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Abstract
Recent developments in the field of nanotechnology for novel haematological treatments has higher 
scopes and befitting results.Owing to such neoteric outcomes the problem of nanoparticles in a catheter-
ized artery with elliptical stenosis has been addressed here. A theoretical model having permeable walls, 
treating blood as a base fluid for various shapes of nanoparticles suspended, is presented for the same. 
The disposition of blood is described to be that of a viscous nanofluid. The calculations are executed 
under mild stenosis conditions. The nanoparticles of shapes like bricks, platelets, cylinders and blades 
are considered. Hamilton-Crosser model is applied to attain expression for thermal conductivity. Ther-
mophysical properties like specific heat capacity and thermal expansion have also been considered. The 
exact solution is obtained using Cauchy- Euler method. The numerical solution is also obtained for the 
same using finite difference scheme and both the solutions have been compared. Also, the existence and 
uniqueness of the exact solution is given using Green’s theorem. The effects of shape of nanoparticles, 
volume fraction, Grashof number, Darcy number, stenosis height and heat source parameter have been 
depicted graphically on temperature and velocity of nanofluid. A major assessment states that platelets 
shaped nanoparticles show maximum rise in temperature and velocity while brick shaped nanoparticles 
show minimum rise in temperature and velocity. This mathematical model has relevance in nano-drug 
delivery in the therapeutics of cardiovascular diseases.
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1. Introduction
Cardio vascular diseases are a paramount cause of deaths all over the world. An ex-
ceedingly transpiring cardiovascular ailment is atherosclerosis. It is the build out of
stenosis or blockages as the outcome of deposition of fatty materials in the inner lining
of the artery. Such occlusions cause reduction in artery’s cross section which in turn
causes insufficient blood supply to the body. The hemodynamic context of the arteries
is a salient discipline of analysis under stenotic circumstances [1] [2]. The experimen-
tal data available to design mathematical models will be highly useful to develop better
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aids and devices to restrict mortality rates due to various cardio vascular diseases.

Stenosis is the development of plaques, fats or cholesterol that lessens the blood flow
through arteries. The burgeoning of such depositions in arteries may arise at one or
more sites that can cause infraction, ischemic stroke, sporadic blood flow rate etc.
Catheter is a widely employed medical method in contemporary medicine for treating
atherosclerosis. This diagnostic tool holds resemblance to an empty cylinder having a
narrow radius which is inserted into the artery. Catheter is composed of medical grade
polyvinyl chloride or polyester constructed thermoplastic polyurethane etc. [4]- [6].
The infixing of catheter largely effects the hemodynamic in the vicinity of stenosis in
the artery. Abundant mathematical inspections have been carried out to diagnose the
consequences of stenosis on the blood flow under catheterized conditions.[7]-[12].

Kamangar et al [13] gave the numerical investigation of the effect of stenosis geome-
try on the coronary diagnostic parameters. They showed that elliptical shaped stenosis
has the highest resemblance with the functional severity in an actual artery stenosis.
Thus, the study of elliptical shaped artery stenosis will have a wider and more practical
application in the treatment of cardiovascular diseases.

The last decades have witnessed a revolution in the field of biomedical sciences with
the utilization of nanotechnology. The manipulation of nanotechnology is grounded
on the materials with dimensions of about 100 nm or lower. Such particles have sizes
lying in the range of cell which provide a better interaction with them.[14]. Diverse
medical modalities like drug delivery and cancer therapy have effectively been carried
out with the use of nanotechnology in biological systems [15]. Richard P. Feynman
was the first to introduce nanoscience and nanotechnology and science then there has
been an immense revolution in the field [16][17].

The nano-based medical strategies are being increasingly used because they can ef-
fectively control drug delivery systems. Nanodrugs can be easily integrated through
diverse non-covalent and covalent adsorptions on their outer membrane [18]. These
provide myriad options for the suitable designing of drugs of various geometries for
their specific targeting. Some nanocarriers may carry more than one drug likewise for
diagnostics and therapeutics, collectively called theranostic platform. Thus, different
nanoparticles have exhibited promising application in the field of treatment of various
cardio vascular diseases.

Ellahi et al [19] analysed spherical nanoparticle behaviour in arteries with compos-
ite stenosis and permeable walls. Nadeem and Ijaz [20] [21] mathematically studied
spherical nanoparticles possessing drug in stenosed artery simultaneously slip effects
on the arterial wall. Chatterjee et al [22] deployed Bernstein polynomial estimation
to analyse the effects of nanofluids in a stenosed artery. Rathore and Srikanth [23]
considered blood as a micro-polar nanofluid in an artery with stenosis in the influence
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of a catheter.

