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ON THE DEGREE OF APPROXIMATION OF CONJUGATE 
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Abstract
In this paper, we have established a very interesting result for the degree of approximation of conjugate 
functions belonging to the W[Lr, ξ(t)] class by generalized Nörlund-Euler product summability method 
of conjugate series of Fourier series. The results presented in this paper is the generalization of many 
known and unknown results.
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1. Introduction

Summability theory plays a significant role to study area of Fourier Analysis, Wavelet 
Analysis, Fixed point theory and many other fields. The well known theorem of 
Weierstrass is the origin of theory of approximation. The degree of approximation of 
functions belonging to various classes have been determined by various investigators 
Mishra [9], Mishra and Mishra [10], Mishra et al. ([12], [13], [15], [16]), Deepmala 
et al. [14], Mishra [17], Mishra et al.[19], Psarakis and Moustakides [22], Krasniqi 
([23], [24]) and many others (See also [1], [11], [18]). Recently Kushwaha et al 
[4], Kushwaha and Kumar [5], Zafarov [6], Mishra et al. [15], Sahani and Mishra 
[8] have determined the degree of approximation by product summability method of 
Fourier series. Using product summability means Pradhan et al. [21] have determined 
the degree of approximation of function belonging to weighted class. But no work 
seems to have been done so far to find the degree of approximation of functions 
of weighted class by (N, pn, qn)(E, s) product means of conjugate series of Fourier 
series.Working in this direction, we have determined the degree of approximation 
of conjugate of functions belonging to weighted class by (N, pn, qn)(E, s)-product 
summability method of conjugate series of Fourier series which is the generalization 
of several known and unknown results. Therefore, this result will be useful for 
researchers in future.
*corresponding author : Laxmi Rathour
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2. Definition and Preliminaries

Let
∑

un be an infinite series with the sequence of partial sums {sn}. The Euler’s
means of the sequence {sn} is defined by

E s
n =

1
(1 + s)n

n∑
ν=0

(
n
ν

)
sn−νsν. (2.1)

If E s
n → s as n → ∞, then the series

∑
un is summable to s with respect to (E, s)

summability and (E, s) means is regular (Hardy, [2]). Let {pn} and {qn} be sequence of
positive real numbers such that

Pn =

n∑
k=0

pk and Qn =

n∑
k=0

qk

and let Rn = p0qn + p1qn−1 + .... + pnq0 , 0, p−1 = q−1 = R−1 = 0. The sequence to
sequence transformation

tN
n =

1
Rn

n∑
k=0

pn−kqk sk (2.2)

defines the sequence {tN
n } of the (N, pn, qn) mean of the sequence {sn} generated by the

sequence of coefficients pn and qn. Similarly, we define the extended mean.

tN
n =

1
Rn

n∑
k=0

pkqk sk (2.3)

where Rn = p0q0 + p1q1 + .......... + pnqn , 0, p−1 = q−1 = R−1 = 0. If tN
n → s

as n → ∞, then the series
∑

un is (N, pn, qn) summable to s. The Riesz summability
method is said to be regular if

(i) pkqk
Rn
→ 0, for each integer k ≥ 0 as n→ ∞.

(ii) |
∑n

k=0 pkqk| < C|Rn|, where C is any positive integer independent of n.

Now we define a new product summability method (N, pn, qn)(E, s) of {sn} as

T NE
n =

1
Rn

n∑
k=0

pkqk{E s
k} =

1
Rn

n∑
k=0

pkqk

 1
(1 + s)k

k∑
ν=0

(
n
ν

)
sn−νsν

 (2.4)

If tNE
n → s as n → ∞, then

∑
un is summable to s by (N, pn, qn)(E, s) method. Let f

be 2π periodic and integrable over (−π, π) in Lebesgue sense, then its Fourier series be
given by

f (x) =
1
2

a0 +

∞∑
n=1

(ancosnx + bnsinnx) =
1
2

a0 +

∞∑
n=1

An(x). (2.5)
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The conjugate series of Fourier Series (2.5) is given by
∞∑

k=1

(ansinnx − bncosnx) (2.6)

A function f ∈ Lipα, if

f (x + t) − f (x) = O (|tα|) for 0 < α ≤ 1, t > 0.

