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Abstract

The present investigation is carried out to examine the combined effects of chemical reaction and porosity 
of the medium on unsteady MHD flow past an exponentially accelerated inclined cylinder with variable 
oscillating wall temperature and mass diffusion. The temperature of the fluid near the wall is oscillating 
and concentration level of fluid increase linearly with respect to time. We have used Crank-Nicolson 
implicit finite difference numerical method to solve our MHD flow model. The behaviour of fluid flow 
is discussed with the help of graphs drawn for varies parameters. The stability criterion of the finite 
difference scheme for constant mesh sizes are analysed and the solution of our model is consistent.
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1. Introduction

The effect of chemical reaction on fluid flow past through different shapes such 
as plate, sphere, cone and others have been studied among researchers in recent 
years. The reason is the chemical reaction effect along with influence of magnetic 
field on such a flow within porous media has play important role in engineering 
applications. Eckert and Living [3] have analysed the method for calculation of 
laminar heat transfer in air flow around cylinders of arbitrary cross-section concluding 
large temperature difference and transpiration cooling. MHD free convection about a 
semi-infinite vertical plate in a strong cross magnetic field was considered by Wilks 
[11]. Temperature field in the flow over a stretching surface with uniform heat flux was 
investigated by Dutta et al. [2]. Satya et al. [7] have examined the behaviour of Hall 
current effect on free convection MHD flow past a porous plate. Ahmed and Kalila 
[1] have proposed oscillatory MHD free convective flow through a porous medium 
with mass transfer, Soret effect and chemical reaction. Effect of chemical reaction 
and variable viscosity on hydromagnetic mixed convection heat and mass transfer for
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Hiemenz flow through porous media with radiation was developed by Seddeek et al.
[8]. Vasu et al. [10] have developed radiation and mass transfer effects on transient
free convection flow of a dissipative fluid past semi-infinite vertical plate with uniform
heat and mass flux. Siva and Suram [9] have worked on finite element analysis of heat
and mass transfer past an impulsively moving vertical plate with ramped temperature.
Kumar and rizvi [4] have work on Casson fluid flow past on vertical cylinder in
the presence of chemical reaction and magnetic field. Chemical reaction effect on
unsteady MHD flow past an inclined plate with varies parameter was studied by Rajput
and Kumar [5,6]. The fluid flow model under consideration analyses the effect of
chemical reaction and porosity of the medium on MHD flow. The flow model is solved
by numerically using Crank-Nicolson implicit finite-difference technique.

2. Mathematical Modelling

In this paper, consider unsteady MHD chemically reacting and electrically con-
ducting flow on cylinder of radius r0. Here the x-axis is taken along the axis of cylin-
der in the vertical direction and the radial coordinate r is taken normal tothe cylinder.
Cylinder is inclined at an angle α from vertical plane. The uniform strength magnetic
field B0 is applied perpendicular to the surface of cylinder. Initially it is assume that
the surface of cylinder as well as the fluid is at the same temperature T∞. The species
concentration in the fluid is considered as T∞ for all t ≤ 0. At time t > 0, the cylinder
starts exponentially accelerated with acceleration parameter b and temperature of the
surface Tw is oscillating with phase angle ωt. The concentration Cw near the surface
is raised linearly with respect to time. Then the flow model is
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The initial and boundary conditions are as:

. t ≤ 0 : u = 0,T = T∞,C = C∞, f or every r

t > 0 : u = u0ebt,T = T∞ + (Tw + T∞)Cosωt,C = C∞ + (Cw + C∞)
u2

0t

r2
0

, at r = r0

u→ 0,T → T∞,C → C∞, as r → ∞. (2.4)

Here u is the velocity of fluid, g - the acceleration due to gravity, β - volumetric
coefficient of thermal expansion, t - time,T - temperature of the fluid, β∗ - volumetric
coefficient of concentration expansion, C - species concentration in the fluid, ρ - the
density, Cp - the specific heat at constant pressure, k - thermal conductivity of the
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fluid, D - the mass diffusion coefficient, Tw - temperature of the plate at r = 0, Cw -
species concentration at the plate r = 0, K - the permeability parameter, K0 - chemical
reaction, σ - electrical conductivity.

The following non-dimensional quantities are introduced to transform equations
(2.1), (2.2) and (2.3) into dimensionless form:
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where u is the dimensionless velocity, b -dimensionless acceleration parameter, θ -
the dimensionless temperature, C - the dimensionless concentration, Gr - thermal
Grashof number, Gm - mass Grashof number, µ - the coefficient of viscosity, K -
the dimensionless permeability parameter, Pr - the Prandtl number, S c- the Schmidt
number, M- the magnetic parameter.

The flow model in dimensionless form is:
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The corresponding boundary conditions (2.4) become:

. t ≤ 0 : u = 0, θ = 0, C = 0 f or every R,
t > 0 : u = ebt, θ = Cosωt, C = t at R = 0
u→ 0, θ → 0,C → 0, as R→ ∞. (2.9)

Dropping bars in the above equations, we get
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The boundary conditions become

. t ≤ 0 : u = 0, θ = 0,C = 0 f or every R,
t > 0 : u = ebt, θ = Cosωt,C = t at R = 0,
u→ 0, θ → 0,C → 0, as R→ ∞. (2.13)
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3. Method of Solution

The equations (2.10) to (2.12) are non-linear partial differential equations with
boundary and initial conditions (2.13) are solved by Crank- Nicolson implicit finite
difference method. The finite difference equations corresponding to equations numbers
(2.10) to (2.12) are as follows:
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Where index i refers to R and j refers to time t,4t = t j+1 − t j and 4R = R j+1 − R j.
Knowing the values of u, θ and C at time t, we can compute the values at time t +4t as
follows: we substitute i = 1, 2, ...,N − 1, where N correspond to ∞. The computation
is executed for 4R = 0.1,4t = 0.002 and procedure is repeated till R = 40.

