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Abstract

In this article the shifted Legendre operational matrix of fractional
derivatives is derived to obtain the solution of the nonlinear fractional
order differential equations (FDEs) by using the collocation method. The
main characteristic behind this technique is that it reduces the problems
to those of solving a system of algebraic equations which simply can be
solved by the Newton iterative method using software like Mathematica
or Matlab. Some test problems are considered to explain the validity and
applicability of the proposed technique.
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1 Introduction

During the last few decades fractional calculus has evolved and grown in pure mathematics
as well as in scientific applications. In fact, the origin of fractional calculus lies nearly as
far back as classical calculus itself. On the other hand todays mathematical topics which
fall under the class of fractional calculus are far from being the calculus of fractions as one
might suspect by the notation itself. Instead, integration and differentiation to an arbitrary
order would be a better notion for the field of fractional calculus as it is understood today.
Both the age of fractional calculus and the misconception of fractional calculus in its use
today can be explained by surveying some aspects of the history of this mathematical field.
Therefore the beginning stage of this work is concerned with a short summarization of the
history of fractional calculus. The history and the comparative treatment of fractional order
have been given by Oldham and Spanier [1], Miller and Ross [2], Podlubny [3] and Hilfer [4].
In fact, many scientific areas are currently working on fractional calculus concepts and we
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can introduce its adoption in visco elasticity and damping, chaos and fractals, diffusion and
wave propagation, electromagnetism, biology, heat transfer, electronics, signal processing,
robotics, system identification, traffic systems, genetic algorithms, percolation, modelling
and identification, tele-communications, irreversibility, physical sciences, control systems
as well as economy, and finance [5, 6, 7, 8, 9, 10, 11, 12]. Fractional differential equations
cannot be solved analytically. Thus to analyse the solutions of fractional order differential
equations accurate and efficient numerical methods are needed. Various numerical tech-
niques have been proposed for approximate solutions of the fractional order differential
equations, For example, the Adomian decomposition method [13, 14], Variational iteration
method [15, 16, 17], Homotopy perturbation method [18, 19], Predictorcorrector Method
[20], mstep Methods [21], Generalized differential transform method [22], Fractional convo-
lution quadrature based on generalized Adams methods [23], Fractional linear multi-step
method [24] and so on. Researchers used fractional calculus to model and analyse the real
world problems. Fractional calculus has greater degree of freedom and it helps to analysis
the solution of nonlinear problems and with the use of fractional derivative interdisciplinary
applications can be studied. The nonlinear oscillation of earthquake can be studied with
the help of fractional order derivative.

The Legendre equation is the special type of polynomial equation known as the Dio-
phantine equation. The Legendre polynomials are the most general solution to the Legendre
equation. In mathematics these functions are the solution of Legendre differential equation

(1.1)
d

dx

((
1− x2

) dPn(x)

dx

)
+ n (n+ 1)Pn (x) = 0

This ordinary differential equation is frequently used in physics and the technical fields.
It has regular singular points at x = ±1 and the series solution of this equation will
converge for |x| < 1.For n, n ∈ N ∪ {0}the series solution Pn (x) that is regular at x = ±1
forms a polynomial sequence of orthogonal polynomials called the Legendre polynomials.
Legendre polynomials were introduced by the French Mathematician A. M. Legendre in
the year 1784. These are special cases of the Legendre functions. The applications of
Legendre functions are important for the problems involving spherical coordinates. Due
to their orthogonality properties they are also useful in numerical analysis. Orthogonal
functions belong to a vector space over the field R(real numbers) that has the property of
bi-linearity that is linearity in both coordinates. When the function space has an interval
as the domain, the bilinear form may be the integral of the product of two functions over
the interval. The main idea behind the approach using this method is that it reduces the
problems to those of solving a system of algebraic equations.

The operational matrix of fractional order derivatives has been determined for some
special types of orthogonal polynomials, such as Chebyshev polynomials, Legendre poly-
nomials. Saadatmandi and Dehghan [25] introduced the shifted Legendre operational ma-
trix for fractional derivatives and applied spectral methods for numerical solution of the
multi-term nonlinear fractional differential equation with initial conditions. Many arti-
cles concerned with the application of shifted Legendre polynomials have appeared in the
literature [26, 27, 28, 29].

