On the Diophantine Equation $3^x + 117^y = z^2$

Shivangi Asthana¹ and Madan Mohan Singh²

¹ Department of Mathematics, North-Eastern Hill University, Shillong-793022, Meghalaya, India. email: shivangiasthana.1@gmail.com

²Department of Basic Sciences and Social Sciences, North - Eastern Hill University, Shillong-793022, Meghalaya, India. email: mmsingh2004@gmail.com

Abstract

In this paper we prove that the Diophantine equation $3^x + 117^y = z^2$ has exactly four non-negative integer solutions for x, y and z. The solutions are (1, 0, 2), (3, 1, 12), (7, 1, 48) and (7, 2, 126) respectively.

Keywords: Exponential Diophantine equation, integer solutions. **Subject Classification:** 11D61

1 Introduction

Diophantine equations of the form $a^x + b^y = c^z$ have been studied by numerous mathematicians for many years and by a variety of methods [1, 2, 3, 4, 5]. It was proved by Cao [6] that this equation has at most one solution with z > 1. The Diophantine equation $2^x + 5^y = z^2$ was studied by D. Acu [7] in 2007, who established that this equation has exactly two solutions in non-negative integers i.e $(x, y, z) \in \{(3, 0, 3), (2, 1, 3)\}$. In 2011, Suvarnamani, Singta and Chotchaisthit [8] solved two Diophantine equations $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$ and showed that these two equations have no non-negative integer solutions where x, y and z are non-negative integers. In 2013, B. Sroysang [9] showed that (1, 0, 2), (3, 0, 3) and (4,2,5) are only three solutions (x,y,z) for the Diophantine equation $2^x + 3^y = z^2$ where x, y and z are non-negative integers. In 2012, the same author [10, 11] solved two Diophantine equations $3^x + 5^y = z^2$ and $3^x + 17^y = z^2$ and established that they have unique solution (1, 0, 2) in non-negative integers (x, y, z). In 2013, Rabago [12] solved two Diophantine equations $3^x + 19^y = z^2$ and $3^x + 91^y = z^2$ where x, y and z are non-negative integers. He found two solutions for each of the equations i.e. $\{(1,0,2), (4,1,10)\}$ and $\{(1,0,2), (2,1,10)\}$ respectively. The Diophantine equation $3^x + 85^y = z^2$ was studied by B. Sroysang in 2014 [13] who found that (1, 0, 2) is a unique solution in non-negative integers x, y and z for this equation. In this paper, we have attempted to solve the Diophantine equation $3^x + 117^y = z^2$ and have found that (1, 0, 2), (3, 1, 12), (7, 1, 48) and (7, 2, 126) are exactly four solutions for this equation in non-negative integers (x, y, z).

2 Preliminaries

In 1844, Catalan [14] posed the following conjecture:

Proposition 1. (Catalan's Conjecture) (3, 2, 2, 3) is a unique solution (a, b, x, y) for the Diophantine equation $a^x - b^y = 1$ where a, b, x and y are integers such that $min\{a, b, x, y\} > 1$.

We present two lemmas to prove the main result.

Lemma 1. [10] (1,2) is a unique solution (x,z) for the Diophantine equation $3^x + 1 = z^2$ where x and z are non-negative integers.

Proof. Suppose that there are non-negative integers x and z such that $3^{x}+1 = z^{2}$. If x = 0, then $z^{2} = 2$ which is impossible. Then $x \ge 1$. Thus $z^{2} = 3^{x}+1 \ge 3^{1}+1 = 4$. Then $z \ge 2$. Now we consider on the equation $z^{2} - 3^{x} = 1$. By Proposition 1, we have x = 1. Thus z = 2. Hence (1, 2) is a unique solution (x, z) for the equation $3^{x} + 1 = z^{2}$ where x and z are non-negative integers.

Lemma 2. The Diophantine equation $1 + 117^y = z^2$ has no non-negative integers solution.