This method provides stable solutions of the equations and requires matrix inver-
sions which we have been done at step forward with time. The initial and boundary
value of the flow model related with a finite number of spatial grid points. Therefore,
the corresponding MHD flow model equations do not automatically guarantee the con-
vergence of the mesh 4t → 0. To achieve maximum numerically efficiency, we have
used the tri-diagonal procedure to solve the two- point conditions governing the main
coupled governing equations of momentum and energy.

4. Stability Analysis

The stability criterion of the finite difference scheme for constant mesh sizes are
analysed by using Von-Neumann Technique. In the Fourier expansion, the general
term for u, θ, C at a time arbitrarily called t = 0, are assumed to be of the form eiβR.
At a later time, these terms will become,
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u = ζ1(t) eiβR (4.1)

θ = ζ2(t) eiβR (4.2)

C = ζ3(t) eiβR (4.3)

Putting equations (4.1) to (4.3) in equations (3.1)to (3.3) under the assumption that
the coefficients u, θ, C as constants over any one time step and denoting the values
after one time step by ζ
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3 . After simplification, we get
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Equations (4.4) to (4.6) can be rewritten as,
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is of the form,
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Equations (4.8) to (4.10) can be written in matrix form as, ζ
′
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ζ
′

2
ζ
′

3

 =


(1−γ1)
(1+γ1) A1 A2

0 (1−γ2)
(1+γ2) 0

0 0 (1−γ3)
(1+γ3)


 ζ1
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In above matrix, the value of A1 and A2 are given as

A1 =
GrCosα

(1 + γ1)(1 + γ2)
, A2 =

GmCosα
(1 + γ1)(1 + γ2)

.

According to stability analysis of the finite difference scheme, the modulus of each
Eigen value of the amplification matrix does not exceed unity. Since the matrix equa-
tion (4.11) in triangular form, the Eigen values are its diagonal elements. Therefore,
the Eigen values of the amplification matrix are (1−γ1)

(1+γ1) ,
(1−γ2)
(1+γ2) , and (1−γ3)

(1+γ3) . Since the real

part of γ1 is greater than or equal to zero, thus (1−γ1)
(1+γ1) ≤ 1, similarly (1−γ2)

(1+γ2) ≤ 1 and
(1−γ3)
(1+γ3) ≤ 1 Hence, the finite difference scheme is unconditionally stable.

The Crank-Nicolson scheme has a truncation error of O
(
∆t2 + ∆R2

)
, i.e. the

temporal truncation error is significantly small. It tends to zero as ∆t and ∆R tend to
zero. So, the scheme is compatible. Stability and compatibility ensures convergence.

5. Result and Discussions

The focus of this paper to explain the study of flow behaviour of MHD fluid for
different parameters are shown graphically in Figures 1 to 9. It is observed from
Figure 1, when the mass Grashof number is increased then the velocity is increased
throughout the boundary layer region. From Figure 2, it is deduced that velocity
of flow increases with thermal Grashof number Gr. It is noticed from Figure 3,
velocity of fluid decline when the surface angle (α) is increased. It is observed that
when acceleration parameter is increased then the velocity is increased (Figure 4).
Further, we observe that when permeability parameter K is increased then the velocity
is increased (Figure 5), which is obvious due to the fact that increase in porosity helps
in free movement of the particles of fluid. It is deduced that when angular frequency
ω is increased then the velocity gets decreased (Figure 6). It is observed from Figure
7 that the effect of increasing values of the parameter M results in decreasing the
fluid velocity. It is due to the facts of transverse magnetic field that acts as Lorentz’s
force which retards the motion of flow. It is deduced that when chemical reaction
parameter Ko is increased then the velocity is decreased (Figure 8). Further from
Figure 9, the numerical results show that the effect of increasing values of Prandtl
number results in a decreasing velocity. It is noticed that an increase in the Prandtl
number results a decrease of the thermal boundary layer thickness and in general lower
average temperature within the boundary layer. The reason is that smaller values of Pr
are equivalent to increase in the thermal conductivity of the fluid and therefore, heat
is able to diffuse away from the heated surface more rapidly for higher values of Pr.
Hence in the case of smaller Prandtl number as the thermal boundary later is thicker
and the rate of heat transfer is reduced.
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Figure 1. Velocity u for different values of Gm

Figure 2. Velocity u for different values of Gr

Figure 3. Velocity u for different values of α
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Figure 4. Velocity u for different values of b

Figure 5. Velocity u for different values of K

Figure 6. Velocity u for different values of ω
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Figure 7. Velocity u for different values of M

Figure 8. Velocity u for different values of Ko

Figure 9. Velocity u for different values of Pr
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6. Conclusion

A numerically study has been done for the model under consideration by convert-
ing the governing partial differential equations into non-dimensional form. The model
consists of equations of motion, diffusion and energy equation. To investigate the
solutions obtained, standard sets of the values of the parameters have been taken. The
numerically result obtained is discussed with the help of graphs and table. We found
that the numerically result obtained is in concurrence with the actual flow behaviour
of MHD fluid.
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