A function f ∈ Lip (α, r) for a ≤ x ≤ b if{∫ b

a
| f (x + t) − f (x)|rdx

}1/r

≤ M (|tα|) , r ≥ 1, 0 < α ≤ 1

where M is absolutely constant.
We have f ∈ Lip (ξ(t), r), if{∫ 2π

0
| f (x + t) − f (x)|rdx

}1/r

= O (ξ(t)) , r ≥ 1, t > 0.

A function f ∈ W(Lr, ξ(t)), Khan [3] if{∫ 2π

0
| f (x + t) − f (x)|r sinβr(x/2)dx

}1/r

= O (ξ(t)) , β ≥ 0, r ≥ 1, t > 0,

where, ξ(t) is increasing function of t.
If β = 0 then the generalized weighted Lipschitz W (Lr, ξ(t)) (r ≥ 1) class reduces to
Lip (ξ(t), r) class. If ξ(t) = tα then, Lip (ξ(t), r) class coincides with the class Lip(α, r)
and if r → ∞ then Lip(α, r) converted to Lipα class.
The L∞-norm of a function f : R→ R is defined by

‖ f ‖∞ = ess sup {| f (x)| : x ∈ R}

The Lr-norm of a function is defined by

‖ f ‖r =

(∫ 2π

0
| f (x)|rdx

) 1
r

, 1 ≤ r ≤ ∞.

The degree of approximation of a function f : R → R by a trigonometric polynomial
tn of order n under sup norm ‖.‖∞ is defined by MacFadden [20]

‖tn − f ‖∞ = sup
x∈R
{|tn(x) − f (x)|}

and the degree of approximation En( f ) of a function f ∈ Lr is defined by

En( f ) = min
τn
‖τn − f ‖r.

We use following notations through out the paper:

ψ(t) = f (x + t) − f (x − t)

f (x) = −
1

2π

∫ π

0
ψ(t)cot(t/2)dt

Mn(t) =
1

2πRn

n∑
k=0

pkqk

 1
(1 + s)n

k∑
ν=0

(
k
ν

)
sk−ν cos(ν + 1/2)t

sin(t/2)

 .
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3. Main Theorem

Let f be a 2π-periodic function which is integrable in Lebesgue sense in [0, 2π].
If f ∈ W (Lr, ξ(t)) class, then the degree of approximation of conjugate of function is
given by

‖τNE
n − f ‖r = O

{
(n + 1)β+ 1

r ξ

(
1

n + 1

)}
(3.1)

where τNE
n is the (N, pn, qn)(E, s) transform of {sn}, provided ξ(t) satisfies the following

conditions: {
ξ(t)

t

}
be decreasing function (3.2)

∫ 1
(n+1)

0

(
t|ψ(t)|
ξ(t)

)r

sinβrtdt


1
r

= O
(

1
n + 1

)
(3.3)


∫ π

1
(n+1)

(
t−δ|ψ(t)|
ξ(t)

)r

dt


1
r

= O
{
(n + 1)δ

}
(3.4)

where δ is an arbitrary number such that (β − δ)q − 1 > 0, r−1 + q−1 = 1, 1 6 r 6 ∞,
and conditions (3.3) and (3.4) hold uniformly in x.

4. Lemma

To prove the theorem, we need the following lemma:

|Mn(t)| = O
(
1
t

)
, for

1
(n + 1)

6 t 6 π.