Proof. Suppose that there are non-negative integers y and z such that $1+117^y = z^2$. If y = 0 then $z^2 = 2$ which is impossible. Then $y \ge 1$. Thus $z^2 = 1 + 117^y \ge 1 + 117^1 = 118$. Then $z \ge 11$. Now we consider on the equation $z^2 - 117^y = 1$. By Proposition 1, we have y = 1. Thus $z^2 = 118$, which is not possible to get solution. Hence the equation $1 + 117^y = z^2$ has no non-negative integers solution.

3 Main Result

Theorem 1. The Diophantine equation $3^x + 117^y = z^2$ has exactly four solutions in non-negative integers $(x, y, z) \in \{(1, 0, 2), (3, 1, 12), (7, 1, 48), (7, 2, 126)\}.$

Proof. Let x, y and z be non-negative integers such that $3^x + 117^y = z^2$. By lemma 2, we have $x \ge 1$. We have three cases for y:

Case (i) y = 0, From lemma (1), we have (x, y, z) = (1, 0, 2).

Case (ii) y is even. If $y = 2l, l \in \mathbb{N}$, then we have

$$\begin{aligned} 3^x &= z^2 - 117^{2l}\\ or, \ 3^x &= (z - 117^l)(z + 117^l)\\ \text{where } z - 117^l = 3^u \text{ and } z + 117^l = 3^{x-u}, \ x > 2u. \text{ From here, we obtain}\\ 3^{x-u} - 3^u &= z + 117^l - z + 117^l = 2 \cdot 117^l \end{aligned}$$

or,
$$3^{u}(3^{x-2u}-1) = 2 \cdot 117^{l}$$

For l = 1, we have $3^u(3^{x-2u} - 1) = 2 \cdot 13 \cdot 9$ or, $3^u(3^{x-2u} - 1) = 3^2 \cdot 26$. This implies that u = 2 and $3^{x-4} - 1 = 26$ or $3^{x-4} = 27$ or x = 7. This gives us values x = 7, y = 2 and z = 126. Hence the solution is (x, y, z) = (7, 2, 126).

Case(iii) y is odd. Let y = 2l + 1 where l is a non-negative integer. We will divide this case into two parts.

Part (i) $3^{x} + 117^{y} = z^{2}$ becomes $3^{x} + 117^{2l+1} = z^{2}$ or $3^{x} + 117 \cdot 117^{2l} = z^{2}$. So $3^{x} - 4 \cdot 117^{2l} = z^{2} - 121 \cdot 117^{2l} = (z - 11 \cdot 117^{l})(z + 11 \cdot 117^{l})$.

$$\begin{cases} z - 11 \cdot 117^{l} = 1....(i) \\ z + 11 \cdot 117^{l} = 3^{x} - 4 \cdot 117^{2l}...(ii) \end{cases}$$

Subtracting equation (i) from (ii), we get $z + 11 \cdot 117^{l} - z + 11 \cdot 117^{l} = 3^{x} - 4 \cdot 117^{2l} - 1$ which implies $117^{l}(22 + 4 \cdot 117^{l}) = 3^{x} - 1$. This implies l = 0 and $3^{x} = 27$. This gives us values x = 3, y = 1 and z = 12. Hence the solution is (x, y, z) = (3, 1, 12).

Part(ii) Again $3^{x} + 117^{y} = z^{2}$ becomes $3^{x} + 117^{2l+1} = z^{2}$. So $3^{x} + (2209 - 2092) \cdot 117^{2l} = z^{2}$ or $3^{x} - 2092 \cdot 117^{2l} = z^{2} - 2209 \cdot 117^{2l}$. Hence, $3^{x} - 2092 \cdot 117^{2l} = (z - 47 \cdot 117^{l})(z + 47 \cdot 117^{l})$.

$$\begin{cases} z - 47 \cdot 117^{l} = 1....(iii) \\ z + 47 \cdot 117^{l} = 3^{x} - 2092 \cdot 117^{2l}....(iv) \end{cases}$$

Subtracting equation (iii) from (iv), we get $z + 47 \cdot 117^{l} - z + 47 \cdot 117^{l} = 3^{x} - 2092 \cdot 117^{2l} - 1$ which implies $117^{l}(94 + 2092 \cdot 117^{l}) = 3^{x} - 1$. This implies l = 0 and $3^{x} = 2187$. This gives values x = 7, y = 1 and z = 48. Hence, the solution is (x, y, z) = (7, 1, 48).