When nanoparticles are added to a fluid, the temperament of the system depends on
their thermophysical responses and the shape of nanoparticles [24]. Heat transfer in
blood vessels occurs mainly via convection, the efficiency of which resorts to the ther-
mophysical amputations of the nanofluid [25]. Nanoparticles have displayed very high
thermal conductivities. Thus, the study of nanofluid thermophysical attributes have a
stupendous significance in engineering nano-drug based therapies for the treatment of
cardiovascular diseases.

Also, the nanoparticle disposition is a noteworthy nanoparticle norm. Nanoparticles
of different shapes either occur naturally or are engineered. Various nanoparticles con-
figurations have different schemes of applications. Sastry et al[26] studied the drug
delivery in cardio vascular circulation considering unsteady micropolar nanfluid flow.
Moitoi and Shaw [27] also analysed nanoparticle based drug targeting for the treatment
of cardiovascular diseases. Most of the studies conducted have considered spherical
shaped nanoparticles. Notwithstanding the fact that they have not much feasibility.
Drug delivery, clinical diagnosis, cancer therapy has a utilization of non-spherical
shaped nanoparticles [28]. Discernibly, nanoparticles of shapes like brick, platelet,
blade and cylinder etc have tremendous prominence in drug delivery. Timofeeva et al
[29] gave an experimental analysis of the effects of studied thermal conductivity and
viscosity on various geometries of nanoparticles. Samantaray et al [30] studied the ef-
fects of different shapes of nanoparticles and also focused on their heat transfer.Shaw
et al [31] theoretically analysed the effects of drug carrier geometry for nanoparticle
based drug delivery in a micro vessel.

Motivated by these researches, this mathematical work is consigned to probe into
the consequence of various geometries of nanoparticles in an artery having ellipti-
cal stenosis with a catheter. The equation of continuity, Navier-stokes equation and
heat diffusion equations are implemented to scheme the mathematical model. The
exact solution for temperature and velocity is solved using Cauchy- Euler method.
The existence and uniqueness of the exact solution is proved using green’s theorem.
Numerical solution is also obtained for the same using finite difference method using
MATLAB. The obtained analytical and numerical solutions have been compared. The
influences of shape parameter, volume fraction, heat source parameter, stenosis height,
Grashof number and Darcy number have been displayed graphically on temperature
and velocity of nanofluid in the stenosed artery. This model has an application in the
treatment of blockages in arteries with the use of nanoparticles.

2. Mathematical Formulation

Steady and laminar flow of blood in a cylindrical artery of length L has been
considered. The incompressible flow in the artery is modelled using cylindrical
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co-ordinates.Let the velocity vector be (u
′

, v
′

,w
′

)here u
′

is in z
′

direction, v
′

is along
radial direction or r

′

direction and w
′

is along θ
′

direction. For the case of
axis-symmetricity w

′

= 0, since θ
′

represents the circumferential direction. The
configuration of elliptical stenosis [13] is defined as:-

R′(z′) =

R0 −
δ′

R0
sin π( z′−d′

L ); d′ ≤ z′ ≤ d′ + L0

R0; otherwise
(2.1)

where d
′

represents location of stenosis, L
′

0 is length of the stenosed part, L
′

is arterial
length, R0 is radius of normal artery and R

′

(z
′

) is arterial radius with stenosis.Rc is
catheter’s radius.

Figure 1. Geometrical representation.

Equation of continuity in cylindrical co-ordinates :

∂ρn f

∂t′
=

1
r′
∂rρn f v′

∂r′
+

1
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∂z′
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Navier-Stokes equation in cylindrical co-ordinates:
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(2.5)

where F’ with different indices represents body forces with respect to different direc-
tions.
Heat diffusion equation for temperature in cylindrical co-ordinates:

1
kn f
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+ w′

∂T ′

∂θ′
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(2.6)

Tc is temperature of wall of catheter and T0 is temperature of artery. T ′ is
nanofluid temperature. The heat generation or heat absorption parameter is repre-
sented by H.Now considering nanofluid model, µn f represents nanofluid viscosity, kn f
is nanofluid thermal conductivity, ρn f is nanofluid density, γn f is nanofluid thermal
expansion coefficient and Cpn f is nanofluid heat capacitance.

The governing equations (2.2) - (2.6) are solved under the following assumptions:
1. Flow is steady, laminar and incompressible.
2. Flow is considered two dimensional.
3. Flow is axisymmetric
4. The radial and azimuthal components of fluid velocity is zero.
5. The axial and azimuthal components of temperature is zero.
6. The heat transfer is considered to take place via diffusion in the catheterized

artery.
7. Constant heat source parameter is considered for heat generation/absorption due

to catheter insertion.
8. The mild stenosis condition δ = δ′

R0
� 1

The modified equations are given henceforth. The governing equations with regard to
nanoparticles are given as: -
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where T ′ is temperature, τn f is shear stress of nanofluid, (ργ)n f is thermal expansion
of nanofluid and kn f is is nanofluid thermal conductivity in the central region of the
arteriole. H is constant heat generation or absorption parameter.T0 is temperature of
the peripheral layer.

