
GANITA,Vol.72(1), 2022, pp.223-231 223

A construction of admissible frame scaling sets on reducing
subspaces of L2(R)

G. C. S. Yadav 1and Amita Dwivedi 2

1 Department of Mathematics
University of Allahabad, Prayagraj

gcsyadav@gmail.com

2Department of Mathematics
University of Allahabad, Prayagraj

amitadwivedi8@gmail.com

Abstract
In this paper, we construct admissible frame scaling sets for reducing subspace of L2(R) and

also frame wavelet sets corresponding to this frame scaling set. Some examples of admissible
frame scaling set on reducing subspace H2(R) is constructed with the help of frame scaling set on
L2(R).
Subject Classification:[2010]Primary 42C40; Secondary 42C15

Keywords: Frame Multiresolution Analysis(FMRA), Admissible frame scaling sets, Frame wavelet
set, Frame scaling set; Hardy frame wavelet, Reducing subspace.

1 Introduction

Let H be a Hilbert space. A family of elements {a j : j ∈ τ} in H is called a frame for H if there
exist constants c1 and c2, 0 < c1 ≤ c2 < ∞ such that for each f ∈ H, we have

c1|| f ||2 6
∑
i∈τ

| < f , a j > |
2 6 c2|| f ||2.

If supremum and infimum of all such numbers c1 and c2 are C1 and C2 respectively, then C1 is
called the lower frame bound and C2 is called the upper frame bound of the frame {a j : j ∈ τ}. A
frame is said to be the tight frame when C1 = C2 and the normalized tight frame(NT Frame) when
C1 = C2 = 1 [3]. Any orthonormal basis in a Hilbert space is a normalized tight frame but all
normalized tight frames are not necessarily an orthonormal basis[11].

Let D : L2(R) → L2(R), defined by D f (·) =
√

2 f (2·) and T : L2(R) → L2(R), defined by
Tk f (·) = f (· − k), k ∈ Z then D and Tk are called dilation and translation operators respectively.
Let f ∈ L1(R) ∩ L2(R), then its Fourier transform is defined by

f̂ (ξ) =

∫
R

f (x)e−ixξdx

for a.e ξ ∈ R. Let T := [−π, π]. Hilbert space of 2π periodic functions is denoted by L2(T) and
inner product on L2(T) is defined by

< f , g >=

∫
T

f (t)g(t)dt,

where f , g ∈ L2(T). For a function f , the support of f is defined by

supp( f ) = {x ∈ R : f (x) , 0}.
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Define, symbol L2
E := { f ∈ L2(R) : supp( f̂ ) ⊂ E}. With the condition E ⊂ 2E, L2

E is a
closed subspace of L2(R) called reducing subspace of L2(R). Most important example of reducing
subspace of L2(R) is H2(R) := { f ∈ L2(R) : supp( f̂ ) ⊂ [0,∞)}, also known as Hardy space. For
ψ ∈ L2

E , let
Ψm,n(x) = {DmT nψ : m, n ∈ Z}.

If Ψm,n is a frame for L2
E , then the function ψ is called a frame wavelet for L2

E [2]. Let ψ ∈ L2(R)
defined by ψ̂ = χF , where F is a measurable set of finite measure. If ψ so defined is a frame wavelet
for L2(R), then the set F is called a frame wavelet set. Similarly F is defined as tight (normalized)
frame wavelet set if ψ is a tight (normalized) frame wavelet.

Multiresolution analysis (MRA) was introduced by Mallat and Meyer and it is the most general
method for the construction of orthonormal wavelets. A method to construct a class of wavelet sets
is also discussed in [6]. The classical theory of MRA has been extended to frame multiresolution
analysis (FMRA). FMRA theory was introduced by Benedetto and Li [1] and generalized in
different spaces like L2(Rd) and reducing subspaces in [4], [5], [7]. Some important frame wavelets
can we constucted with this process of FMRA, we can see in [7], [8] that construction of smooth
wavelets has been done with the help of wavelets arising from FMRA process. We can also
construct FMRA on L2(Rd) with the help of FMRA on L2(R). In this paper, section 2 constitute
basic preliminaries and notations. Section 3 is devoted to a construction of admissible frame
scaling sets for reducing subspaces of L2(R) and corresponding frame wavelet sets. We have also
constructed frame scaling set for Hardy Space with the help of frame scaling set for L2(R). In
section 4 we have constructed a class of examples of admissible frame scaling sets for L2(R) and
for reducing subspace H2(R).

