ} is given by

$$||C_{\phi}| = \sqrt{N}, where \ N = \max\{\overline{A}_n : n \in N\}.$$

Recall that numerical range of an operator $A \in B(H)$ is the set

$$W(A) = \{ \langle Ax, x \rangle \colon x \in H, ||x|| = 1 \}.$$

Definition 1. The maximal numerical range of an operator $A \in B(H)$ is defined by

$$W_o(A) = \{\lambda \in \mathbb{C} : \text{there exists a sequence } \{x_n\} \text{ of unit vectors in } H \text{ such that } \|Ax_n\| \to \|A\|$$

and $\langle Ax_n, x_n \rangle \to \lambda\}.$

Theorem 1.3. [9] The set $W_0(A)$ is non-empty, closed, convex and contained in closure of numerical range of A.

Definition 2. Let $a = (a_1, a_2, ..., a_n)$ and $b = (b_1, b_2, ..., b_n)$ be *n*-tuples of elements in an algebra A. The elementary operator $E_{a,b}$ on A into itself associated with a and b is defined by $E_{a,b}(x) = a_1xb_1 + a_2xb_2 + ... + a_nxb_n$

The number n is called length of the elementary operator $E_{a,b}$.

Definition 3. We say $a = (a_1, a_2, ..., a_n)$ is commuting family if $a_i a_j = a_j a_i$ for each $1 \le i, j \le n$. We denote by $M_{a,b}$ elementary multiplication operator, defined by

 $M_{a,b} = axb, x \in A$

We define $U_{a,b}$ as $U_{a,b} = axb + bxa$ for all $x \in A$

Definition 4. Derivation is a linear map δ on an algebra A into itself satisfying

$$\delta(ab) = \delta(a)b + a\delta(b)$$

for $a, b \in A$.

For a fixed $a \in A$, inner derivation δ_a is defined by $\delta_a(x) = ax - xa$. For fixed $a, b \in A$, generalized derivation $\delta_{a,b}$ is defined by $\delta_{a,b}(x) = ax - xb$ for all $x \in A$. It is clear that δ_a and $\delta_{a,b}$ are elementary operators of length 2.

In 1970, J.G. Stampfli found an elegant formula for the norm of inner derivation δ_A on B(H). He also got an expression for the norm of generalized derivation. Now we state some results of Stampfli on the norm of derivations and generalized derivations.

Theorem 1.4. [9] For $A \in B(H)$, $||\delta_A|| = 2 \inf\{||A - \lambda I|| : \lambda \in \mathbb{C}\}.$

Theorem 1.5. [9] For $A \in B(H)$, $\|\delta_{A,B}\| = \inf\{\|A - \lambda I\| + \|B - \lambda I\| : \lambda \in \mathbb{C}\}.$

An alternative approach to computing $\|\delta_A\|$ emanating from commutator theory, is related to results of C.Apastol and L.Zsido [2]. They also proved analogue of the Theorem 1.4 for inner derivations of C^* -algebra and W^* - algebra.

The notion of maximal numerical was first introduced by J. G. Stamfli [9]. In 1970, J. G. Stampfli characterize maximum norm of derivations and generalized derivation depending on maximal numerical range as follows:

Theorem 1.6. For $A \in B(H)$, the following are equivalent: (i) $0 \in W_0(A)$. (ii) $\|\delta_A\| = 2\|A\|$. (iii) $\|A\| \le \|A + \lambda I\|$, $\lambda \in \mathbb{C}$ (iv) $\|A\|^2 + |\lambda|^2 \le \|A + \lambda\|^2$, $\lambda \in \mathbb{C}$.

Definition 5. The normalized numerical range of $A \in B(H)$ is defined by

$$W_N(A) = W_0(\frac{1}{\|A\|}(A))$$

The following result is analogue of Proposition 1.6 for generalized derivation.

Theorem 1.7. For $A, B \in B(H)$, the following are equivalent: (i) $\|\delta_{A,B}\| = \|A\| + \|B\|$ (ii) $W_N(A) \cap W_N(-B) \neq \phi$.

