GENERALIZED *p*-FUSION FRAME IN SEPARABLE BANACH SPACE

PRASENJIT GHOSH and T. K. SAMANTA

Abstract

Concepts of g-fusion frame and gf-Riesz basis in a Hilbert to a Banach space is being presented. Some properties of g-fusion frame and gf-Riesz basis in Banach space have been developed. We discuss perturbation results of g-fusion frame in a Banach space. Finally, we construct g-p-fusion frames in Cartesian product of Banach spaces and tensor product of Banach spaces.

2010 Mathematics subject classification: primary 42C15; secondary 46B15.

Keywords and phrases: g-fusion frame, gf-Riesz basis, p-frame, g-p-frame, Banach space..

1. Introduction and Preliminaries

In recent times, several generalization of frame for separable Hilbert space have been introduced. Some of them are K-frame [5], g-frame [12], fusion frame [3] and so on. The combination of g-frame and fusion frame is known as generalized fusion frame or g-fusion frame. Sadri et al. [10] presented g-fusion frame to generalize the theory of fusion frame and g-frame. These frames were further studied by P. Ghosh and T. K. Samanta in [7–9].

A. Aldroubi et al. [1] introduced p-frame in a Banach space and discussed some of its properties. Chistensen and stoeva [4] also developed p-frame in separable Banach space. M. R. Abdollahpour et al. [2] introduced the p g-frames in Banach spaces. The generalization of the g-frame and g-Riesz Basis in a complex Hilbert space to a complex Banach space was also studied by Xiang-Chun Xio et al. [11].

In this paper, we generalize the notion of g-fusion frame in a Hilbert space to a Banach space and establish some of its properties. Generalized Riesz basis in Banach space is also discussed. The relation between g-p-fusion frame and q-g f-Riesz basis is obtained. We describe some perturbation results of g-p-fusion frame in Banach space. At the end, we present g-p-fusion frame in tensor product of Banach spaces.

Throughout this paper, X is considered to be a separable Banach space over the field $\mathbb{K}(\mathbb{R} \text{ or } \mathbb{C})$ and X^* , its dual space. I, J denotes the subset of natural numbers $\mathbb{N}.\{X_i\}_{i\in I}$ is a sequence of Banach spaces and $\{V_i\}_{i\in I}$ is a collection of closed subspaces of $X.\mathcal{B}(X,X_i)$ are the collection of all bounded linear operators from X to X_i and in particular, $\mathcal{B}(X)$ denotes the space of all bounded linear operators

on X. It is assumed that $p \in (1, \infty)$ and when p and q are used in a same assertion, they satisfy the relation 1/p + 1/q = 1.

Now, we recall some necessary definitions and theorems.

THEOREM 1.1. [6] If $U: X \to Y$ is a bounded operator from a Banach space X into a Banach space Y then its adjoint $U^*: Y^* \to X^*$ is surjective if and only if U has a bounded inverse on \mathcal{R}_U (range of U).

DEFINITION 1.2. [4] Let $1 . A countable family <math>\{g_i\}_{i \in I} \subset X^*$ is said to be a p-frame for X if there exist constants $0 < A \le B < \infty$ such that

$$A \| f \|_{X} \le \left(\sum_{i \in I} |g_{i}(f)|^{p} \right)^{1/p} \le B \| f \|_{X} \ \forall f \in X.$$

DEFINITION 1.3. [11] A sequence $\{\Lambda_i \in \mathcal{B}(X, X_i) : i \in I\}$ is called a generalized p-frame or g-p-frame for X with respect to $\{X_i\}_{i \in I}$ if there exist two positive constants A and B such that

$$A \| f \|_{X} \le \left(\sum_{i \in I} \| \Lambda_{i}(f) \|^{p} \right)^{1/p} \le B \| f \|_{X} \quad \forall f \in X.$$

A and B are called the lower and upper frame bounds, respectively.

Definition 1.4. [11] Define the linear space

$$l^{p}(\{X_{i}\}_{i\in I}) = \left\{\{f_{i}\}_{i\in I} : f_{i} \in X_{i}, \sum_{i\in I} \|f_{i}\|^{p} < \infty\right\}.$$

Then it is a complex Banach space with respect to the norm is defined by

$$\|\{f_i\}_{i\in I}\| = \left(\sum_{i\in I} \|f_i\|^p\right)^{1/p}$$

Lemma 1.5. [11] Let p > 1, q > 1 be such that 1/p + 1/q = 1. Then the adjoint space of $l^p(\{X_i\}_{i \in I})$ is $l^q(\{X_i^*\}_{i \in I})$, where X_i^* is the adjoint space of X_i for $i \in I$.