2 Notations and Preliminaries

Let S ⊂ R be a Lebesgue measurable set. For any l ∈ Z, define

τ(S ) = ∪l∈Z (S ∩ [2πl, 2π(l + 1)) − 2πl)

and by (S )T the set
(S )T := {x ∈ T : x = x′ + k}

for some x′ ∈ S and k ∈ Z . For φ ∈ L2(R), we denote by Φ the function

Φ(·) =
∑
k∈Z

|φ̂(· − 2πk)|2(2.1)

on R, and by N the set
N := {x ∈ T : Φ(x) = 0}.

We use following notations

Γ := {ξ ∈ T : Φ(2ξ) = 0,Φ(ξ) > 0,Φ(ξ + π) > 0}(2.2)

and ∆ = Γ ∩ [0, π]. Also

T1 = {ξ ∈ T : Φ(ξ) > 0,Φ(ξ + π) > 0}(2.3)

and

T2 = {ξ ∈ T : Φ(ξ) > 0,Φ(ξ + π) = 0}.(2.4)

Definition 2.1. [9] Let L2
E be a reducing subspace of L2(R) and V j be the sequence of closed
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subspaces of L2
E , which satisfies following properties:

(i) V j ⊂ V j+1 f or j ∈ Z,
(ii)∪ j∈ZV j = L2

E and ∩ j∈ZV j = {0},
(iii) V j = D jV0 for j ∈ Z,
(iv) f ∈ V0 =⇒ Tk f ∈ V0 for k ∈ Z,
(v) there exists φ ∈ L2

E such that {Tkφ : k ∈ Z} is a frame for V0.
Then the sequence of closed subspaces {V j} j∈Z is called FMRA for L2

E .

The sequence {V j} j∈Z is called MRA for L2
E if condition(v) is replaced by the condition that

the set {Tkφ : k ∈ Z} forms Riesz basis for L2
E . In such case φ is said to be frame scaling function.

In addition if {Tkφ : k ∈ Z} is a tight frame (Normalized tight frame) for V0, then {V j} j∈Z is
tight(normalized) FMRA for L2

E . For a measurable set S ⊂ R if the scaling function φ is given by
φ̂ = χS , then we say that S is a frame scaling set.

Let us consider W j, the orthogonal complement of V j in V j+1 for each j ∈ Z such that

L2
E = ⊕ j∈ZW j

If ψ ∈ W0 such that {D jTkψ : j, k ∈ Z} is a frame for L2
E , then the function ψ is called frame wavelet

associated with the FMRA for L2
E [9].

Definition 2.2. [2] Let f ∈ L2
E , f is said to be refinable if there exists a 2π-periodic function

m f ∈ L2(T) such that
f̂ (2·) = m f (·) f̂ (·)

on R.

Theorem 2.1. [9] Let φ ∈ L2
E and V j be the sequence of closed subspaces defined by V j :=

span{D jTkφ : k ∈ Z} for j ∈ Z. Then V j is an FMRA for L2
E if and only if

(1) A ≤ Φ(·) ≤ B on T \ N,
(2) there exists mφ ∈ L2(T) such that φ̂(2·) = mφ(·)φ̂(·),
(3) ∪ j∈Z2 jsupp(φ̂) = E.

If φ generates an MRA for L2(R), then there always exist a wavelet ψ corresponding to the
scaling function φ, but in case of FMRA it is not necessary that there always exist a frame wavelet
corresponding to FMRA generated by φ. In [2] a characterization for FMRA in L2(R) to admit a
frame wavelet in L2(R) is given. This result is extended for reducing subspace of L2(R) in [9].

Theorem 2.2. [9] Let φ ∈ L2
E generates an FMRA. Then there exists a function ψ ∈ L2

E such that
{D jTkψ : j, k ∈ Z} forms a frame for L2

E iff |∆| = 0.