Norm of Elementary Operators Let B(H) be C^* - algebra of all bounded operators on a Hilbert space H. For an elementary multiplication operator $M_{A,B}$ on B(H), $||M_{A,B}|| =$ ||A||.||B|| [6]. For the elementary operator $U_{A,B}$ on B(H), defined as $U_{A,B}(X) = AXB +$ $BXA, A, B \in B(H)$, it is clear that $||U_{A,B}|| \leq 2||A|| ||B||$. In this case it is natural to look for lower estimate of the form c||A||||B||. Martin Mathieu Conjectured [7], [8] that c = 1. In 2003, A. Blanco, M. Boumazgour and T.J. Ramsford [4] and Richard Timoney [11] confirmed it independently by different methods.

2 Main Results

In this section we shall prove some results on maximal numerical range of composition operator C_{ϕ} on ℓ^2 . By using these results we find a characterization of maximum norm attainability of derivations and generalized derivations on $B(\ell^2)$ induced by composition operators on ℓ^2 . We shall also prove some results on the norm of elementary operators on $B(\ell^2)$ induced by composition operators on ℓ^2 .

Theorem 2.1. Let $\phi(\neq I)$ be a one-one function on \mathbb{N} into itself and C_{ϕ} be the composition operator on ℓ^2 induced by ϕ . Then $[0,1] \subseteq W_0(C_{\phi})$.

Proof. Suppose ϕ is one-one function on \mathbb{N} into itself. Since $\phi \neq I, \phi(n) = m$ for some $m \neq n$.

Then

$$||C_{\phi}(\chi_m)|| = ||\chi_{\phi^{-1}(m)}|| = 1 = ||C_{\phi}|| \text{ and } < C_{\phi}(\chi_m), \chi_m > = <\chi_n, \chi_m > = 0.$$

Therefore $0 \in W_0(C_{\phi})$. Now if $\phi^k(1) = 1$ for some least $k \in \mathbb{N}$, then let

$$f = \frac{1}{\sqrt{k}} \left(\chi_1 + \chi_{\phi(1)} + \dots + \chi_{\phi^{k-1}(1)} \right).$$

Clearly $\|f\| = 1$

$$\begin{split} \|C_{\phi}f\|^{2} &= \langle C_{\phi}f, C_{\phi}f \rangle \\ &= \langle C_{\phi}(\frac{1}{\sqrt{k}}(\chi_{1} + \chi_{\phi(1)} + \ldots + \chi_{\phi^{k-1}(1)})), C_{\phi}(\frac{1}{\sqrt{k}}(\chi_{1} + \chi_{\phi(1)} + \ldots + \chi_{\phi^{k-1}(1)})) \rangle \\ &= \frac{1}{k} \langle \chi_{\phi^{-1}(1)} + \chi_{1} + \ldots + \chi_{\phi^{k-2}(1)}, \chi_{\phi^{-1}(1)} + \chi_{1} + \ldots + \chi_{\phi^{k-2}(1)} \rangle \\ &= 1 \text{ (because } \phi^{-1}(1) = \phi^{k-1}(1). \end{split}$$

Now

$$< C_{\phi}f, f >= < \frac{1}{\sqrt{k}} (\chi_{\phi^{-1}(1)} + \chi_1 + \dots + \chi_{\phi^{k-2}(1)}), \frac{1}{\sqrt{k}} (\chi_1 + \chi_{\phi(1)} + \dots + \chi_{\phi^{k-1}(1)}) >$$

=1 (because $\phi^{-1}(1) = \phi^{k-1}(1)$).