Now the respective boundary conditions are defined.

The temperature T0 is prescribed on the surface of the artery wall.

T ′ = T0 at r′ = R′(z′) (2.11)

The temperature on the surface of the catheter Tc

T ′ = Tc at r′ = R(c) (2.12)

The slip velocity at the wall of artery is given as

u′ = u′b at r′ = R′(z′) (2.13)

Using Darcy law at the boundary of the artery

∂u′

∂r′
=

α√
kn f

(u′b − u′p) atr′ = R′(z′) (2.14)

u′B is the slip velocity of blood and u′p is the velocity at permeable arterial bound-
ary calculated using Darcy law. α is a dimensionless parameter depending upon the
nanofluid and artery. Equation (8) is obtained from the Beavers and Joseph condition
[35] for boundary between a free fluid and a porous medium.

u′p = −
kn f

µn f

∂p′

∂z′
+ gρn fγn f (T ′ − T0) (2.15)

Using T ′ = T0 at r′ = R′(z′)

there f ore, u′p = −
kn f

µn f

∂p′

∂z′
(2.16)

Regardless of substantial research and analysis, there are not many effective theoretical
models to define the nanoparticle thermal conductivity. Maxwell pioneered the
Effective Medium Theory (EMT) which was studied to a greater extent by Hamilton
and Crosser for non-spherical shaped particles. This model enunciates the thermal
conductivity of two components in a solution for non-spherical shaped particles., as
the result of conductivity of pure materials, along with their respective compositions
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and the manner in which they are dispersed in the solution. Thus, it is applied to
calculate the thermal conductivity ((kn f ) of nanofluid [33]

kn f

k f
=

kp + (n − 1)k f + (n − 1)(kp − k f )φ
kp + (n − 1)k f − (kp − k f )φ

(2.17)

Where k f is the thermal conductivity of blood, while kp is nanoparticle thermal con-
ductivity and φ is nanoparticle volume fraction. It uses empirical shape factor n = 3

ψ
,

where ψ is the sphericity which is termed as the ratio of equal volumes of the sphere’s
surface area to the real particle’s surface area. The values of n for different shapes of
nanoparticles is listed in table 3.
The nanofluid density is expressed as

ρn f = (1 − φ)ρ + φρp (2.18)

where ρ f is density of blood and ρp is nanoparticle density.
Similarly, nanofluid specific heat capacity [33] is calculated as

ρn f cpn f = (1 − φ)ρ f cp f + φρpcpp (2.19)

The nanofluid thermal expansion [6] is given as

ρn fγn f = (1 − φ)ρ fγ f + φρpγp (2.20)

where ρ f cp f and ρ fγ f is the specific heat capacity and thermal expansion of blood.
ρpcpp and ρpγp is nanoparticle specific heat capacity and nanoparticle thermal expan-
sion.

The nanofluid viscosity [28] is given as

µn f = (1 + A1φ + A2φ
2)µ f (2.21)

where A1 and A2 is specific to the shape of nanoparticles in the fluid (Table 2). µn f is
nanofluid viscosity and µ f is blood viscosity.

The non-dimensional variables are :-r = r′
R0
, z = z′

R0
, v = v′

uavg
, u = u′

uavg
, p =

R0 p′

µ f uavg
, σ = d

R0
,Re =

R0uavgρ f

µ f
,

Gr =
gγ f ρ f R2

0(Tc−T0

µ0µ f
, δ = δ′

R′0
, h =

HR2
0

(Tc−T0)k f
,Θ =

(T ′−T0)
(Tc−T0) ,Da =

k f

R2
0

(2.22)

In equations (2.22), Gr is Grashof number, u0 is average velocity, Re is Reynolds num-
ber, h is heat source parameter and Da is Darcy number.