Theorem 2.3. [9] Let φ generates FMRA for L2
E with |∆| = 0. Define mψ ∈ L2(T) by

mψ(· ) =

 e−2πiTπ(mφΦ)(·) on T1
1 on T2 ∩ {ξ ∈ T : mφ(ξ) = 0}
0 otherwise.

on T, define ψ ∈ W0 via its Fourier transform ψ̂(·) = mψ( ·2 )φ̂( ·2 ). Then {D jTkψ : j, k ∈ Z} forms a
frame for L2

E .

Definition 2.3. [10] An FMRA {V j} j∈Z is said to be admissible if there exist frame wavelet for
{V j} j∈Z. Let φ be an admissible scaling function given by φ̂ = χS , S is said to be an admissible
frame scaling set if there exist frame wavelet set corresponding to S .
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In [11], a characterization of frame scaling sets is given as follows

Theorem 2.4. [11] Let S be a bounded closed subset of R. Then there exist a frame scaling
function φ with supp φ̂ = S iff
(1)S ⊂ 2S (2) ∪m∈Z2mS = R (3)(S − 1

2 S ) ∩ ( 1
2 S + 2πk) = ∅ (4) τ(S ) ⊂ [0, 2π).

In [12], we have constructed a class of three interval frame scaling sets as follows

Theorem 2.5. [12] Four points α, β, γ, and δ in R with 0 < α < β < γ < 2π < δ < 2π + α provide
three kinds of frame scaling set described as follows:
(1) S =

[
γ − 2π, δ − 2π) ∪

[
α + 2π, β + 2π) ∪

[
β, γ),

where (i) 2γ ≥ β + 2π (ii) 2β ≤ α + 2π (iii) 2δ − 4π ≥ γ.
(2) S =

[
α − 2π, β − 2π) ∪

[
γ − 2π, δ − 2π) ∪

[
β, γ),

where (i) 2γ − 4π ≤ α − 2π (ii) 2δ − 4π ≥ γ.
(3) S =

[
β − 4π, γ − 4π) ∪

[
α − 2π, β − 2π) ∪

[
γ − 2π, δ − 2π),

where (i) 2γ − 2π ≤ α (ii) 2β ≥ γ (iii) 2α ≤ β.

3 Admissible frame scaling sets for reducing subspace

In [12] we have constructed a class of frame scaling sets S , where S is bounded measurable subset
of R. Function φ defined by φ̂ = χS , generates FMRA together with function mφ ∈ L2(T) defined
by mφ = χ S

2
. It is not necessary that there always exists frame wavelet corresponding to an FMRA

generated by φ, we can see this by following example.
Example 3.1 Let us consider a function φ ∈ L2(R) defined by φ̂ = χS , where

S =

[
−π

4
,

7π
8

)
∪

[
3π
2
,

7π
4

)
∪

[
3π,

7π
2

)
.

From equation(2.2), we have Γ =
[
π
8 ,

7π
32

)
and ∆ = Γ ∩ [0, π] =

[
π
8 ,

7π
32

)
Therefore we have |∆| , 0. Thus by theorem(2.2) we can say that there does not exist any frame
wavelet corresponding to FMRA generated by φ ∈ L2(R). Next we prove a theorem which admits
a frame wavelet corresponding to an FMRA.

Theorem 3.1. Let S ⊂ E be a measurable set. A function φ ∈ L2
E is defined by φ̂ = χS , where S

satisfies following properties
(1)S ⊂ 2S (2) ∪ j∈Z2 jS = E (3)S ⊂ [−π/2, π/2).
Then S is an admissible frame scaling set and its corresponding function φ generates an admissible
FMRA for L2

E .

Proof. Function φ ∈ L2
E is defined by φ̂ = χS . For φ to generate FMRA it has to satisfy all the

conditions of theorem(2.1). ∑
k∈Z

|φ̂(· −2kπ)|2 =
∑
k∈Z

χS (· −2kπ)

=
∑
k∈Z

χS +2kπ(· ).