Proof. For 1
(n+1) 6 t 6 π, sin(t/2) ≥ t

π
(Jordan’s Lemma), so

∣∣∣Mn(t)
∣∣∣ =

∣∣∣∣∣∣∣ 1
2πRn

n∑
k=0

pkqk

 1
(1 + s)k

k∑
ν=0

(
k
ν

)
sk−ν cos(ν + 1/2)t

sin(t/2)


∣∣∣∣∣∣∣

≤
1

2πRn

∣∣∣∣∣∣∣
n∑

k=0

pkqk

 1
(1 + s)k

k∑
ν=0

(
k
ν

)
sk−ν ei(ν+1/2)t

(t/π)


∣∣∣∣∣∣∣

=
1

2tRn

∣∣∣∣∣∣∣
n∑

k=0

pkqk
|s + eit |k

(1 + s)k

∣∣∣∣∣∣∣
=

1
2tRn

∣∣∣∣∣∣∣
n∑

k=0

pkqk
(1 + s2 + 2scost)k/2

(1 + s)k

∣∣∣∣∣∣∣
≤

1
2tRn

∣∣∣∣∣∣∣
n∑

k=0

pkqke
−2st2k
π2(1+s)2

∣∣∣∣∣∣∣
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≤
1

2tRn

n∑
k=0

pkqk

= O
(
1
t

)
.

5. Proof of main Theorem

The kth partial sum of the conjugate series of the Fourier series (2.5) is given by

sn(x) =
−1
2π

∫ π

0
cot(t/2)ψ(t)dt +

1
2π

∫ π

0

cos(n + 1/2)t
sin(t/2)

ψ(t)dt

sn(x) −
(
−1
2π

∫ 1/n+1

0
cot(t/2)ψ(t)dt −

−1
2π

∫ π

1/n+1
cot(t/2)ψ(t)dt

)

=
1

2π

(∫ 1/n+1

0
+

∫ π

1/n+1

)
cos(n + 1/2)t

sin(t/2)
ψ(t)dt

sn(x)− fn(m) =
1

2π

(∫ 1/n+1

0

cos(n + 1/2)t
sin(t/2)

− cott/2
)
ψ(t)dt+

1
2π

∫ π

1/n+1

cos(n + 1/2)t
sin(t/2)

ψ(t)dt

taking (N, pn, qn)(E, s) transformation, we get

τNE
− f =

1
2πRn

n∑
k=0

pkqk

∫ 1/n+1

0

ψ(t)
(1 + s)k

 k∑
ν=0

(
k
ν

)
sk−ν

(
cos(ν + 1/2)t

sin(t/2)
− cott/2

)
dt


+

1
2πRn

n∑
ν=0

pkqk

∫ π

1/n+1

ψ(t)
(1 + s)k

 k∑
ν=0

(
k
ν

)
sk−ν

(
cos(ν + 1/2)t

sin(t/2)

)
dt


=

1
2πRn

n∑
k=0

pkqk

∫ 1/n+1

0

ψ(t)
(1 + s)k

 k∑
ν=0

(
k
ν

)
sk−ν

(
2 sin(ν + 1)t/2sin(−νt)/2

sin(t/2)

) dt

+

∫ π

1/(n+1)
ψ(t)mn(t)dt

(5.1)

∣∣∣∣τNE
− fn

∣∣∣∣ ≤ 1
πRn

n∑
ν=0

pkqk

∫ 1/n+1

0

ψ(t)
(1 + s)k

 k∑
ν=0

(
k
ν

)
sk−ν

 (ν + 1)sin(t/2)
∣∣∣sin νt

2

∣∣∣
sin(t/2)

 dt

 + I2

=
1
πRn

n∑
ν=0

pkqk

∫ 1/n+1

0

ψ(t)
(1 + s)k

 k∑
ν=0

(
k
ν

)
sk−ν(ν + 1)

 dt + I2
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= O (n + 1)
∫ 1/(n+1)

0
ψ(t)dt + I2

= I1 + I2.(say)
(5.2)

Now, |I1| ≤
∫ 1/(n+1)

0 |ψ(t)|O (n + 1) dt. Further f ∈ W (Lr, ξ(t)) implies ψ ∈ W (Lr, ξ(t)),

thus |I1| ≤
∫ 1/(n+1)

0

∣∣∣∣ tψ(t)sinβt
ξ(t) . ξ(t)O

(n+1)
tsinβt

∣∣∣∣ dt.
Now, by Hölder’s inequality, we have

|I1| ≤

(∫ 1/(n+1)