The article is organized as follows: In the section 1, some basic definitions and prop-
erties of fractional order derivatives and Legendre polynomials are discussed. In Section
2 the application of the method is shown. Section 3 contains the numerical results with
discussion. Finally, we conclude the paper with some remarks in Section 4.
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2 Preliminaries and notation

In this section, we give some definitions and properties of the fractional calculus.

label=() The fractional-order derivative in the Caputo sense [30] is defined as

Dαψ (ξ) =
1

Γ (n− α)

∫ ξ

0

ψ(n) (t)

(ξ − t)α+n−1dt, n− 1 < α ≤ n, n ∈ N,

where α, the order of the derivative, is a non-negative real number.

lbbel=()

Dα ξλ =

{
Γ(λ+1)

Γ(λ−α+1) ξ
λ−α, for λ ∈ N

⋃
{0}, λ ≥ dαe or λ /∈ N, λ > bαc ,

0, for λ ∈ N
⋃
{0}, λ < dαe .

where dαe is the ceiling function denotes the smallest integer greater than or
equal toα and bαc is the floor function which is largest integer less than or equal
to α.

lcbel=() The Caputo fractional differentiation is a linear operation

Dα(a1ψ1(ξ) + a2ψ2(ξ)) = a1D
αψ1(ξ) + a2D

αψ2(ξ),

where a1 and a2 are constants.

2.1 Analysis of numerical methods

The Legendre polynomials of degree n are defined on the closed interval [−1, 1] and can be
formulated through the following recurrence formula

(2.1) (n+ 1)Ln+1(y) = (2n+ 1)yLn(y)− nLn−1(y), n ∈ N,

with Ln (y) = 1, n = 0

Ln(y) =

{
1, n = 0
y, n = 1.

In order to use these Legendre polynomials on the interval [0, 1], we define the shifted
Legendre polynomials by using the change of variable y = 2x − 1. Denoting the shifted
Legendre polynomials Ln(2x− 1) as Pn(x), we obtain the recurrence relation

(2.2) (n+ 1)Pn+1(x) = (2n+ 1)(2x− 1)Pn(x)− nPn−1(x), n ∈ N

where for and the polynomials of degree zero and one are 1 and 2x − 1 respectively. The
closed form of the shifted Legendre polynomials Pn(x) is
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Pn (x) =
n∑
i=0

(−1)n+i (n+ i) !xi

(n− i) (i!)2

and

Pn(x) =

{
(−1)n, x = 0,
1, x = 1.

Legendre polynomials satisfy the orthogonal relation in [0, 1] as∫ 1

0
Pm(x)Pn(x)dx =

{
1

2n+1 , m = n,

0, m 6= n.

Any function which is square integrable in[0, 1] may be expressed in terms of shifted
Legendre polynomials as

(2.3) y(x) = Σ∞m=0cmPm(x),

The coefficients cm are given by

(2.4) cm = (2m+ 1)

∫ 1

0
y(x)Pm(x)dx, m ∈ N.

Let us consider the first (k + 1)- terms shifted Legendre polynomials as

(2.5) y(ξ) = Ctφ(ξ),

where

(2.6) Ct = [c0, c1, · · · , ck],

and

(2.7) φ(ξ) = [P0, P1, · · · , Pk]t.

The first derivative of the shifted Legendre vector φ(x) is D(1)φ(x), where D(1) is the
(k + 1)2 operational matrix of derivative is given by

(2.8)

D(1) = (aij) =


4m− 2, form = n− i,

{
i = 1, 3, ..... k, when k is odd number,
i = 1, 3, ..... (k − 1), when k is even number,

0, otherwise

The p-th derivative is given by
(
D(1)

)p
where

(2.9) D(p) =
(
D(1)

)p
,

which will help to generalize the operational matrix of derivative of shifted Legendre
polynomials from integer order to fractional order.
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Theorem 2.1. If Pi (x) is a shifted Legendre polynomial, then its fractional order deriva-
tive is

(2.10) DαPi (ξ) = 0, n = 0, 1, ........ , dαe − 1, α > 0.