As S ⊂
(
−π
2 ,

π
2

)
, we have (S + 2kπ) ∩ (S + 2 jπ) = ∅ when j , k. Therefore

∑
k∈Z |φ̂(· −2kπ)|2 = 1

on T \ N. Let us define mφ by

mφ(· ) =

{
1 on S

2
0 on T \ S

2 .
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Then mφ ∈ L2(T). By extending mφ periodically it becomes 2π-periodic function on R. It is easy
to check that the refinable condition φ̂(2· ) = mφ(· )φ̂(· ) is satisfied for this mφ. As S ⊂ 2S and
S contains that neighbourhood of origin which is contained in E, hence ∪ j∈Z2 jS = E. Thus by
theorem(2.1), φ generates an FMRA {V j} j∈Z for L2

E .
Now we show that there exist a frame wavelet corresponding to FMRA.

Φ(ξ) =
∑
k∈Z

|φ̂(ξ − 2kπ)|2 =
∑
k∈Z

χS (ξ − 2kπ) = χ∪k∈Z(S +2kπ)(ξ)

.
supp(Φ(ξ)) =

[
−π

2
,
π

2

)
when ξ ∈ T.

Similarly
Φ(2ξ) = χ∪k∈Z( 1

2 S +kπ)(ξ)

supp(Φ(2ξ)) =

[
−π,
−3π

4

)
∪

[
−π

4
,
π

4

)
∪

[
3π
4
, π

)
when ξ ∈ T.

And
Φ(ξ + π) = χ∪k∈Z(S +π+2kπ)(ξ) = χ∪k∈Z(S +(2k+1)π)(ξ).

For k , 0,−1, supp(Φ(ξ + π)) < T, for k = 0, supp(Φ(ξ + π)) =
[
π
2 , π

)
and for k = −1, supp(Φ(ξ +

π)) =

[
−π,
−π

2

)
. So for this, set Γ defined in equation(2.2) is an empty set, which implies that

|Γ| = 0 and also |∆| = 0. Thus by theorem (2.2) we can say that there must exist a frame wavelet
corresponding to FMRA generated by φ, i.e. S is an admissible frame scaling set. �

Theorem 3.2. Let φ ∈ L2
E be a function defined by φ̂ = χS , where S satisfies all the conditions

of theorem(3.1). Then frame wavelet set corresponding to admissible frame scaling set S is of the
form 2S \ S .

Proof. Since φ̂ = χS , where S satisfies conditions of theorem(3.1), then φ generates admissible
FMRA i.e. it admits frame wavelet. Now to find mψ ∈ L2(T) we use theorem(2.3). Since T1 =
S ∩ ((S + π) ∪ (S − π)) = ∅, and

T2 = S ∩ {([0, π] \ (S + π)) ∪ ([−π, 0] \ (S − π))} = S , we define mψ ∈ L2(T) by

mψ(· ) =

{
1 on S \ S

2
0 on T \ (S \ S

2 ).

Fourier transform of ψ ∈ L2
E is given by

ψ̂(·) = mψ

(
·

2

)
φ̂
(
·

2

)
= χS \ 1

2 S

(
·

2

)
χS

(
·

2

)
= χ2S \S (·)χ2S (·)
= χ(2S \S )∩2S (·)
= χ2S \S (·) .

Thus, frame wavelet set corresponding to admissible frame scaling set S is given by 2S \ S . �

Example 3.2. Let S =

[
−3π

8
,
π

8

)
and φ be a function defined by φ̂ = χS . We can easily check that
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S ⊂ 2S and ∪ j∈Z2 jS = R. Thus by theorem 3.1, S is an admissible frame scaling set.
Example 3.3. Define a function φ̂ = χ[−a,a) for some a ∈ [0, π2 ), then by using theorem(3.1)
we can check that φ generates FMRA for L2(R) and admits a frame wavelet ψ defined by ψ̂ =
χ[−2a,−a)∪[a,2a).

Let us consider a function f ∈ L2(R) defined by f̂ = χS , which generates an FMRA for L2(R),
where S is a bounded frame scaling set of R. Write S = S − ∪ S + where S − and S + are intervals
lying on negative and positive real axis respectively. Define a function φ via its Fourier transform
by φ̂ = χS + , then we show that φ generates FMRA for H2(R). Since f generates FMRA for L2(R)
by theorem(2.1) condition(1) holds i.e

C1 ≤
∑
k∈Z

| f̂ (· + 2kπ)|2 ≤ C2 on T \ N.