Thus $1 \in W_0(C_{\phi})$. If $\phi^k(1) \neq 1$ for any $k \in \mathbb{N}$, then let

$$f_k = \frac{1}{\sqrt{k}} \sum_{j=1}^k \chi_{\phi^j(1)}$$
. Then $||f|| = 1$ and $||C_{\phi}(f_k)|| = 1 = ||C_{\phi}||$.

$$< C_{\phi}f_k, f_k > = < C_{\phi}(\frac{1}{\sqrt{k}} \sum_{j=1}^k \chi_{\phi^j(1)}), \frac{1}{\sqrt{k}} \sum_{j=1}^k \chi_{\phi^j(1)} >$$
$$= < \frac{1}{\sqrt{k}} \sum_{j=0}^{k-1} \chi_{\phi^j(1)}, \frac{1}{\sqrt{k}} \sum_{j=1}^k \chi_{\phi^j(1)} >$$
$$= \frac{k-1}{k}$$

Now $\langle C_{\phi}f_k, f_k \rangle = \frac{k-1}{k} \to 1$ as $k \to \infty$. Thus $1 \in W_0(C_{\phi})$ in this case also. Since $W_o(C_{\phi})$ is convex, by Theorem 1.3, we have $[0,1] \subseteq W_0(C_{\phi})$.

Theorem 2.2. Let C_{ϕ} be a composition operator on ℓ^2 . Then $0 \in W_0(C_{\phi})$ if and only if $n \notin A_n$ for some $n \in \mathbb{N}$ such that $||C_{\phi}\chi_n|| = ||C_{\phi}||$.

Proof. Suppose that for some $n \in \mathbb{N}$, $||C_{\phi}(\chi_n)|| = ||C_{\phi}||$ and $n \notin A_n$, then $\langle C_{\phi}(\chi_n), \chi_n \rangle = 0$. Therefore $0 \in W_0(C_{\phi})$. Conversely, let

$$||C_{\phi}|| = \sqrt{p} \text{ and } A = \{n \in \phi(\mathbb{N}) : ||C_{\phi}(\chi_n)|| = ||C_{\phi}||\},\B = \{n \in \phi(\mathbb{N}) : ||C_{\phi}(\chi_n)|| < ||C_{\phi}||\}$$

Suppose $n \in A_n$ for each $n \in A$. Now we show that $0 \notin W_0(C_{\phi})$. Let $\{f_n\}$ be a sequence of unit vectors in ℓ^2 such that $\|C_{\phi}(f_n)\| \to \|C_{\phi}\|$ as $n \to \infty$

$$i.e. \|\sum_{j=1}^{\infty} f_n(\phi(j))\chi_j\| \to \|C_\phi\| \text{ as } n \to \infty$$
$$\implies \sum_{j=1}^{\infty} |f_n(\phi(j))|^2 \to \|C_\phi\|^2 = p \text{ as } n \to \infty$$
$$= \sum_{j\in\phi^{-1}(A)} |f_n(\phi(j))|^2 + \sum_{j\in\phi^{-1}(B)} |f_n(\phi(j))|^2 \to p \text{ as } n \to \infty$$

(2.1)
$$= \sum_{j \in A} p |f_n(j)|^2 + \sum_{j \in B} \overline{\bar{A}}_j |f_n(j)|^2 \to p \text{ as } n \to \infty$$

Now

$$||f_n||^2 = \sum_{j=1}^{\infty} |f_n(j)|^2 = 1 = \sum_{j \in A} |f_n(j)|^2 + \sum_{j \notin A} |f_n(j)|^2.$$

Thus

$$\sum_{j \in A} |f_n(j)|^2 = 1 - \sum_{j \notin A} |f_n(j)|^2.$$

By equation (2.1)

$$p(1 - \sum_{j \notin A} |f_n(j)|^2) + \sum_{j \in B} \bar{\bar{A}}_j |f_n(j)|^2 \to p$$

(2.2)
$$\implies -p\sum_{j\notin A}|f_n(j)|^2 + \sum_{j\in B}\bar{\bar{A}}_j|f_n(j)|^2 \to 0$$