Theorem 2.2. Let φ (ξ) be shifted Legendre vector and suppose α > 0 then

(2.11) Dαφ (ξ) ∼= D(α)φ (ξ)

where D(α)is the (m+ 1)2 operational matrix of fractional derivative of order α in the Ca-
puto sense and is defined as

(2.12) D(α) =



0 0 · · · 0
...

...
...

...
0 0 · · · 0∑dαe

i=dαe ωdαe,0,i
∑dαe

i=dαe ωdαe,1,i · · ·
∑dαe

i=dαe ωdαe,k,i
...

... · · ·
...∑n

i=dαe ωn,0,i
∑n

i=dαe ωn,1,i · · ·
∑n

i=dαe ωn,m,i
...

... · · ·
...∑k

i=dαe ωk,0,i
∑k

i=dαe ωk,1,i · · ·
∑k

i=dαe ωk,k,i


where ωn,m,i is given by

ωn,m,i = (2m+ 1)
m∑
l=0

(−1)λ (n+ i) ! (l +m) !

(n− i) ! i ! Γ (i− α+ 1) (m− l) ! (l !)2 (i+ l − α+ 1)
,

and λ = n+m+ i+ land in D(α)the first dαe rows are all zero.

In particular, for m = 5, the shifted Legendre operational matrices of fractional order
derivative D(α) for α = 0.9 and α = 1.8 are given by

D(0.9) =


0 0 0 0 0 0

1.9111 0.2730 −0.1321 0.0857 −0.0626 0.0489
−0.2730 4.9936 0.6326 −0.3155 0.2113 −0.1585
1.7790 −0.3595 7.7555 1.02944 −0.5292 0.3625
−0.3587 4.6781 −0.3111 10.3539 1.4487 −0.7639
1.7163 −0.5709 7.2889 −0.2078 12.8440 1.8834



D(1.8) =


0 0 0 0 0 0
0 0 0 0 0 0

10.8912 2.9703 −1.2376 0.7425 −0.5140 0.3851
−4.9505 40.8422 10.6084 −4.6649 2.9258 −2.0944
33.4163 −4.9505 81.3987 23.7148 −11.0436 7.1856
−16.0893 105.9610 2.3954 130.619 42.9601 −23.7259


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2.2 Applications of the operational matrix of fractional derivative

Consider the multi-order nonlinear fractional order differential equation with initial condi-
tion as

(2.13) Dαy (ξ) = φ
(
ξ, y (ξ) , Dβ1y (ξ) , .......Dβjy (ξ)

)
,

(2.14) yj (ξ0) = aj , j = 0, 1, ..., n,

where n < α ≤ n+ 1 and βj are positive monotonically increasing and bounded by 0
and αi.e.,

0 < β1 < β2 < ..... < βj < α.

To apply the of shifted Legendre polynomials to equation (2.13), we first approximate
y (ξ)with Dαy (ξ)and Dβky (ξ)for k = 0, 1, ...., j as

(2.15)
y (ξ) =

∑m
i=0 ciPi (ξ) = Ctφ (ξ) ,

Dαy (ξ) = CtDαφ (ξ) = CtD(α)φ (ξ) ,
Dβy (ξ) = CtDβkφ (ξ) = CtD(βk)φ (ξ) , k = 1, ......j


Substituting these equations in (2.14), we get

(2.16) CtDαφ (ξ) = f
(
ξ, Ctφ (ξ) , CtD(β1)φ (ξ) , .......CtD(βj)φ (ξ)

)
Also using the equations (2.9) and (2.3) in the initial conditions (2.14), we get

(2.17)
yj (ξ0) = Ctφ (ξ0) = a0,
y(j) (ξ0) = CtD(j)φ (ξ0) = dj , j = 1, ......, n.

To find the solution, we first collocate equation (2.16) at (m−n) points by using (m−n)
shifted Legendre roots of Pm+1 (ξ). These equations together with equation (2.17) generate
(m+ 1) nonlinear equations which can be solved using Newton’s iterative method.

