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Some Results on Coupled Fixed Point on Complex Partial
b—Metric Space
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Abstract

The purpose of this paper is to establish a coupled fixed point results
on complex partial b—metric space under contractive condition with some
examples are presented to illustrate the facts.
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1 Introduction

In 1922 [1] the Banach contraction mapping theorem is popularly known as Banach con-
traction mapping principle, is a rewarding in result fixed point theory. Bakhtin,[2] and
Czerwik [3] introduced b-metric spaces. Azam at al. [4] introduced the concept of complex
valued metric spaces. So, many researches [5, 6, 7, 8][10, 11, 12] studied the extension of
fixed point results in metric spaces. Hassen Aydi [9] introduced coupled fixed point theo-
rems in partially ordered metric using contractive condition. we refer [13, 14, 15, 16]. In
this paper, we further generalize and extend the results of some coupled fixed point results
on complex partial b—metric spaces under contractive conditions.

2 Preliminaries

Let C be the set of complex numbers and A, A2 € C. Define a partial order < on C as
follows:

3 * as corresponding author: vnm@gntu.ac.in,vishnunarayanmishra@gmail.com
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A1 = A2 if and only if Re(A1) < Re(A2) and Im(A1) < Im(A2).
Consequently, one can infer that A\; < Ao if one of the following conditions is satisfied:
(i) Re(A1) = Re(A2) and Im(\) < Im()\2),
) Re(A1) (A2) (A (A2),
(ili) Re(A1) < Re(A2) and Im(\) < Im(A2),
) Re(A1) = Re(X2) (A) = Im(Ag)-

A2) and Im(A) = Im

Re(X2) and Im

In particular, we will write A1 3 A2 if Ay # A2 and one of (i), (i4) and (i74) is satisfied and
we will write Ay < Ay if only (i27) is satisfied. Notice that

(a) Ifo <\ ; Az, then ‘)\1| < ‘)\2‘,
(b) If A1 < X9 and A9 < A3 then A\ < Ag,
(c) If a,b € R and a < b then aA; =< bA; for all A\; € C.

Definition 2.1: [8] A complex partial b—metric on a non-void set X is a function (g :
X x X — C7 such that for all \, u,x € X:

(1) 0% Co(A 1) = Cap(A, 1) (smallsel f — distances)

(i) Ceb(A, 1) = Cep(p, A) (symmetry)
(iti) Cep(A A) = Ceb(A, 1) = Cep(p, 1) & A = pequality)
)

3 a real number s > 1 such that
Ceb(As 1) = 8[Cab(A, k) + Cen (ks )] = Cen(k, &) (triangularity).

A complex partial b—metric space is a pair (X, () such that X is a non-void set and (.
is complex partial b—metric on X. The number s is called the coefficient of (X, ().

(iv

Remark 2.2:In a complex partial b—metric space (X, (yp) if A,p € X and (p(A,n) = 0,
then A = u, but the converse may not be true.

Remark 2.3:It is clear that every complex partial metric space is a complex partial b—metric
space with coefficient s = 1 and every complex valued b—metric is a complex partial
b—metric space with the same coefficient and zero self-distance. However, the converse of
this fact need not hold.

Now, we define Cauchy sequence and convergent sequence in complex partial b—metric
spaces.

Definition 2.4: Let (X, () be a complex partial b—metric space with coefficient s. Let
{A\n} be any sequence in X and A € X. Then

(i) The sequence {\,} is said to be convergent with respect to 7 and converges to A, if

nh—>Igo ch()\na >\) = ch()\a )‘)
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(ii) The sequence {\,} is said to be Cauchy sequence in (X, () if
lim  (p(An, Ap) exists and is finite.
7,M—00

(i) (X, () is said to be a complete complex partial b—metric space if for every Cauchy
sequence {\,} in X there exists A\ € X such that

lim ey (An, Am) = 1 Cop(Ans A) = Ceb(A, A).-

n,Mm—00

(iv) A mappings £ : X — X is said to be continuous at A\g € X if for every € > 0, there
exists w > 0 such that {(B¢,, (Ao,w)) C B, (£(Xo,€)).

Let X be a complex partial b—metric space and B C X. A point A € X is called an
interior of set B, if there exists 0 < r € C such that B¢, (A7) = {p € X : {a(Ap) <
Ceb(A, A\)+7r} C B. A subset B is called open, if each point of B is an interior point of B. A
point A € X is said to be a limit point of B, for every 0 < r € C, Be,, (A, 7)N(B—{\}) # ¢.
A subset B C X is called closed, B contains all its limit points.