Since $B \subseteq \mathbb{N} - A$, it is easy to see that

$$\sum_{j \notin A} |f_n(j)|^2 = p \sum_{j \notin A} |f_n(j)|^2 - (p-1) \sum_{j \notin A} |f_n(j)|^2$$

$$\leq p \sum_{j \notin A} |f_n(j)|^2 - (p-1) \sum_{j \in B} |f_n(j)|^2$$

$$\leq p \sum_{j \notin A} |f_n(j)|^2 - \sum_{j \in B} \bar{A}_j |f_n(j)|^2 \text{ (because } 1 \leq \bar{A}_j \leq p-1 \text{ for } j \in B).$$

Therefore, by equation (2.2)

(2.3)
$$\sum_{j \notin A} |f_n(j)|^2 \to 0 \text{ as } n \to \infty$$

and then

(2.4)
$$\sum_{j \in A} |f_n(j)|^2 \to 1 \text{ as } n \to \infty$$

Now

$$< C_{\phi}f_n, f_n > = < \sum_{j=1}^{\infty} f_n(\phi(j))\chi_j, \sum_{j=1}^{\infty} f_n(j)\chi_j >$$

$$= < \sum_{j\in A} f_n(\phi(j))\chi_j + \sum_{j\notin A} f_n(\phi(j))\chi_j, \sum_{j\in A} f_n(j)\chi_j + \sum_{j\notin A} f_n(j)\chi_j >$$

$$= < \sum_{j\in A} f_n(\phi(j))\chi_j, \sum_{j\in A} f_n(j)\chi_j > + < \sum_{j\notin A} f_n(\phi(j))\chi_j, \sum_{j\notin A} f_n(j)\chi_j >$$

$$= \sum_{j\in A} |f_n(j)|^2 + \sum_{j\notin A} f_n(\phi(j))\overline{|f_n(j)|} \quad (\text{because } j \in A_j \text{ for each } j \in A.)$$

Now

$$\begin{split} \sum_{j \notin A} f_n(\phi(j)) f_n(j) &|\leq \sum_{j \notin A} |f_n(\phi(j))| |f_n(j)| \\ &\leq \left(\sum_{j \notin A} |f_n(\phi(j))|^2\right)^{\frac{1}{2}} \left(\sum_{j \notin A} |f_n(j)|^2\right)^{\frac{1}{2}} \quad \text{(by Holder's inequality)} \\ &\leq p ||f_n|| \left(\sum_{j \notin A} |f_n(j)|^2\right)^{\frac{1}{2}} \\ &= p \left(\sum_{j \notin A} |f_n(j)|^2\right)^{\frac{1}{2}} \to 0 \text{ as } n \to \infty \text{ by equation (2.3)} \end{split}$$

But $\sum_{j \in A} |f_n(j)|^2 \to 1$ as $n \to \infty$ by equation (2.4). Therefore $\langle C_{\phi} f_n, f_n \rangle \to 1 \neq 0$. thus $0 \notin W_0(C_{\phi})$. Hence the proof.

From the proof of above Theorem, we have the following corollory.

Corollary 1. If $0 \notin W_0(C_{\phi})$, then $W_0(C_{\phi}) = \{1\}$

In view of Theorem 1.6 and Theorem 1.2. we have the following characterization of the norm of a derivation induced by composition operators on ℓ^2 .

Theorem 2.3. Let C_{ϕ} be a composition operator on ℓ^2 and $n \notin A_n$ for some n such that $\|C_{\phi}(\chi_n)\| = \|C_{\phi}\|$. Then (i) $0 \in W_0(C_{\phi})$. (ii) $\|\delta_{\phi}\| = 2\|C_{\phi}\|$. (iii) $\|C_{\phi}\| \le \|C_{\phi} + \lambda I\|, \lambda \in \mathbb{C}$. (iv) $\|C_{\phi}\|^2 + |\lambda|^2 \le \|C_{\phi} + \lambda I\|^2, \lambda \in \mathbb{C}$. **Theorem 2.4.** Let C_{ϕ} and C_{ψ} be two composition operators on ℓ^2 , , where ϕ and ψ ($\phi \neq I, \psi \neq I$) are one-one functions on \mathbb{N} into itself. Then

$$\|\delta_{C_{\phi},C_{\psi}}\| = \|\delta_{C_{\phi}}\| + \|\delta_{C_{\psi}}\|.$$