3 Application of the Method

In this section, three numerical examples are considered for the above technique to illustrate
the applicability and accuracy of the proposed method. All the numerical computations
are carried out using the software Mathematica. Comparisons of the results obtained by
the present technique with those obtained by other methods reveal that the present method
is very effective and convenient.

Consider the nonlinear multi-order fractional Vander Pol differential equation [31]

(3.1)
dαy

dtα
− γ

(
1− y2

) dβy
dtβ

+ y = f (t) , t > 0, 0 < α ≤ 2, 0 < β ≤ 1.
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Subject to

(3.2) y (0) = 0 and y
′
(0) = 0.

Substituting y (t) =
∑m

i=0 ci Pi (t) = Ctφ (t), the equations (3.1) and (3.2) are converted
to

(3.3) Ct D(α)φ (t)− γ
(

1−
(
Ctφ (t)

)2)
Ct D(β)φ (t) + Ct φ (t) = t

with

(3.4) Ctφ (0) = 0 and CtD(1)φ (0) = 0

To get the solution of the problem we first collocate equations (3.3) using suitable
collocation points of the first (m − n) shifted Legendre roots of Pm+1 (t) . Equation
(3.3) together with equation (3.4) generate (m+ 1) non-linear equations which can be
solved by the Newton’s Iterative method using Mathematica or Matlab.

The absolute error for different fractional order α and β and different values of m are
shown in Table 1. A good approximation can be achieved through increasing the terms
of the shifted Legendre polynomials. The numerical results for y (t) for m=2, 3, 5 and
α = 1.8, β = 0.8; α = 1.9, β = 0.9 and for standard order α = 2.0, β = 1.0 are plotted
in Figures 1(a), 1(b) and 1(c). These plots also imply that the numerical solutions are
bounded and our numerical technique is stable.

Here the nonlinear fractional Emden-Fowler equation [32] which has received a great
deal of attention for its physical importance and mathematical significance, is described
as

(3.5)
dαy

dxα
+

2

x

dy

dx
+ aϕ1 (x) ϕ2 (y) = 0, 0 < α ≤ 2

subject to

(3.6) y (0) = ψ (x) and y′ (0) = 0,

where ϕ1 (x) = x2and ϕ2 (y) = y2

Let

(3.7) y (x) =

m∑
i=0

ci Pi (x) = Ctφ (x)

Choosing the same expression of y (x) as in problem 1, we get

(3.8) xCtD(α)φ (x) + 2CtD(1)φ (x) + a x2
(
Ctφ (x)

)2
= 0
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with the initial conditions

(3.9) Ctφ (0) = ψ (0) and CtD(1)φ (0) = 0,

Here we have used Mathematica to solve equations (3.8) and (3.9) for a = 1 and
ψ (x) = 1 and also for α = 1.8, 1.9 and standard order α = 2.0 for m = 2, 3, 5. The
plots are depicted through Fig. 2(a), 2(b) and 2(c) respectively. The errors of y (x) at
given points for different values of m are shown in Table 2.

The Ricatti equation plays a big role in the wide fields of applied and engineering sci-
ences such as the transmission-line phenomena, theory of random processes, optimal
control theory and diffusion problems etc. The Riccati equation refers to matrix equa-
tions with an analogous quadratic term, which occurs in both continuous and discrete-
time linear-quadratic-Gaussian control.

The fractional order Riccati equation [33] considered is given as

(3.10)
dαy (x)

d xα
= a0 (x) + a1 (x) y (x) + a2 (x) y (x)2 , 0 < α ≤ 1,

subject to initial condition

(3.11) y (x0) = a,

where a0 (x) 6= 0 and a2 (x) 6= 0.

Applying the method, we get

(3.12) CtD(α)φ (x)− a0 (x)− a1 (x) Ctφ (x)− a2 (x)
(
Ctφ (x)

)2
= 0

with

(3.13) Ctφ (x0) = a

In this Example a0 (x) = 1, a1 (x) = 2, a2 (x) = −1,and x0 = a = 0 are consider
during numerical computation. After using the method which is described in section
2, the differential equation is converted to a system of algebraic equations where the
unknowns can be found by using the Newton iterative method. The plots are shown
in Figures 3(a), 3(b) and 3(c) for m=2, 3 and 5 and for different values of fractional
order α = 0.8, 0.9 and standard order α = 1. The errors of y (x) at given points for
different values of m are shown in Table 3.