Lemma 2.5:[8] Let (X,(s) be a complex partial b—metric space. A sequence {\,} is
Cauchy sequence in the CPBMS (X, () then {),} is Cauchy in a metric space (X, (%))

Definition 2.6:Let (X, (s) be a complex partial b—metric space(CPBMS). Then an el-
ement (A, k) € X x X is said to be a coupled fixed point of the mapping £ : X x X — X
if (A, k) = X and &(k, \) = k.

3 Main Results

Theorem 3.1. Let (X,(s) be a complete complex partial b—metric space. Suppose
that the mapping £ : X x X — X satisfies the following contractive condition for all
A, kv EX

ch(f()‘v M)a 5("1; V)) = ach(f()‘a M)7 FG) + /Bch(é(/ia V)7 )‘)7

where a, B are nonnegative constants with o+ 20 < 1. Then, £ has a unique coupled fixed
point.

Proof. Choose Ao, 1o € X and set A\; = &(Ao, o) and p1 = &(po, Ao). Continuing this

process, set A1 = (A, ) and pp1 = E(tn, An)-
Then,

Ceb(Ans Ant1) = Ceb(§(An—1, n—1), §(An, ftn))
= alep(§(An—1, tn—1), An) + 5<cb(£()‘na fin)s An—1)
= aleb(Ans An) + BCeb(Ant1, An—1)
et (Ans Ant1) + BCeb(Ant15 An—1)
()‘m n—i—l) + /B(ch( n+1, /\n) + cho\m )\n—l) - ch()\na /\n))
(>‘m )‘n+1) + ﬁ(ch( n+1, )\n) + cho\n» Anfl))

p
mc@()\na )\n—l)

A TATA
Q
o

IA
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which implies that

p
(3'1) |(cb()‘n> >\n+1)| < mmcb()\m )\nfl)|
Similarly, one can prove that
(3‘2) |CCb(l’Ln’ ,U/n-i-l)’ < l—(gMKCb(Mm ,un—l)|
From (3.1) and (3.2), we get
|ch(Ana An—l—l)‘ + ’ch(ﬂnvﬂn—&—l” S M(\ch()\n, )\n—1)| + |ch(,ufnnuln—1)‘)

= p(|Ceb( Ay An—1)| + |Ce (ptn pin—1)1)

where p = % < 1.

Also,

(3'3) |<b()‘n+1 n+2)| L|C0b()\n An71)|
‘ ’ “1-(a+p) ’

(3~4) ’ch(ﬂn—&-la Mn—l—?)‘ < M’ch(ﬂm Un—l)‘

From (3.3) and (3.4), we get

|ch()\n+1a )\n+2)| + |ch(;un+17/ﬁn+2)| < M(‘ch()‘na )\nfl)| + |ch(,unnun71)|)

= p([Ceb(Ans An—1)] + [Ceb (i, fin—1)])
Repeating this way, we get
|Ceb(Ans Ant1)| + [Ceb (b, 1) | < (e (Ans An—1)] + [Ceb(ttns pn—1)1)
< p*(ICeb (k25 pin—1)| + b (An—2, An—1)])
< <" (€ (k05 1) |+ [Cen (Ao, A1)])
Now, if |Cep(Any Antr1)| + [Ceb (ony int1)| = On, then

(3.5) O < pon—1 < 2o < -+ < p"do

If o = 0 then [(ep(Ao, A1)] + [Cev(p0, p1)] = 0. Hence A\g = Ay = (Ao, po) and pg = p1 =
&(uo, No), which implies that (Ao, po) is a coupled fixed point of &.
Let §g > 0. For each n > m,we have

Ceb(Ans Am )<S[ch(/\n,>\n 1) + Ceb(An—1, An—2)] = Cep(An—1, An—1)
[ch( n—2, An—3) + Ceb(An—3, An—4)] — Cebp(An—3, An—3)
4+ 8" [Cep(Ama2, m+1)+ch( m+1s Am)] = Ceb(Amt15 Am+1)
= Sch(An,/\n—1)+82ch( n—1, An—2) + -+ 8"Cp(Ami1, Am)
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which implies that
|ch(/\na )\m)| < SKCb()\na )\nfl)| + 82|ch()\n717 /\n72)| +- Sm‘ch()\erla )\m)|a