Proof. First note that normalized maximal numerical range $W_N(C_{\phi}) = W_0(C_{\phi})$ when ϕ is one-one i.e. $||C_{\phi}|| = 1$. Since ϕ is one-one $[0,1] \subseteq W_0(C_{\phi}) = W_N(C_{\phi})$, by Theorem 2.1. Similarly $[0,1] \subseteq W_N(C_{\psi})$. For $\lambda \in W_N(C_{\psi})$, it is easy to see that $-\lambda \in W_N(-C_{\psi})$. Therefore $[-1,0] \subseteq W_N(-C_{\psi})$. Thus $W_N(C_{\phi}) \cap W_N(-C_{\psi})$ contains zero so non-empty. Hence

$$\|\delta_{C_{\phi},C_{\psi}}\| = \|\delta_{C_{\phi}}\| + \|\delta_{C_{\psi}}\|$$

by Theorem 1.5.

Now we shall state a result of M. Barraa and M. Boumazgour [3] which is useful in our context.

Theorem 2.5. [3] Let $A, B \in B(H)$. Then ||A + B|| = ||A|| + ||B|| if and only if $||A|| ||B|| \in \overline{W(A^*B)}$, where W(A) denotes numerical range of A.

Theorem 2.6. Let C_{ϕ} and C_{ψ} be two composition operators on ℓ^2 where both ϕ and ψ are one-one and onto functions on \mathbb{N} . Then $\|C_{\phi} + C_{\psi}\| = \|C_{\phi}\| + \|C_{\psi}\|$.

Proof. If $\phi = \psi$, then above equality is clearly satisfied. Assume $\phi \neq \psi$ Since ϕ and ψ are one-one and onto, C_{ϕ} and C_{ψ} are invertible composition operators on ℓ^2 . Also C_{ϕ}^* is an invertible composition operator on ℓ^2 induced by ϕ^{-1} . Since composition of two composition operators on ℓ^2 is again a composition operator on ℓ^2 , $C_{\phi}^*C_{\psi}$ is a composition operator on ℓ^2 induced by $\phi o \psi^{-1}$, which is one-one and onto function on \mathbb{N} . Since $\zeta = \phi o \psi^{-1}$ is one-one and $\zeta \neq I$, $[0,1] \subset W_0(C_{\zeta})$ by theorem 2.1. But $W_0(C_{\zeta}) \subseteq \overline{W(C_{\zeta})}$ by Theorem 1.3. Thus $\|C_{\phi}\| \|C_{\psi}\| = 1 \in \overline{W(C_{\zeta})} = \overline{W(C_{\phi}^*C_{\psi})}$. Therefore $\|C_{\phi} + C_{\psi}\| = \|C_{\phi}\| + \|C_{\psi}\|$ by Theorem 2.5.

Theorem 2.7. Let $C_{\phi} = (C_{\phi_1}, C_{\phi_2})$ and $C_{\psi} = (C_{\psi_1}, C_{\psi_2})$ be 2-tuples of composition operators in $B(\ell^2)$, where ϕ_1, ϕ_2, ψ_1 and ψ_2 are one-one and onto functions on \mathbb{N} . Then