Variations of solution function y for three considered example are plotted and displayed
through Figures 4(a), 4(b) and 4(c) respectively for the values of m = 2, 3 and 5 for
different values of fractional orders. It is seen from the figures that as the orders of the
operational matrices increase, the solution profiles coincide for each example considered
even for arbitrary choices of fractional order derivatives.
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Fig. 1: Plots of y(t) vs. t for Example 3: (a) m = 2; (b) m = 3; (c) m = 5. where in
each figure the dashed, dotted and solid lines are representing α = 1.8, β = 0.8;α =
1.9, β = 0.8;α = 2.0, β = 0.8 respectively.

Fig. 3: Plots of y (x) vs. x. For Example 3: (a) m = 2; (b) m = 3; (c) m = 5, where α = 0.8,
α = 0.9, α = 1.0 is represented by dashed, dotted and solid line respectively.
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Tab. 1: Absolute error for different fractional order and different values of m for Example
3

m = 2 m = 3 m = 5

x
α = 1.8
β = 0.8

α = 1.9
β = 0.9

α = 2.0
β = 1.0

α = 1.8
β = 0.8

α = 1.9
β = 0.9

α = 2.0
β = 1.0

α = 1.8
β = 0.8

α = 1.9
β = 0.9

α = 2.0
β = 1.0

0.1 9.1e-4 7.5e-4 7.4e-4 3.7e-4 2.4e-4 1.4e-4 3.9e-4 2.4e-4 1.7e-4
0.2 3.6e-3 3.0e-3 2.9e-3 2.4e-3 1.8e-3 1.3e-3 2.6e-3 1.8e-3 1.3e-3
0.3 8.2e-3 6.8e-3 6.6e-3 7.8e-3 6.1e-3 4.8e-3 8.1e-3 6.1e-3 4.8e-3
0.4 1.4e-2 1.2e-2 1.1e-2 1.7e-2 1.4e-2 1.1e-2 1.8e-2 1.4e-2 1.1e-2
0.5 2.2e-2 1.8e-2 1.8e-2 3.4e-2 2.8e-2 2.3e-2 3.5e-2 2.8e-2 2.3e-2
0.6 3.3e-2 2.7e-2 2.6e-2 5.8e-2 4.9e-2 4.1e-2 5.9e-2 4.9e-2 4.1e-2
0.7 4.5e-2 3.7e-2 3.6e-2 9.1e-2 7.7e-2 6.5e-2 9.2e-2 7.8e-2 6.6e-2
0.8 5.8e-2 4.8e-2 4.7e-2 1.3e-1 1.1e-1 9.8e-2 1.3e-1 1.1e-1 1.0e-1
0.9 7.4e-2 6.1e-2 6.0e-2 1.9e-1 1.6e-1 1.4e-1 1.9e-1 1.6e-1 1.4e-1
1.0 9.1e-2 7.5e-2 7.4e-2 2.6e-1 2.2e-1 1.9e-1 2.6e-1 2.3e-1 2.0e-1

Tab. 2: Absolute error for different fractional order and different values of m for Example
3

m = 2 m = 3 m = 5
x α = 1.8 α = 1.9 α = 2.0 α = 1.8 α = 1.9 α = 2.0 α = 1.8 α = 1.9 α = 2.0
0.1 9.1e-1 9.1e-1 9.1e-1 1.0e-0 1.0e-0 1.0e-0 9.9e-1 9.9e-1 9.9e-1
0.2 9.1e-1 9.1e-1 9.1e-1 9.9e-1 9.9e-1 9.9e-1 9.9e-1 9.9e-1 9.9e-1
0.3 9.1e-1 9.1e-1 9.1e-1 9.9e-1 9.9e-1 9.9e-1 9.9e-1 9.9e-1 9.9e-1
0.4 9.1e-1 9.1e-1 9.1e-1 9.9e-1 9.9e-1 9.9e-1 9.9e-1 9.9e-1 9.9e-1
0.5 9.1e-1 9.1e-1 9.1e-1 9.9e-1 9.9e-1 9.9e-1 9.9e-1 9.9e-1 9.9e-1
0.6 9.1e-1 9.1e-1 9.1e-1 9.9e-1 9.9e-1 9.9e-1 9.9e-1 9.9e-1 9.9e-1
0.7 9.1e-1 9.1e-1 9.1e-1 9.8e-1 9.8e-1 9.9e-1 9.8e-1 9.8e-1 9.8e-1
0.8 9.1e-1 9.1e-1 9.1e-1 9.8e-1 9.8e-1 9.9e-1 9.7e-1 9.7e-1 9.7e-1
0.9 9.1e-1 9.1e-1 9.1e-1 9.7e-1 9.7e-1 9.7e-1 9.6e-1 9.6e-1 9.6e-1
1.0 9.1e-1 9.1e-1 9.1e-1 9.6e-1 9.6e-1 9.7e-1 9.4e-1 9.4e-1 9.5e-1