The transformed non-dimensional equations (2.7) to (2.10) are stated as:-

∂u
∂z

= 0 (2.23)
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∂p
∂z

µ f

µn f
=
∂2u
∂r2 +

1
r
∂u
∂r

+ [(1 − φ) + φ
ρpγp

ρ fγ f
] + (1 + A1φ + A2φ

2)GrΘ (2.24)

∂2Θ

∂r2 +
1
r
∂Θ

∂r
+ h[

kp + (n − 1)k f + (n − 1)(kp − k f )φ
kp + (n − 1)k f − (kp − k f )φ

] (2.25)

The geometry of the stenosis (2.1) and the boundary conditions (2.11) to (2.14) in
non-dimensional form are:-

R(z) =

1 − δ
R0

sin π( z−d
L ); d ≤ z ≤ d + L

1; otherwise
(2.26)

Θ = 0 atr = R(z) (2.27)

Θ = 1 atr =
Rc

R0
(2.28)

u = uB atr = R(z) (2.29)

∂u
∂r

=
α
√

Da
(ub − up)atr = R(z) (2.30)

3. Solution

3.1. Analytical solution using Cauchy-Euler method The solution to the equations
(2.23) to (2.25) using the boundary conditions (2.27) to (2.30) is obtained analytically
by using Cauchy-Euler method as: -

The temperature is given as:-

Θ =
1

4 (ln R(z) − ln Rc/R0)
[(4 ln R(z) − ln Rc/R0)

+h[
kp + (n − 1)k f − (kp − k f )φ

kp + (n − 1)k f + (n − 1)(kp − k f )φ
]

(R(z)2(ln r − ln Rc/R0) + r2(− ln R(z) + ln Rc/R0) + (ln R(z) − ln r)(Rc/R0)2)]

(3.1.1)

The velocity is given as:-
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

u =
dp
dz

(1+A1φ+A2φ
2)

4(ln R(z)−ln Rc/R0) (r
2(ln R(z) − ln Rc/R0)

+R(z)2(− ln r + ln Rc/R0) + R2
c(−(1 + A1φ+

A2φ
2)[(1 − φ) + φ

ρpγp

ρ f γ f
]Gr{16(R(z)2(ln r − ln Rc

R0
))

+r2(1 + ln R(z) − ln r)(− ln R(z) + ln Rc/R0)
+(ln R(z) − ln r)(1 + ln R(z) − ln Rc/R0)( Rc

Ro
)2}

1
64(ln R(z)−ln Rc/R0)2 + h[ kp+(n−1)k f−(kp−k f )φ

kp+(n−1)k f +(n−1)(kp−k f )φ ]

(r4(ln R(z))2 + (R(z)2 − r2) ln Rc/R0)(4R(z)2 + (3R(z)2 − r2) ln Rc/R0)
+R(z)2 ln r(−4R(z)2 + (−3R(z)2 + 4r2) ln Rc

R0
) + ln R(z)(4R(z)2r2+

R(z)2(3R(z)2 − 4r2) ln r + (−3R(z)4 + 4R(z)2r2 − 2r4) ln Rc/R0)
−4(r2(ln R(z))2 − 2R(z)2 ln r + (R(z)2 − r2 + r2 ln r) ln Rc/R0+

ln R(z)(R(z)2 + r2 − r2(ln r + ln Rc/R0))(Rc/R0)2 + (ln R(z) − ln r)
(4 + 3 ln R(z) − 3 ln Rc/R0)(Rc/R0)4)) − (− ln r+ln Rc/R0)uB

(ln R(z)−ln Rc/R0)

(3.1.2)

The volumetric flow rate Q is defined as:-

Q =

∫ R(z)

Rc

2πrudu (3.1.3)

Q = 2π
dp
dz

q1(z)
(log R(z) − log Rc)2 − q2(z)

(3.1.4)

3.2. Numerical solution using finite difference method Finite difference method is
employed for solution through numerical method. Denote uk

i as the value of u at node
ri or zi. In this notation, the finite difference formulation of various partial derivatives
are given as:-

∂u
∂r
�

uk
i+1 − uk

i−1

2∆r
= ur (3.2.1)

∂2u
∂2r
�

uk
i+1 − 2uk

i + uk
i−1

(∆r)2 = urr (3.2.2)

∂θ

∂r
�
θk

i+1 − θ
k
I+1

2∆r
= θr (3.2.3)

∂2θ

∂r2 �
θk

i+1 − 2θk
i + θk

i−1

(∆r)2 = θrr (3.2.4)

∂p
∂z
�

pk
i+1−pk

i−1

2∆z
= pz (3.2.5)

∂p
∂r
�

pk
i+1−pk

i−1

2∆z
= pr (3.2.6)
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The governing equations (2.23) to (2.25) are as follows:-

uki + 1 − uki − 1
2∆z

= 0 (3.2.7)

pki + 1 − pki − 1
2(∆r)

= 0 (3.2.8)

p ji + 1 − p ji − 1
2(∆z)

µ f

µn f
=

uk
i+1 − 2uk

i + uk
i−1

(∆r)2 +
1
r

uki + 1 − uki − 1
2∆r

+[(1 − φ) + φ
ρpγp

ρ fγ f
](1 + A1φ + A2φ

2)Grθ

(3.2.9)