$$||E_{C_{\phi},C_{\psi}}|| = \sum_{i=1}^{2} ||C_{\phi_{i}}|| ||C_{\psi_{i}}||$$

Proof. We have $E_{C_{\phi},C_{\psi}}(X) = C_{\phi_1}XC_{\psi_1} + C_{\phi_2}XC_{\psi_2}$. Since ϕ_1, ϕ_2, ψ_1 and ψ_2 are one-one and onto, $||C_{\phi_1}|| = ||C_{\phi_2}|| = ||C_{\psi_1}|| = ||C_{\psi_2}|| = 1$. Clearly $||E_{C_{\phi},C_{\psi}}|| \leq 2$. We have to prove that $||E_{C_{\phi},C_{\psi}}|| = \sum_{i=1}^{2} ||C_{\phi_i}|| ||C_{\psi_i}|| = 2$. Now $E_{C_{\phi},C_{\psi}}(I) = C_{\phi_1}C_{\psi_1} + C_{\phi_2}C_{\psi_2}$. It is easy to see that $C_{\phi_1}C_{\psi_1} = C_{\phi_1o\psi_1}$ and $C_{\phi_2}C_{\psi_2} = C_{\phi_2o\psi_2}$, where $\phi_1o\psi_1$ and $\phi_2o\psi_2$ are one-one onto. Now $||C_{\phi_1}C_{\psi_1} + C_{\phi_2}C_{\psi_2}|| = ||C_{\phi_1o\psi_1} + C_{\phi_2o\psi_2}||$. But by Theorem 2.6 $||C_{\phi_1o\psi_1} + C_{\phi_2o\psi_2}|| = ||C_{\phi_1o\psi_1}|| + ||C_{\phi_2o\psi_2}|| = 2$

But by Theorem 2.6 $\|C_{\phi_1 o \psi_1} + C_{\phi_2 o \psi_2}\| = \|C_{\phi_1 o \psi_1}\| + \|C_{\phi_2 o \psi_2}\| = 2$ Thus $\|E_{C_{\phi}, C_{\psi}}\| = \|E_{C_{\phi}, C_{\psi}}(I)\| = 2$. Hence the proof.

The next result was proved by Mathieu Martin [6] on prime C^* -algebra. We give a simple proof in case of elementary operators on $B(\ell^2)$ induced by composition operators on ℓ^2 .

Theorem 2.8. Let $M_{C_{\phi},C_{\psi}}$ be elementary multiplication operator on $B(\ell^2)$ then $||M_{C_{\phi},C_{\psi}}|| = ||C_{\phi}|| ||C_{\psi}||$ for all $C_{\phi}, C_{\psi} \in B(\ell^2)$.

Proof. We have $M_{C_{\phi},C_{\psi}}(X) = C_{\phi}XC_{\psi}$. Clearly $||M_{C_{\phi},C_{\psi}}|| \leq ||C_{\phi}|| ||C_{\psi}||$. Take $X = f \otimes g$, where f and g are unit vectors in ℓ^2 . Then $M_{C_{\phi},C_{\psi}}(f \otimes g) = C_{\phi}(f \otimes g)C_{\psi}$ and $C_{\phi}(f \otimes g)C_{\psi}(h) = \langle C_{\psi}h, g \rangle, C_{\phi}f, h \in \ell^2$. Choose $h = \chi_n$ such that $||C_{\psi}(\chi_n)|| = ||C_{\psi}||, g = \frac{C_{\psi}(\chi_n)}{||C_{\psi}||}$ and $f = \chi_m$ such that $||C_{\phi}(\chi_m)|| = ||C_{\phi}||$. Now

$$M_{C_{\phi},C_{\psi}}(\chi_{m} \otimes \frac{C_{\psi}(\chi_{n})}{\|C_{\psi}\|})(\chi_{n}) = \langle C_{\psi}(\chi_{n}), \frac{C_{\psi}(\chi_{n})}{\|C_{\psi}\|} \rangle C_{\phi}(\chi_{m})$$
$$= \frac{1}{\|C_{\psi}\|} \|C_{\psi}(\chi_{n})\|^{2} C_{\phi}(\chi_{m}) = \|C_{\psi}\|C_{\phi}(\chi_{m})$$

Thus

$$\|M_{C_{\phi},C_{\psi}}(\chi_{m} \otimes \frac{C_{\psi}(\chi_{n})}{\|C_{\psi}\|})(\chi_{n})\| = \|C_{\psi}\|\|C_{\phi}(\chi_{m})\|$$
$$= \|C_{\phi}\|\|C_{\psi}\|.$$