Tab. 3: Absolute error for different fractional order and different values of m for Example
3

m = 2 m = 3 m = 5
x α = 0.8 α = 0.9 α = 1.0 α = 0.8 α = 0.9 α = 1.0 α = 0.8 α = 0.9 α = 1.0
0.1 2.1e-1 1.5e-1 1.1e-1 2.0e-1 1.4e-1 1.0e-1 2.1e-1 1.5e-1 1.1e-1
0.2 4.2e-1 3.1e-1 2.4e-1 4.1e-1 3.1e-1 2.4e-1 4.1e-1 3.1e-1 2.4e-1
0.3 6.2e-1 4.9e-1 3.9e-1 6.3e-1 5.0e-1 3.9e-1 6.2e-1 4.9e-1 3.9e-1
0.4 8.3e-1 6.8e-1 5.5e-1 8.5e-1 7.0e-1 5.7e-1 8.5e-1 6.9e-1 5.6e-1
0.5 1.0e-0 8.8e-1 7.4e-1 1.0e-0 9.0e-1 7.5e-1 1.0e-0 9.0e-1 7.5e-1
0.6 1.2e-0 1.0e-0 9.4e-1 1.2e-0 1.1e-0 9.4e-1 1.2e-0 1.1e-0 9.5e-1
0.7 1.4e-0 1.3e-1 1.1e-1 1.4e-1 1.2e-1 1.1e-1 1.4e-0 1.3e-1 1.1e-1
0.8 1.6e-0 1.5e-0 1.4e-0 1.5e-0 1.4e-0 1.3e-0 1.5e-0 1.4e-0 1.3e-0
0.9 1.8e-1 1.8e-1 1.6e-1 1.6e-0 1.6e-0 1.5e-0 1.7e-0 1.6e-0 1.5e-0
1.0 2.0e-1 2.0e-1 1.9e-1 1.7e-0 1.7e-0 1.7e-0 1.9e-0 1.7e-0 1.6e-0

4 Conclusion

In the present scientific contribution a general formulation for the shifted Legendre op-
erational matrix of fractional derivatives is used to approximate numerical solutions of a
class of fractional order differential equations. The approach was based on the collocation
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methods. It is shown that based on our proposed approach few terms of the shifted Leg-
endre polynomials are needed to obtain accurate results. The most important part of the
study is the graphical exhibition of accuracy of the solution profiles through increase in
the orders of the operational matrices.
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Fig. 2: Plots of y (x) vs. x. For Example 2: (a) m = 2; (b) m = 3; (c) m = 5, where in
each figure the dashed, dotted and solid lines are representing α = 1.8, α = 1.9,
α = 2.0 respectively.
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Fig. 4: (a). Comparisons of y (t) for m = 2, 3, 5 with
dashed (α, β) =(1.8, 0.8) ,dotted (α, β) =(1.9, 0.9) , thick (α, β) =(2.0, 1.0) for
Example 3;
(b). Comparisons of y (x) for m = 2, 3, 5 with dashed α = 1.8,dotted α = 1.9,
thick α = 2.0, for Example 3;
(c). Comparisons of y (x) for m = 2, 3, 5 with dashed α = 0.8,dotted α = 0.9,
thick α = 1.0 for Example 3.