Now note that (S +)T ⊂ (S )T, therefore φ also satisfies condition(1) of theorem(2.1). Thus φ̂(2·) =

χS + (2·) = f̂ (2·)χS + (2·) = f̂ (2·)χ S +

2
(·) (as f̂ (·) = χS (·)). Since f generates FMRA for L2(R), there

exists m f ∈ L2(T) such that
f̂ (2·) = m f (·) f (·)

on R. Therefore

φ̂(2·) = f̂ (2·)χ S +

2
(·)

= f̂ (2·)χ(S +∩ S +

2 )(·)

= m f (·) f (·)χS + (·)χ S +

2
(·)

= m f (·)χS (·)χS + (·)χ S +

2
(·)

= m f (·)χS + (·)χ S +

2
(·)

= m f (·)χ S +

2
(·)φ̂(·).

By taking mφ(·) = m f (·)χ S +

2
(·), we can easily check that mφ ∈ L2(T). So φ satisfies condition(2)

of theorem(2.1) i.e φ̂(2·) = mφ(·)φ̂(·). Now to show the condition(3) of theorem(2.1), we note that
∪ j∈Z2 jS = R and S ⊂ 2S . Since φ̂(2·) = mφ(·)φ̂(·), therefore S + ⊂ 2S + and S + contains origin,
thus ∪ j∈Z2 jS + = [0,∞). Therefore φ satisfies all the condition of theorem(2.1) and hence generates
FMRA for H2(R). Thus we have the following theorem.

Theorem 3.3. Let f be a function in L2(R), defined by f̂ = χS , where S is bounded measurable
subset of R and f generates FMRA for L2(R). Define a function φ via its Fourier transform by
φ̂(·) = χS + (·), then φ generates FMRA for H2(R).

Like L2(R), if φ defined by φ̂ = χS + generates FMRA for H2(R) then it is not necessary
that there always exist frame wavelet corresponding to this FMRA. We can see this by following
example.
Example 3.4. From example(3.1) we define a function φ̂ = χS + , where

S + =

[
0,

7π
8

)
∪

[
3π
2
,

7π
4

)
∪

[
3π,

7π
2

)
.

Then φ generates FMRA for H2(R). Here Γ =
[
π
8 ,

7π
32

)
and |∆| > 0. From theorem(2.2) there does

not exist frame wavelet corresponding to FMRA generated by φ for H2(R).

Remark 3.1. If S + defined in theorem(3.3) satisfies all the condition of theorem(3.1), then φ
generates admissible FMRA for H2(R), i.e there exist frame wavelet for H2(R).
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4 Examples of admissible frame scaling sets on L2(R) and H2(R)

In this section, we construct a class of admissible frame scaling sets on L2(R) and H2(R), and their
corresponding frame wavelet sets with the help of frame scaling sets constructed in theorem(2.5).
We have already seen in example(3.1) that not all FMRA generated by φ̂ = χS admits frame
wavelet. We find subset of the set S given in theorem(2.5), which provides admissible FMRA.

Consider case(1) of theorem(2.5). Let

S 1 =
1
23 S =

[
γ

8
−
π

4
,
δ

4
−
π

4

)
∪

[
β

8
,
γ

8

)
∪

[
α

8
+
π

4
,
β

8
+
π

4

)
.(4.1)

Since
γ

8
−
π

4
< 0 and γ > 0, we have

β

8
+
π

4
<
γ

8
+
π

4
<
π

2

and
γ

8
−
π

4
>
−π

2
. Therefore S 1 ⊂

[
−π

2
,
π

2

)
. Hence S 1 ⊂ 2S 1 is satisfied because S ⊂ 2S and

R = ∪ j∈Z2 jS 1 because S 1 contains neighborhood of origin. Thus all the conditions of theorem(3.1)
are satisfied. If φ ∈ L2(R) be a function defined by φ̂ = χS 1 , then φ generates admissible FMRA
for L2(R) and corresponding frame wavelet ψ is given by ψ̂ = χF , where F = 2S 1 \ S 1 is frame
wavelet set, i.e

F =

[
γ

4
−
π

2
,
γ

8
−
π

4

)
∪

[
δ

8
−
π

4
,
β

8

)
∪

[
γ

8
,
δ

4
−
π

2

)
∪

[
β

4
,
α

8
+
π

4

)
∪

[
β

8
+
π

4
,
γ

4

)
∪

[
α

4
+
π

2
,
β

4
+
π

2

)
.