θk
i+1 − 2θk

i + θk
i−1

(∆r)2 +
1
r
θk

i+1 − θ
k
I+1

2∆r
+ h[

kp + (n − 1)k f − (kp − k f )φ
kp + (n − 1)k f + (n − 1)(kp − k f )φ

] (3.2.10)

θk
i = 0 at ri = R(zi) (3.2.11)

θk
i = 1 at ri =

Rc

R0
(3.2.12)

uk
i = ub at ri = R(zi) (3.2.13)

uki + 1 − uki − 1
2∆r

=
α
√

Da
(ub − ua) (3.2.14)

The algorithm for solving the equations is given as:-
1. The radial domain is represented by a mesh of (n+1) grid points 0 = r0 < r1 <

r2 < . . . . . . . . . . . . . . . .. < rn−1 < rn = 1.
2. We seek the solution of θ and u at the mesh points for their respective regions.
3. The difference equations (3.2.7) to (3.2.10) and boundary conditions (3.2.11)

to (3.2.14) are used to obtain the values at each grid point applying Thomas
algorithm for tridiagonal system of matrices.

3.3. Comparison of analytical and numerical method Table 1 lists the values of u
and θ obtained analytically and numerically and their corresponding errors.

n = 8.6, φ = 0.02, h = 2.0,Gr = 2.0,Da = 0.1, δ = 0.01,Rc/R0 = 0.1

r u (analytical) u (numerical) Error in u θ (analytical) θ (numerical) Error in θ
0.1 0 0 0 1 1 0
0.2 1.990955 1.990734 0.000221 1.082149 1.081987 0.000162
0.3 2.909471 2.909125 0.000346 1.083809 1.083631 0.000178
0.4 3.293124 3.292590 0.000534 1.035628 1.035427 0.000201
0.5 3.313416 3.312980 0.000436 0.947211 0.946977 0.000234
0.6 3.046656 3.046225 0.000431 0.822838 0.822683 0.000155
0.7 2.533457 2.533081 0.000376 0.664789 0.664622 0.000167
0.8 1.797967 1.797626 0.000341 0.474427 0.472697 0.000173
0.9 0.855659 0.855429 0.000230 0.252630 0.252502 0.000128
1.0 0 0 0 0 0 0

Table 1.
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3.4. Existence and uniqueness of analytical solution using Green’s theorem
Green’s functions serve as important mathematical tools for explaining many physical
concepts. These functions are of fundamental importance in understanding the theory
of differential equations. The equations under consideration are (2.23) to (2.25). The
solution depends on p, v and θ. (2.25) is a second order non-linear equation; consider-
ing only its leading term Θ2 = 0, which is a simple equation.

We divide the interval 0 ≤ z ≤ R(z) into n sub-intervals by the points η0 =

0, η1, η2, . . . .ηn = Ra such that ∆ηi = ηi − ηi−1. At some i, the corresponding ηi = Rc,
where the point of jump discontinuity occurs. Let this be names as η. Let s be defined
as z/R(z) then 0 ≤ s ≤ 1. Therefore the boundary conditions change to:-

Θ = 0 at r = s (3.4.1)

Θ = 1 at r = sη (3.4.2)

and the corresponding equation is
Θ2 = 0 (3.4.3)

The corresponding Green’s function is:-

G(η, s) =

(1 − s)η 0 ≤ η ≤ s
(1 − η) s s ≤ η ≤ 1

(3.4.4)

Lemma 1:- If Θ(η) ε C2[0, 1] satisfies the equation (3.4.1) to (3.4.2) then |Θk(η)| ≤
Ck M, k = 0, 1 where M = maxηε[0, 1]|Θ2(η)| and C0 = 0.0055 and C1 = 0.6250.
BεC2[0, 1] with the following norm on Θ on B is taken as the Banach space:- ||Θ||
maxkε0,1(C0

Ck
max0≤η≤1|Θ

k(η)|)

proof − Θ(η) =

∫ 1

0
G(η, s)Θ2(s)ds (3.4.5)

Θk(η) =

∫ 1

0

∂k

∂ηk G(η, s)Θ2(s)ds (3.4.6)

Then |Θk(η)| ≤ M maxηε[0,1]

∫ 1

0
|
∂k

∂ηk G(η, s)|ds (3.4.7)∫ 1

0
|G(η, s)|ds =

1
2

(η − η2) = 0 ≤ 0.0055 (3.4.8)∫ 1

0
|
∂

∂η
(G(η, s))|ds = |

1
2
− η| = 0.5 ≤ 0.6250 (3.4.9)