0

∣∣∣∣∣∣ tψ(t)sinβt
ξ(t)

∣∣∣∣∣∣r dt
)1/r

×

(
lim
ε→0

∫ 1/(n+1)

ε

∣∣∣∣∣ξ(t)O (n + 1)
tsinβt

∣∣∣∣∣q dt
)1/q

= O
(

1
n + 1

) [
lim
ε→0

∫ 1/(n+1)

ε

(
ξ(t)O(n + 1)

tsinβt

)q

dt
]1/q

by (3.3)

=

[
lim
ε→0

∫ 1/(n+1)

ε

(
ξ(t)

tsinβt

)q

dt
]1/q

= ξ

(
1

n + 1

) ( t−q−βq+1

−q − βq + 1

) 1
n+1

0


1/q

= O
{
ξ

(
1

n + 1

)
(n + 1)β+1/r

}
since r−1 + q−1 = 1 (5.3)

Now by Hölder’s inequality and Lemma, we have

|I2| ≤

(∫ π

1/(n+1)

∣∣∣∣∣∣ t−δ|ψ(t)|sinβt
ξ(t)

∣∣∣∣∣∣r dt
)1/r ∫ π

1/(n+1)

∣∣∣∣∣∣ξ(t)Mn(t)
t−δsinβt

∣∣∣∣∣∣
q1/q

= O{(n + 1)δ}
{∫ π

1/(n+1)

(
ξ(t)

t1−δ+β

)q

dt
}1/q

by(3.4)

= {(n + 1)δ}
{∫ 1/π

(n+1)

(
ξ(1/y)
yδ−β−1

)q dy
y2

}1/q

by(3.2)

Again by using second Mean Value theorem, we get

|I2| = O
{

(n + 1)δξ
(

1
n + 1

)} (∫ 1/π

(n+1)

dy
yq(δ−β−1)+2

)1/q

= O
{

(n + 1)β+1/rξ

(
1

n + 1

)}
since r−1 + q−1 = 1 (5.4)

Now, by using (5.3) and (5.4) in (5.2), we get

‖τNE
n − f ‖r = O

{
(n + 1)β+1/rξ

(
1

n + 1

)}
This completes the proof of the theorem.
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6. Corollaries

Corollary 1. If we put β = 0, then the weighted class reduces to Lip(ξ(t), r).If f
is 2π periodic and belonging to class Lip(ξ(t), r) then the degree of approximation by
(N, pn, qn)(E, s) method of conjugate series of Fourier series (2.5) is given by

‖τNE
n − f ‖ = O

{
(n + 1)1/rξ

(
1

n + 1

)}
(6.1)

Corollary 2. If we put β = 0 and ξ(t) = tα, 0 < α ≤ 1, then weighted class
W(Lr, ξ(t)) reduces to Lip(α, r), then the degree of approximation of 2π-periodic
function f belonging to Lip(α, r) by (N, pn, qn)(E, s) method of conjugate series of
Fourier series (2.5) is given by

‖τNE
n − f ‖ = O

{
1

(n + 1)α−1/r

}
, 0 < α ≤ 1, r ≥ 1. (6.2)

Corollary 3. If we put β = 0, ξ(t) = tα, 0 < α ≤ 1 and r → ∞. Then weighted class
W(Lr, ξ(t)) reduces to Lipα, then the degree of approximation of 2π-periodic function
by (N, pn, qn)(E, s) method of conjugate series of Fourier series (2.5) is given by

‖τNE
n − f ‖ = O

{
1

(n + 1)α

}
, 0 < α ≤ 1, r ≥ 1. (6.3)

7. Conclusion

In the present work we have used generalized Nörlund-Euler product summability
method.If we consider qn = 1, then it reduces to (N, pn)(E, s) product summability
method. Similarly, if we consider s = 1 in above then it reduces to (N, pn)(E, 1)
product summability means. In this way we can see that our result is superior to many
other results.
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