Corollary 1. The Diophantine equation $3^x + 117^y = w^4$ has no non-negative integers solution where x, y and w are non-negative integers.

Proof. Suppose that x, y and w be non-negative integers such that $3^x + 117^y = w^4$. Let $z = w^2$. Then $3^x + 117^y = z^2$. By Theorem 1, we have $(x, y, z) \in \{(1, 0, 2), (3, 1, 12), (7, 1, 48), (7, 2, 126)\}$. Then $w^2 = z \in \{2, 12, 48, 126\}$. Here z is a square of some integer while 2, 12, 48, 126 are not square of any integer. Hence, the Diophantine equation $3^x + 117^y = w^4$ has no non-negative integers solution. \Box

Corollary 2. (3,1,2), (7,1,8) and (7,2,21) are exactly three solutions in positive integers (x, y, u) for the Diophantine equation $3^x + 117^y = 36u^2$ where x, y and u are positive integers.

Proof. Let x, y and u be positive integers such that $3^x + 117^y = 36u^2$. Let z = 6u. Then $3^x + 117^y = z^2$. By Theorem 1, we have $(x, y, z) \in \{(3, 1, 12), (7, 1, 48), (7, 2, 126)\}$. Then, $u \in \{2, 8, 21\}$. Hence, (3, 1, 2), (7, 1, 8) and (7, 2, 21) are solutions in positive integers (x, y, u) for the Diophantine equation $3^x + 117^y = 36u^2$ where x, y and u are positive integers. \Box

Corollary 3. (3,1,1) and (7,1,2) are exactly two positive integers solutions (x, y, v) for the Diophantine equation $3^x + 117^y = 144v^4$ where x, y and v are positive integers.

Proof. Let x, y and v be positive integers such that $3^x + 117^y = 144v^4$. Let $z = 12v^2$. Then $3^x + 117^y = z^2$. By Theorem 1, we have $(x, y, z) \in \{(3, 1, 12), (7, 1, 48)\}$. Then $v \in \{1, 2\}$. Hence, (3, 1, 1) and (7, 1, 2) are exactly two positive integers solutions (x, y, v) for the Diophantine equation $3^x + 117^y = 144v^4$ where x, y and v are positive integers. \Box

Corollary 4. (1,0,1) is a unique non-negative integers solution (x, y, m) for the Diophantine equation $3^x + 117^y = 4m^4$ where x, y and m are non-negative integers.

Proof. Let x, y and m be non-negative integers such that $3^x + 117^y = 4m^4$. Let $z = 2m^2$. Then $3^x + 117^y = z^2$. By Theorem 1, we have (x, y, z) = (1, 0, 2). Then $2m^2 = 2$ or m = 1. Hence, (1, 0, 1) is a unique non-negative integer solution (x, y, m) for the Diophantine equation $3^x + 117^y = 4m^4$ where x, y and m are non-negative integers.

Corollary 5. (1,0,1), (3,1,6), (7,1,24) and (7,2,63) are exactly four non-negative integers solutions (x, y, m) for the Diophantine equation $3^x + 117^y = 4m^2$ where x, y and m are non-negative integers.

Proof. Let x, y and m be positive integers such that $3^x + 117^y = 4m^2$. Let z = 2m. Then $3^x + 117^y = z^2$. By Theorem 1, we have $(x, y, z) \in \{(1, 0, 2), (3, 1, 12), (7, 1, 48), (7, 2, 126)\}$. Then $m \in \{1, 6, 24, 63\}$. Hence, (1, 0, 1), (3, 1, 6), (7, 1, 24) and (7, 2, 63) are exactly four non-negative integers solutions (x, y, m) for the Diophantine equation $3^x + 117^y = 4m^2$.