Lemma 2:- Let us consider (2.25) as Θ2(η) = F(η,Θ,Θ′). Then the function
F satisfies:-|F(η,Θ0,Θ1) − F(η, h0, h1)| ≤

∑1
k=0 Lk|Θk − hk| on [0, 1]X D where

D = ((Θ0,Θ1)ε<2) : |Θk − P2
k(y)| < Ck

C0
, 0 ≤ y ≤ 1, 0 ≤ k ≤ 1, P2(η)is a one degree
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polynomial satisfying equations (3.4.8) and (3.4.9) and Lk, k = 0, 2 are constants.
proof:-Let (η,Θ0,Θ1) and (η, h0, h1) are arbitrary in [0, 1]X D. Then using mean
value theorem, ∃ some j0, j1 ε D such that

F(η,Θ0,Θ1) − F(η, h0, h1) =

1∑
k=0

∂F
∂Θk

( jk)(Θk − hk) (3.4.10)

Now based on definition of F, its partial derivatives are calculated as

∂F
∂Θ0

= 1,
∂F
∂Θ1

= η (3.4.11)

It is easy to see that P2(η) =
1
2
η (3.4.12)

Therefore, based on the definition of D, the following required inequalities holds:-

|
∂F
∂Θ1
| = |η| ≤ 1 ≤ 1.1924 (3.4.13)

|
∂F
∂Θ0
| = |1| ≤ 116.64 (3.4.14)

Therefore, the equation T |F(η,Θ0,Θ1) − F(η, h0, h1)| ≤
∑1

k=0 Lk|Θk − hk| holds with

L0 = 116.64, L1 = 1.1924 (3.4.15)

Theorem:- If L0C0 + L1C1 < 1, then there exists a unique pair of solution of [Θ(η)]
for the equations (2.25) with equations (2.27) and (2.28) as boundary conditions.

proof:-First, the existence of f will be proved. Let us define the operator

T : K(P2(η), 1) ⊂ B→ B as f ollows : −

T (Θ(η)) = P2(η) +

∫ 1

0
G(η, s)(F(s, f (s), f ′(s))ds (3.4.16)

Therefore T 2(Θ(η)) = F(η,Θ(η),Θ′(η)) and T (Θ(η))satisfies the boundary conditions
(3.4.8) and (3.4.9). Now if T has a fixed point that is T (Θ) = Θ then Θ will be the
solution of the problem given from (2.25). Therefore, if suffices to prove the existence
of a fixed point. Let Θ(η), h(η)εK(P2(η), 1), then:-

T (Θk(η)) − T (hk(η)) =

∫ 1

0
G(η, s)[F(s,Θ(s),Θ′(s) − F(s, h(s), h′(s)]ds (3.4.17)

Now by Lemma 1 and Lemma 2, we have:-

|T (Θk(η)) − T (hk(η))| ≤ Ckmax0≤s≤1|T (Θ2(s) − T (h2(s)| (3.4.18)

≤ Ckmax0≤s≤1

1∑
j=0

L j|Θ
j(s) − h j(s)| (3.4.19)
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≤ Ck

1∑
j=0

L j
C j

C0
||Θ − h|| (3.4.20)

There f ore ||T (Θ) − T (h)|| ≤ l||(Θ − h)|| (3.4.21)

Therefore is a contraction mapping on K(P2(η, 1) and then using Lemma 2.3 of
Agarwal and Chow [36], it has a unique fixed point that is the solution of equations
(2.25) and (2.27), (2.28).

4. Graphical results and discussions

This mathematical analysis for the flow of different shapes of nanoparticles in a
catheterized artery with elliptical stenosis is taken into account parameters like shape
factor n , A1 and A2, catheter radius Rc, volume fraction φ of nanoparticles, heat source
parameter h, Grashof number Gr , stenosis depth δ and Darcy number Da on tempera-
ture and velocity of nanofluid. The graphs are plotted using MATLAB. Fig 2-5 depicts
temperature of nanofluid for shape parameter n,A1 and A2 , catheter radius Rc, volume
fraction φ, and heat source parameter h. Fig 6-12 exhibits axial velocity of nanofluid
for shape parameter n,A1 and A2 ,catheter radius Rc, volume fraction φ, heat source
parameter h, Grashof number Gr, stenosis depth δ, and Darcy number Da.