- Г		

Theorem 2.9. Let $U_{C_{\phi},C_{\psi}}$ be an elementary operator on $B(\ell^2)$ defined by $U_{C_{\phi},C_{\psi}}(X) = C_{\phi}XC_{\psi} + C_{\psi}XC_{\phi}$ then

$$||U_{C_{\phi},C_{\psi}}|| \ge ||C_{\phi}|| ||C_{\psi}||.$$

Proof.

$$\begin{aligned} \|U_{C_{\phi},C_{\psi}}\| &= \sup_{\|X\|=1} \{ \|C_{\phi}XC_{\psi} + C_{\psi}XC_{\phi}\| : X \in B(\ell^{2}) \} \\ &= \sup_{\|X\|=1} \{ \sup_{\|f\|=1} \|(C_{\phi}XC_{\psi} + C_{\psi}XC_{\phi}f)\| : f \in \ell^{2}, X \in B(\ell^{2}) \} \end{aligned}$$

Clearly $||U_{C_{\phi},C_{\psi}}|| \ge ||(C_{\phi}XC_{\psi} + C_{\psi}XC_{\phi}f)||$ for unit vector $f \in \ell^2$, Suppose $h = \chi_n$ such that $||C_{\psi}(\chi_n)|| = ||C_{\psi}||, g = \frac{C_{\psi}(\chi_n)}{||C_{\psi}||}$ and $f = \chi_m$ such that

$$\begin{aligned} \|C_{\phi}(\chi_m)\| &= \|C_{\phi}\|, \\ C_{\phi}(\chi_m \otimes \frac{C_{\psi}(\chi_n)}{\|C_{\psi}\|})C_{\psi}(\chi_n) &= \|C_{\psi}\|C_{\phi}(\chi_m) \\ C_{\psi}(\chi_m \otimes \frac{C_{\psi}(\chi_n)}{\|C_{\psi}\|})C_{\phi}(\chi_n) &= < C_{\phi}(\chi_m), C_{\phi}(\chi_n) > \frac{C_{\psi}(\chi_m)}{\|C_{\psi}\|} \\ &= \frac{1}{\|C_{\psi}\|} < C_{\phi}(\chi_m), C_{\psi}(\chi_n) > C_{\psi}(\chi_m). \end{aligned}$$

Now

$$\| (C_{\phi}(\chi_{m} \otimes \frac{C_{\psi}(\chi_{n})}{\|C_{\psi}\|}) C_{\psi} + C_{\psi}(\chi_{m} \otimes \frac{C_{\psi}(\chi_{n})}{\|C_{\psi}\|}) C_{\phi})(\chi_{n}) \|^{2} \\ = \| C_{\psi} \| C_{\phi}(\chi_{m}) + \frac{1}{\|C_{\psi}\|} < C_{\phi}(\chi_{m}), C_{\psi}(\chi_{n}) > C_{\psi}(\chi_{m}),$$

$$\begin{split} \|C_{\psi}\|C_{\phi}(\chi_{m}) + \frac{1}{\|C_{\psi}\|} < C_{\phi}(\chi_{m}), C_{\psi}(\chi_{n}) > C_{\psi}(\chi_{m}) \\ = \|C_{\psi}\|^{2} < C_{\phi}\chi_{m}, C_{\phi}\chi_{m} > + \overline{< C_{\phi}\chi_{m}, C_{\psi}\chi_{n} >} < C_{\phi}\chi_{m}, C_{\psi}\chi_{m} > \\ + < C_{\phi}(\chi_{m}), C_{\psi}(\chi_{n}) > < C_{\psi}(\chi_{m}), C_{\phi}(\chi_{m}) > \\ + \frac{1}{\|C_{\psi}\|^{2}}| < C_{\phi}(\chi_{m}), C_{\psi}(\chi_{n}) > |^{2} < C_{\psi}(\chi_{m}), C_{\psi}(\chi_{n}) > \\ = \|C_{\psi}\|^{2}\|C_{\phi}\|^{2} + \overline{(A_{m} \cap B_{n})} (\overline{A_{m} \cap B_{m}}) \\ + \overline{(A_{m} \cap B_{n})} (\overline{A_{m} \cap B_{m}}) + \frac{1}{\|C_{\psi}\|^{2}} (\overline{A_{m} \cap B_{n}})^{2} (\overline{B_{m} \cap B_{n}}) \end{split}$$