Similarly, one can prove that

|<cb(ﬂn,ﬂm)| < 5|ch(ﬂna Mn—l)| + 52ch(,un—lvﬂn—2)| + -+ 5m|<cb(ﬂm+l7ﬂm)|a
Thus,
‘ch()\m )\m)‘ + ’ch(ﬂnvﬂm)’ < 35n 1+ 32571 2+ 33571 3+ -+ Sm(sm
( +S2pn 2+83pn 3+"-+Smpm)50
sp™
1—sp

IA |

IN

00— 0 n— .

which implies that {\,} and {u,} are Cauchy sequence in (X,(y). Since the partial
b-metric space (X,(s) is complete, there exists A,u € X such that {\,} — X and

{pn} = pas n — oo and (a(A,A) = lim Cp(AAn) = Tim_ Cep(Any Am) = 0, Canp, 1) =
nh—{go ch(lu’a Mn) = n’}}briloo ch(“nv Hm) = 0.

Now we have to show that A = £(\, u). We suppose on the contrary that A # &(\, u)
and p # &(p, A) so that 0 < Cep(A, (A, 1)) = en and 0 < Cep(p, §(11; A)) = @z, then

a1 = Cap(A, E( 1)) 2 Ceb(As Ant1) + Cap(Ant1, (A, 1))
= Ceb Aaﬂﬂ-ﬁ—l) +€cb( ( mun)vg()‘aﬂ))
= Ceb >\a)\n+1) +a<cb( ( n,ﬂn)a)\) +ﬁ<cb(§()‘nu’)v)‘n)
= (b (A Ant1) + aep(Ant1, A) + BCeh(E(A, 1), An)

A~~~ I/~~~

which implies that

1] < [Cep(A, Ang1)] 4 alCeb(An, M) + BlCen (E(A, 1), An)]

As n — oo, |ai| < 0. Which is a contradiction, therefore [(p(N, (A, 1)) =0 = X =
&(A, p). Similarly we can prove that g = (i, ). Thus (A, p) is a coupled fixed point of &.
Now, if (u,v) is another coupled fixed point of £, then

ch(Av /’L) = ch(g(Aa /")7 g(ua U)) = Oé(:cb(f()\, U)v u) + Bc:cb(f(uv U)’ )‘)?

Thus,

(3.6) (1= (a+B))Ceb(A;p) 20
which implies that

(3.7) (1= (a+B)lCb(A u)] <0
Similarly,

(3.8) (1= (a+8))lCe(p,v)[ <0

From (3.7) and (3.8), since a + < 1. Therefore A = u and p = v

= (A, pt) = (u,v). _
Thus, £ has a unique coupled fixed point. O
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From Theorems (3.1) with a = 3, we get the following corollary.

Corollary 3.2. Let (X,(s) be a complete complex partial b-metric space. Suppose
that the mapping £ : X x X — X satisfies the following contractive condition for all
AN, kv e X

(39) ch(f()U M)? 5(57 V)) = O‘(ch(é()‘a M)? H) + ch(f(/i, V)? )‘))7

where o are nonnegative constants with a < % Then, & has a unique coupled fixed point.

Let X = [0, 00) endowed with the usual complex partial b—metric (4: X X X — [0, 00)
defined by (A, 1) = [max{, u}]*> (14i). The complex partial b—metric space (X, Cap)
is complete because (X, (%) is complete with coefficient s = 2. Indeed, for any \, i € X,

Cep = 2ab(A, k) = Cap(A, A) — G, )
= 2max{A, @}]*(1+14) — (A +iA) — (u +ip)
= A= pl? +i[A - uf
Thus, (X, () is the Euclidean complex metric space which is complete. Consider the

mapping £: X x X — X defined by {(\, p) = [/\;f]g. For any A, pu,u,v € X, we have

(60 ), 1, ) = 5 TmasfA+ 1, €0 ) + €, 0)} (L +1)

< olmax{€0\ p), A} + max{é(, o), o} 12(1 +1)

_ ;z[gcb(()\,ﬂ), ) + (€ (u, ), w)].

which is the contractive condition (3.9) for o = % Therefore, by Corollary 3.2, ¢ has

a unique coupled fixed point, which is (0,0). Note that if the mapping {: X x X — X

is given by £(A\, u) = M, then ¢ satisfies the contractive condition (3.9) for a = 1,

that is,

Ceb(E(A; 1), €(u,0)) = %[maX{A +u, €, ) + &(u, )} (1 + 1)

< glmax{€0\ ), A} + max{g(u o), uh(1+ 1)

= %[ch()\, U) + ch(lu'v ’U)]