Now from theorem(3.3) and remark(3.1) function φ defined by φ̂ = χS +
1
, will generate admissible

FMRA for H2(R) and there exists corresponding wavelet ψ defined by ψ̂ = χ2S +
1 \S

+
1
, where S +

1 is
interval of S 1 lying on positive real axis.

Let us take α = π, β = 3π
2 , γ = 7π

4 and δ = 23π
8 in case(1) of theorem(2.5). By equation(4.1) we

get

S 1 =

[
−π

32
,

7π
64

)
∪

[
3π
16
,

7π
32

)
∪

[
3π
8
,

7π
16

)
.

The function φ defined by φ̂ = χS 1 generates admissible FMRA for L2(R) together with the
function mφ ∈ L2(T) defined by mφ(·) = χ S 1

2
(·) such that φ̂(2·) = mφ(·)φ̂(·). Frame wavelet ψ

corresponding to FMRA is defined by ψ̂ = χF , where

F =

[
−π

16
,
−π

32

)
∪

[
7π
64
,

3π
16

)
∪

[
3π
4
,

7π
8

)
.

For the case of H2(R), define φ by φ̂ = χS +
1
, where

S +
1 =

[
0,

7π
64

)
∪

[
3π
16
,

7π
32

)
∪

[
3π
8
,

7π
16

)
.

S +
1 satisfies all the condition of theorem(3.1). Therefore φ generates FMRA for H2(R) together

with the function mφ ∈ L2(T) defined by mφ(·) = χ S +
1
2

(·) such that φ̂(2·) = mφ(·)φ̂(·) and the

corresponding frame wavelet is given by ψ̂ = χF , where F =

[
7π
64
,

3π
16

)
∪

[
3π
4
,

7π
8

)
.
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Similarly in case(2) of theorem(2.5), we take

S 2 =
1
23 S =

[
α

8
−
π

4
,
β

4
−
π

4

)
∪

[
γ

4
−
π

4
,
δ

8
−
π

4

)
∪

[
β

8
,
γ

8

)
.(4.2)

If
α

8
−
π

4
≤
−π

2
then

α

8
≤
−π

4
i.e α < 0 which is not possible. Thus

α

8
−
π

4
>
−π

2
. From condition

2δ − 4π ≥ γ i.e
γ

2
≤ δ − 2π < α we have

γ

2
<
π

2
. Therefore S 2 ⊂

[
−π

2
,
π

2

)
. It can be checked

that other conditions of theorem(3.1)are satisfied for S 2. Thus the function φ defined by φ̂ = χS 2

generates admissible FMRA for L2(R). Function φ whose Fourier transform is supported in the
interval lying on positive real axis of S 2 will generate admissible FMRA for H2(R).

Also in case(3) of theorem(2.5),we take

S 3 =
1
23 S =

[
β

8
−
π

2
,
γ

8
−
π

2

)
∪

[
α

8
−
π

4
,
β

8
−
π

4

)
∪

[
γ

8
−
π

4
,
δ

8
−
π

4

)
.(4.3)

As β > 0, we have
β

8
−
π

2
>
−π

2
. Also

β

8
−
π

2
< 0 i.e

β

8
<

π

2
. Since δ − 2π < α, we have

δ

8
−
π

4
<
α

8
<
β

8
<
π

2
. Therefore S 3 ⊂

[
−π

2
,
π

2

)
. It can be checked that other conditions of

theorem(3.1) are satisfied for S 3. Thus function φ defined by φ̂ = χS 3 generates admissible FMRA
for L2(R), and S +

3 generates admissible FMRA for H2(R).
In case(2) and case(3) corresponding frame wavelet for S 2 and S 3 given in equation(4.2) and

(4.3)can be constructed by using theorem(3.2)as illustrated in example(4.1) for the case of S 1.
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