Figure 2 shows the temperature θ of nanofluid versus radial direction r for distinct
values of shape parameters n ,A1 and A2. The trend in general is parabolic because
of uptrend in the temperature with the increase in radial distance. Shape parameter is
the measure of ratio of equal volumes of real particle’s surface area to sphere’s surface
area. Shape factor is an important pharmocological property of a drug. It effects the
release of a drug, its absorption and subsequently its therapeutic action. Higher shape
factor has interaction the interaction of the given shape of nanoparticle with the fluid
interface, thus higher the viscosity. Thus, platelet shaped nanoparticles show least vis-
cosity because of greatest shape factor. Similar results were given by Ijaz and Nadeem
[6], Devaki et al [38] and Madhura et al [28]. Also, some of the experimental studies
on different shapes of nanoparticles have shown similar results [29].

Figure 3 displays the graph of temperature θ of nanofluid versus radial direction r for
different values of catheter radius Rc for brick shaped nanoparticles. Catheters provide
continuous hemodynamic monitoring along with clearing the occlusions.The radius of
the catheter used effects the stables securement of the catheter. The trend shows that
the temperature increases with the increase in catheter radius. The frictional resistance
increases with the increasing radius of catheter. Thus, the resistance to flow increases
which raises the temperature [40].

Figure 4 depicts the variation of temperature θ of nanofluid versus radial direction r for
different values of volume fraction φ of brick shaped nanoparticles. Volume fraction
represents the number of nanoparticles dispersed in blood. The increase in volume
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fraction for nanoparticles causes an increase in the number of nanoparticles in blood.
The increase in number of nanoparticles causes a greater increase in the transportation
of nanoparticles via conduction from catheter wall to the artery wall with raises the
temperature of nanofluid. Thus, the rise in volume fraction of nanoparticles, raises
temperature of nanofluid. Similar results were given by Nayak et al [41]. The results
are in accordance with the experimental study by Timofeeva et al [29].

Figure 5 displays temperature θ of nanofluid versus radial direction r for different
values of heat source parameter h for brick shaped nanoparticles. Heat source param-
eter governs the temperature. As the value of heat source parameter grows it brings
an elevation in heat generation which raises the temperature of nanofluid. Thus, the
graph shows a rise in temperature with enhancement in heat source parameter. Similar
results were given by Ijaz and Nadeem [6] for spherical shaped nanoparticles.

Figure 6 exhibits velocity u versus radial direction r for different shapes of nanoparti-
cles. The trend is parabolic in general because velocity is changing at a constant rate
with respect to radius.Monitoring the shape of nanoparticles is of paramount impor-
tance in pharmocology.Shape factor determines the degree of effectiveness of the drug
indirectly by controlling its interaction with the blood cells,their dissolution rate and
bio-availabilty. Brick shaped nanoparticles in blood show least velocity profile while
platelet shaped nanoparticles show highest velocity profile. The consequence of the
shape of nanoparticles on the velocity is because of the viscosity dependence-relation
of the shape of respective nanoparticle at a given temperature. Brick shaped nanopar-
ticles show maximum viscosity while platelet shaped nanoparticles have least viscos-
ity.Similar observations were reported by Nayak et al[41].The results are in agreement
with the experimental results obtained by Timofeeva et al [29].

Figure 7 depicts velocity u versus radial direction r using distinct values of catheter
radius Rc with brick shaped nanoparticles in nanofluid. The velocity rises with the
increase in catheter radius to occupy for the same volume of fluid flowing in the
diseased artery [40].The flow is inversely proportional to the viscosity as stated by
Poiseuille’s law.This result can be applied for cleaning of blockages with a suitable
radius of catheter.

Figure 8 depicts velocity u versus radial direction r using distinct values of volume
fraction φ of brick shaped nanoparticles. The velocity decreases with rise in the value
of volume fraction of nanoparticles.Volume fraction of nanoparticles is the indication
of concentration of nanoparticle present. The reason is attributed to the fact that as the
volume fraction increases, the number of nanoparticles increases, which causes the
nanofluid to become more viscous. The rise in viscosity causes a rise in friction force
which reduces velocity. Similar experimental results for drug delivery in a catheterized
artery with atherosclerosis was given by Orizaga et al [39].
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Figure 9 exhibits velocity u versus radial direction r for different values of heat source
parameter h for brick shaped nanoparticles. The rise in heat source parameter causes
a rise in temperature which decreases the viscosity, thereby increasing the velocity.
Devaki et al [38] and Ijaz and Nadeem [6] gave comparable results.

Figure 10 shows velocity u versus radial direction r for distinct values of Grashof
number Gr for brick shaped nanoparticles. The results show that velocity rises with
the rise in the value of Grashof number. Grashof number is the ratio of upthrust by
fluid density because of temperature difference to restraining forces because of viscos-
ity of nanofluid. The increase in value of Grashof number reduces the viscosity of the
nanofluid which thus increases the velocity. Similar analysis has been given by Devaki
et al [38].