In this case, (0,0) and (1,1) are both coupled fixed points of &, and hence, the coupled
fixed point of £ is not unique. This shows that the condition @ < 1 in Corollary 3.2,
and hence o+ 8 < 1 in Theorem 2 cannot be omitted in the statement of the aforesaid
results.
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Theorem 3.3. Let (X, () be a complete complex partial b—metric space. Suppose that
the mapping & : X x X — X satisfies

ch(g()\v #)7 f(’{a V)) =r maX{ch()\a /{)a ch(#7 1/)7 ch(g(Aa M)? )‘)7 ch(é.(/{a V)a "’i)}a
for all \,p,k,v € X. If r € [0,1), then & has a unique coupled fized point.
Proof. Choose Ao, 1o € X and set A\; = &(Ao, o) and p1 = &(po, Ao). Continuing this

process, set A1 = (A, ) and pip1 = E(tn, An)-
Then,

Ceb(Ant1, Ant2) = Ceb(E(Ans tn)s E(Ant1, pint1))
=< rmax{Ce(Ans An+1)s Ceb (tns tnt1)s S (E(An, tin), An),s
Ceb(§(Ant1s Bn+1)s Ang1) }
= rmax{Cep(An, Ant1), Ceb(tns tnt1), Ceb(Ans1, An),
Ceb(An+2, An+1)}
=r max{gcb()‘na )‘n+1)7 ch(ﬂna Mn+1)}

which implies that

(3.10) |Ceb (A1, Anr2)| < rmax{[Cep (A, Ant1)ls [Ceb (Hns fint1)]}-

Similarly, one can prove that
(3'11) |ch(un+1a Mn+2)| <r maX{ch(,um :unJrl)‘: |ch()‘n> )\n+1)|}'

From (3.10) and (3.11), we get

(312) maX{ch()\n-‘rlv )‘n+2)|7 |ch(ﬂn+1a ,U'n—i-Q)‘} < T’maX{ch(an, ,U'n—l—l)‘; |ch()\n7 )‘n—l—l)’}

Continuing this process,.we get

maX{ch()\na )\n+1)|a |<cb(ﬂn7 ,UJnJrl)’} <r maX{ch(,unfl, ,un)’a |ch(>‘n717 )\n)|}
< r’ max{|(eh(tn—2, tn—1), [Ccb(An—2, An—1)|}

< r" max{|Cep (10, 1)1 [eb( Aoy A1)}

As n — oo,

Jim max{|Cep(An, Ant1)]s [Ce (b 1)} = 0.
Therefore,
(3.13) Jim [Cep(An, Ant1)| = 0,

(3.14) lim ‘ch(,um,ufﬁl)’ =0
n—oo
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For each n > m, we have

Ceb(Any Am )<S[ch(Ana>\n 1)+ Ceb(An—1, An—2)] = Cep(An—1, An—1)
ch( n—2, An—3) + Ceb(An—3, An—4)] = Ceb(An—3, An—3)
+ o+ 8" [Cop(Amas m+1)+ch( m41> Am)] = Ceb(Ama1, Amy1)
= SCCb()\nvAn—l) + 8% Cb( A1, An2) + - + 8™ (A1, Am)
which implies that

|ch(/\na )\m)| < 5’ch()\na )\nfl)| + 32|ch(>\nfla /\n72)| +- 4+ Sm‘ch()\erla )\m)|

Therefore,

1Ceb(Ans A )| < ™ max{|Cepn (o, 111)], [Ceb (Ao, A1)}

As n,m — oo,
lim |Cep( Ay Am)| = 0.
n—oo

Similarly, one can prove that

ch(ﬂmﬂm)‘ < SKCb(Mm Mn—l)‘ + 32‘<cb(,uln—la,un—2)’ + -+ Schb(ﬂm—i—hﬂm)‘a
Ceb(fny pian) | < 7™ max{|Cep (pt0, p11) |5 [t (Xos A1)}

71131010 ch(,um ,U/m)‘ =0.

which implies that {\,} and {u,} are Cauchy sequence in (X, (). Since the partial
b—metric space (X, (s) is complete, there exists A\,u € X such that {A\,} — X and
{:U’n} — pasn — o0 and ch(>\7 A) = hHm ch()\7 )\n) = IHB ch(Anu >\m) =0, C‘cb(,ufa M) =

lim ch(:uv /’Ln) = lim ch(ﬂna,um) = 0.
n—00 n,Mm—00
Now,

ch()\,f(A,,u» = CCb(Aa )\n+1) + ch(An—l-l, ( ))

= ch(/\a )\n+1) + ch(f( ) Mn) f()\, M))
= ch(>‘v )\n+l)