Corollary 6. (3,1,2) and (7,1,4) are exactly two positive integers solutions (x, y, n) for the Diophantine equation $3^x + 117^y = 9n^4$ where x, y and n are positive integers.

Proof. Let x, y and n be positive integers such that $3^x + 117^y = 9n^4$. Let $z = 3n^2$. Then $3^x + 117^y = z^2$. By Theorem 1, we have $(x, y, z) \in \{(3, 1, 12), (7, 1, 48)\}$. Then $n \in \{2, 4\}$. Hence, (3, 1, 2) and (7, 1, 4) are exactly two positive integers solutions (x, y, n) for the Diophantine equation $3^x + 117^y = 9n^4$.

Corollary 7. (7,2,3) is a unique positive integers solution (x, y, t) for the Diophantine equation $3^x + 117^y = 196t^4$ where x, y and t are positive integers.

Proof. Let x, y and t be positive integers such that $3^x + 117^y = 196t^4$. Let $z = 14t^2$. Then $3^x + 117^y = z^2$. By Theorem 1, we have (x, y, z) = (7, 2, 126). Then $14t^2 = 126$. So t = 3. Hence, (7, 2, 3) is a unique positive integers solution (x, y, t) for the Diophantine equation $3^x + 117^y = 196t^4$ where x, y and t are positive integers. \Box

4 Conclusion

In this paper we have shown that the Diophantine equation $3^x + 117^y = z^2$ has exactly four non-negative integer solutions where x, y and z are non-negative integers. The solutions are (1, 0, 2), (3, 1, 12), (7, 1, 48) and (7, 2, 126) respectively.

References

- [1] B. He, A. Togbe and S. Yang, On the solutions of the exponential Diophantine equation $a^x + b^y = (m^2 + 1)^z$, Quaestiones Mathematicae, **36**, 2013, 119-135.
- [2] N. Terai, On the Exponential Diophantine equation $(4m^2+1)^x + (5m^2-1)^y = (3m)^z$, Int. J. Algebra, 6, 2012, 1135-1146.
- [3] T. Miyazaki and N. Terai, On the exponential Diophantine equation $(m^2 + 1)^x + (cm^2 1)^y = (am)^z$, Bull. Australian Math. Soc., **90**, 2014, 9-19.
- [4] T. Miyazaki, P. Yuan and D. Wu, Generalizations of classical results on Jesmanowicz conjecture concerning Pythagorean triples II, J. Number Theory, 141, 2014, 184-201.
- [5] J. Su and X. Li, The exponential Diophantine equation $(4m^2 + 1)^x + (5m^2 1)^y = (3m)^z$, Abstract and Applied Analysis, 2014, 1-5.
- [6] Z. Cao, A note on the Diophantine equation $a^x + b^y = c^z$, Acta Arith., **XCI(1)**, 1999, 85-89.
- [7] D. Acu, On a Diophantine equation $2^x + 5^y = z^2$, Gen. Math, 15, 2007, 145-148.
- [8] S. Suvarnamani, A. Singta and S. Chotchaisthit, On two Diophantine equations $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$, Sci. Tech. RMUTT. J., 1, 2011, 25-28.
- [9] B. Sroysang, More on the Diophantine equation $2^x + 3^y = z^2$, Int. J. Pure and Appl. Math., 84(2), 2013, 133-137.
- [10] B. Sroysang, On the Diophantine Equation $3^x + 5^y = z^2$, Int. J. Pure and Appl. Math., 81(4), 2012, 605-608.
- [11] B. Sroysang, On the Diophantine Equation $3^x + 17^y = z^2$, Int. J. Pure and Appl. Math., 89(1), 2013, 111-114.
- [12] J. F. T. Rabago, On two Diophantine equations $3^x + 19^y = z^2$ and $3^x + 91^y = z^2$, Int. J. of Math. and Scientific Computing, 3(1), 2013, 28-29.
- [13] B. Sroysang, More on the Diophantine equation $3^x + 85^y = z^2$, Int. J. Pure and Appl. Maths., **91**, 2014, 131-134.
- [14] P. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 27, 2004, 167-195