Fig 11 shows velocity u versus radial direction r for distinct values of stenosis depth δ
for brick shaped nanoparticles. The trend shows that velocity increases with increase in
stenosis depth. This is because the nanofluid moves more rapidly in the same volume.
Thus, the increases in velocity at the stenosis is proportional to the thickness of the
blockage occurred.

Figure 12 exhibits velocity u versus radial direction r using different values of Darcy
number Da for brick shaped nanoparticles. Darcy number represents the relative effect
of the permeability of the medium to its cross-sectional area. The trend shows that the
increase in the value of Darcy number decreases the velocity of the nanofluid. This
is because the increase in the permeability causes a decrease in the velocity of the
nanofluid [6].

5. Conclusions

The flow of a nanofluid is theoretically examined in elliptical stenosed artery
with a catheter with gold nanoparticles. The governing equations were solved using
Cauchy-Euler method. The graphs were plotted using MATLAB for temperature and
axial velocity of nanofluid with respect to parameters like shape factor n , A1 and
A2, catheter radius Rc, volume fraction φ of nanoparticles, heat source parameter h,
Grashof number Gr , stenosis depth δ and Darcy number Da. The results established
can be outlined as:-

1. The platelet shaped nanoparticles show maximum rise in temperature and veloc-
ity while brick shaped nanoparticles show least rise in temperature and velocity.

2. The temperature of nanofluid increases with increase in catheter radius, volume
fraction and heat source parameter.

3. The velocity of nanofluid increases with increase in catheter radius, Grashof
number, stenosis depth and heat source parameter while it decreases with in-
crease in volume fraction and Darcy number.
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From the above results it can be concluded that the shape of the nanoparticle can be
designated relying on their application and their respective thermodynamic properties
can be administered. The above model can be further developed for full vasculature
taking into account nanoparticle clustering. It is hoped that the developed mathemat-
ical model has efficacious application in the therapeutics dealing with cardiovascular
diseases.

6. Appendix

The thermophysical properties of the blood [19] are:-

Cp 3594 J/KgK
ρ 1063 Kg/m3

k 0.492 W/mK
γ 0.18x10−5 1/K

Table 2.

The values of shape factor of nanoparticles[28] are:-

Shape Of nanoparticle η A1 A2

Platelets 5.7 37.1 612.6
Blades 8.6 14.6 123.3

Cylinders 4.9 13.5 904.4
Bricks 3.7 1.9 471.4

Table 3.



q1(z) = ((logR(z) − logRc))2(4R(z)αDa((R(z))2(1 − 2R(z) + 2logRc) − R2
c)

+
√

Da((R(z))4(−3 + 4logR(z) − 4logRc) + 49R(z))2R2
c

−R4
c) + R(z)α((R(z))4(1 − logR(z) + logRc)

−2(R(z))2R2
c + (1 + logR(z) − logRc)R4

c))
/(16/(1 + Aφ)(R(z)α(logR(z) − logRc) −

√
Da))

(6.0.1)
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q2(z) = ((logR(z) − logRc))2(2R(z)α(6((R(z))4(−4 + 3logR(z) − 3logRc)
+4(R(z))2(2 + logR(z) − logRc)R2

c − (4 + 7logR(z) + 4(logR(z))2

−(7 + 8logR(z))logRc

+4((logRc))2)R4
c) + 2h[ kp+(n−1)k f−(kp−k f )φ

kp+(n−1)k f +(n−1)(kp−k f )φ ]((R(z))2 − R2
c)

((R(z))4(6 − 9logR(z) + 4logR(z))2 + (9 − 8logR(z))logRc

+4((logRc))2) + 4(R(z))2(−3 + ((logR(z) − logRc))2)R2
c

+(6 + 9logR(z) + 4logR(z))2 − (9 + 8logR(z))logRc

+4((logRc))2)R4
c) +

√
Da(12((R(z))4(9 − 8logR(z) + 8logRc)

−4(R(z))2)(3 + 2logR(z) − 2logRc)((logRc))2(3 + 4logR(z) − 4logRc)
((logRc))4) + h[ kp+(n−1)k f−(kp−k f )φ

kp+(n−1)k f +(n−1)(kp−k f )φ ]

(−(R(z))6(27 − 46logR(z) + 24(logR(z))2

+2(23 − 24logR(z)logRc + 24logRc)2) + 9(R(z))4(7 − 4logR(z)
+4logRc)R2

c − 9(R(z))2(5 + 2logR(z) − 2logRc)R4
c

+(9 + 8logR(z) − 8logRc)R6
c))))

/(768(logR(z) − logRc))(R(z)α(logR(z) − logRc) −
√

Da))

(6.0.2)
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