+r maX{ch()‘na >‘)7 ch(:una :u)v ch(f()\n, Nn)a )\n)y ch(g()\, N)a )\)}
= ch(Av )\n+1)

+7r maX{ch()‘Tm )‘)7 <cb(/~’/na /j’)a ch(An—f—l, )\n)a ch(g()H ,u’)v )‘)}7
which implies that

’ch()Vf()‘:,u)” S ‘ch()\a)\n—i-l)‘
+ Tmax{‘gcb()‘m )‘)‘7 ‘ch(,um N)|7 ’ch(/\n—f—l; )‘n)‘v ‘ch(f(/\, M)v /\)’}



GANITA Vol.71(2), 2021, 17-27 25

As n — oo, ch(/\7§()‘a M))| < T|<Cb(§(>‘7u)v A)’

Since [0,1), therefore |(p(X, €A\, 1)) =0 = X = &(A\, p). Similarly we can prove that
= &(u,A). Thus (A, p) is a coupled fixed point of &. Now, if (u,v) is another coupled
fixed point of &, then

ch()‘7 u) - ch(f()‘a ,u), g(“? U)) =r maX{ch<)‘7 u)? ch(,u, ’U), ch(f(k, M)a A)?
ch(f(u,v),u)}
=r maX{ch()\’ u)7 ch(,uv U)’ ch()" )‘)7 ch(uv u)}’

Since gcb()‘a )‘) = ch(Avu) and ch(ua u) = gcb()‘7u)a we have
ch()\a u) =r maX{ch(A, u)7 ch(:u’7 U)}

(3.15) [Ceb (X, w)| < rmax{|Cep (A, w)l, [Cen(p, v)[}-

Similarly, we can prove

(3'16) |ch(:u’ U)| < rmax{|§cb()\,u)|, |<cb(/"v)|}'
From (3.15) and (3.16), we have

(3.17) max{|Cep (A, w)l, [Ceb (1, 0) |} < 7 max{|Cen (A, w)l, [Cen(p, v)[}

Since r < 1, we have max{|(u (X, )|, |1, v)|} = 0. Which implies that (4 (\, u) = 0 and
Ceb(p,v) = 0. Therefore A = u and p = v

= (A, p) = (u,v). .

Thus, £ has a unique coupled fixed point. O

Corollary 3.4. Let (X, () be a complete complex b—partial metric space. Suppose that
the mapping £ : X x X — X satisfies

ch(f()" :U’)v g(li7 V)) = alch()" “) + a2ch(:ua V) + a3ch(£()‘7 M)’ )‘) + a4ch(£(’€7 V)v V),

for all A\, p, k,v € X with ay,ag,as,a4 € [0,1), then & has a unique coupled fixed point.

Proof. The proof follows from Theorems 3.3.
Note that

alch(Av "3) + a2<cb(ﬂa V) + a3ch(£()" M)’ )‘) + a4<cb(€(’<’7 V)’ K)
< (al +ag + a3+ (14) maX{ch()‘a "{)7 ch(:ua V)a ch(f()\, )u)v )‘)a ch(é(’{a V)7 K‘)}
]

Let X = [0, 00) endowed with the usual complex partial b—metric (5: X x X — [0, 00)
defined by (e (M, 1) = [max{\, u}]?(1+1). The complex partial b—metric space (X, ()
is complete because (X, Cﬁb) is complete with coefficient s = 2. Indeed, for any A, u € X,

Céb = 2CCb()‘v ’i) - ch()‘a )‘) - ch(’i’ K)
= ofmax{\, mH2(1+ ) — (A+ i) — (s + i)
= A=l +ilA = pl
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4

Thus, (X, () is the Euclidean complex metric space which is complete. Consider the

mapping £: X x X — X defined by {(\, p) = % For any A, p,u,v € X, we have

(60 ), £, 0)) = 3 [ma{|A = gl Ju — o]0+ 1)
= %[max{)\ — s = Mu— v, — u}]2(1+14)

< %[max{)\, W, u, U}]Q(l + i)

= % max{Cep( A, u), Cep (1, v) }

% maX{ch()V u)’ ch(,u,, U)7 gcb(g()‘v M)’ )‘)7 ch(f(u, v)’ ’LL)}

PN

Thus, ¢ has a unique coupled fixed point. Here, (0,0) is the unique fixed point of &.

Conclution

We have proved a coupled fixed point results on complex partial b—metric space under
contractive condition. The existence and uniqueness of the result is presented in this
article. This article generalized and extended many existed results in the literature.
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