here $A_m = \phi^{-1}(m), B_m = \psi^{-1}(m).$ Clearly $\overline{\overline{(A_m \cap B_n)}} \overline{\overline{(A_m \cap B_m)}} + \overline{\overline{(A_m \cap B_n)}} \overline{\overline{(A_m \cap B_n)}} + \frac{1}{\|C_{\psi}\|^2} (\overline{\overline{A_m \cap B_n}}) (\overline{\overline{B_m \cap B_n}}) \ge$ 0. Thus $\|U_{C_{\phi},C_{\psi}}(\chi_m \otimes \frac{C_{\psi}(\chi_n)}{\|C_{\psi}\|})(\chi_n)\| \ge \|C_{\phi}\|\|C_{\psi}\|.$ Therefore $\|U_{C_{\phi},C_{\psi}}\| \ge \|C_{\phi}\|\|C_{\psi}\|$

Examples

2.1 Let ϕ be a function on \mathbb{N} into itself defined by

$$\phi(n) = \left\{ \begin{array}{cc} 3 & n = 1,2 \\ n+3 & n \neq 1,2 \end{array} \right.$$

Then $||C_{\phi}(\chi_3)|| = ||C_{\phi}|| = \sqrt{2}$ but $3 \notin A_3$. Therefore $0 \in W_0(C_{\phi})$.

2.2 2 Let ϕ be a function on \mathbb{N} into itself defined by $\phi(n) = n + 1$. Then ϕ is one-one and $\|C_{\phi}\| = 1$. In this case $[0,1] \subseteq W_0(C_{\phi})$.

2.3 Let ϕ be a function on \mathbb{N} into itself defined by

$$\phi(n) = \begin{cases} 1 & n = 1, 2\\ n+3 & n \neq 1, 2 \end{cases}$$

Then $||C_{\phi}(\chi_1)|| = ||C_{\phi}|| = \sqrt{2}$ but $1 \in A_1$. Therefore $0 \notin W_0(C_{\phi})$.

References

- Y.A. Abromovich and C.D. Aliprentis: An invitation to Operator Theory, GTM 50 AMS Providence, Rhodes Island 2002.
- [2] C. Apostol and L.Zsido: Ideals inW* -algebras and the function of A. Brown and C. Pearcy, Rev. Roum. Math.Pures Appl; 18 (1973), 1151-1170.
- [3] M. Barraa and M. Boumazgour : Inner derivations and norm equality. Proc. Amer. Math.Soc. 130 no.2. (2001), 471-476.
- [4] A.Blanco, M. Boumzgour and T.J. Ransford. On the norm of elementary operators J. London Math. Soc.70 (2004). 479 -498.
- [5] P.R. Halmos: Hilbert Space problem Book, Von Nostrand, Princeton, New Jersy, 1967.
- [6] Martin Mathieu: Elementary operators on Prime C*-algebras 1, Math. Ann. 284 (1989), 223-244.
- [7] Martin Mathieu: Properties of the product of two derivations of a C*-algebra, Canad. Math. Bull., 32 (1989), 490-497.
- [8] Martin Mathieu: More properties of product of two derivations on a C*-algebra, Bull. Aust., Math. Soc 42 (1990), 115-120.
- [9] J.G. Stampfli: The norm of derivation, Pac.J. Math., **33** (1970), 737-747.
- [10] R.K. Singh and J.S. Manhas: Composition Operators on function spaces, North Holland 1993.
- [11] Richard Timoney. Norms and CB norms of Jordan elementary operators Bull. Sci. Math. 127 (2003) 597-609.