DEFINITION 1.6. [2, 11] Let $\{\Lambda_i \in \mathcal{B}(X, X_i) : i \in I\}$ be a generalized p-frame or g-p-frame for X. Then the operator defined by

$$U: X \to l^p(\{X_i\}_{i \in I}), \quad Uf = \{\Lambda_i(f)\}_{i \in I} \quad \forall f \in X,$$

is called the analysis operator and the operator given by

$$\begin{split} T \,:\, l^q\left(\left\{X_i^*\right\}_{i\in I}\right) &\to X^* \\ T\left(\left\{g_i\right\}_{i\in I}\right) &= \sum_{i\in I} \Lambda_i^* \, g_i \;\; \forall \; \left\{g_i\right\}_{i\in I} \in l^q\left(\left\{X_i^*\right\}_{i\in I}\right) \end{split}$$

is called synthesis operator.

DEFINITION 1.7. [10] Let $\{v_i\}_{i\in I}$ be a collection of positive weights and $\{H_i\}_{i\in I}$ be a collections of Hilbert spaces and $\{V_i\}_{i\in I}$ be a family of closed subspaces of a Hilbert space H. Then the family $\Lambda = \{(V_i, \Lambda_i, v_i)\}_{i\in I}$ is called a generalized fusion frame or a g-fusion frame for H respect to $\{H_i\}_{i\in I}$ if there exist constants $0 < A \le B < \infty$ such that

$$A \| f \|^2 \le \sum_{i \in I} v_i^2 \| \Lambda_i P'_{V_i}(f) \|^2 \le B \| f \|^2 \quad \forall f \in H,$$
 (1.1)

where P'_{V_i} is the orthogonal projection of H onto V_i . The constants A and B are called the lower and upper bounds of g-fusion frame, respectively. If Λ satisfies the right inequality of (1.1), it is called a g-fusion Bessel sequence with bound B in H.

2. g-p-fusion frame and it's properties

In this section, we develop the generalized fusion frame and generalized Riesz basis for Banach space.

DEFINITION 2.1. Let p>1 and $\{v_i\}_{i\in I}$ be a collection of positive weights i.e., $v_i>0$. Let $\Lambda_i\in\mathcal{B}(X,X_i)$ and $\{P_{V_i}\}$ be non-trivial linear projections of X onto V_i such that $P_{V_i}(X)=V_i$, for each $i\in I$. Then the family $\Lambda=\{(V_i,\Lambda_i,v_i)\}_{i\in I}$ is called a generalized p-fusion frame or a g-p-fusion frame for X with respect to $\{X_i\}_{i\in I}$ if there exist $0< A\leq B<\infty$ such that

$$A \| f \| \le \left(\sum_{i \in I} v_i^p \| \Lambda_i P_{V_i}(f) \|^p \right)^{1/p} \le B \| f \| \ \forall f \in X.$$
 (2.1)

The constants A and B are called the lower and upper bounds of g-p-fusion frame, respectively. If A = B then Λ is called tight g-p-fusion frame and if A = B = 1 then we say Λ is a Parseval g-p-fusion frame. If Λ satisfies only the right inequality of (2.1), it is called a g-p-fusion Bessel sequence with bound B in X.

Suppose that $\Lambda = \{(V_i, \Lambda_i, v_i)\}_{i \in I}$ is a tight g-p-fusion frame for X with bound A. Then for all $f \in X$, we have

$$\begin{split} &\left(\sum_{i\in I}v_i^p\left\|\Lambda_iP_{V_i}(f)\right\|^p\right)^{1/p}=A\,\|f\|\\ \Rightarrow &\left(\sum_iv_i^p\left\|A^{-1}\Lambda_jP_{V_i}(f)\right\|^p\right)^{1/p}=\|f\|. \end{split}$$

This verify that $\{(V_i, A^{-1}\Lambda_i, v_i)\}_{i\in I}$ is a Parseval g-p-fusion frame for X.

Theorem 2.2. Let Λ be a g-p-fusion frame for X with respect to $\{X_i\}_{i \in I}$ having bounds A, B. Suppose $U \in \mathcal{B}(X)$ be an invertible operator on X. Then $\Gamma = \{(UV_i, \Lambda_i P_{V_i} U, v_i)\}_{i \in I}$ is a g-p-fusion frame for X, provided $P_{V_i} U P_{UV_i} = P_{V_i} U$, for $i \in I$.

Proof. For each $f \in X$, we have

$$\left(\sum_{i \in I} v_i^p \| \Lambda_i P_{V_i} U P_{UV_i}(f) \|^p \right)^{1/p} = \left(\sum_{i \in I} v_i^p \| \Lambda_i P_{V_i} U(f) \|^p \right)^{1/p}$$

 $\leq B \parallel U f \parallel \leq B \parallel U \parallel \parallel f \parallel \text{ [since } \Lambda \text{ is a } g\text{-}p\text{-fusion frame]}.$

On the other hand

$$\left(\sum_{i\in I}v_i^p\left\|\Lambda_jP_{V_i}UP_{UV_i}(f)\right\|^p\right)^{1/p}=\left(\sum_{i\in I}v_i^p\left\|\Lambda_iP_{V_i}U(f)\right\|^p\right)^{1/p}$$

 $\geq A \| U f \| \geq A \| U^{-1} \|^{-1} \| f \|$ [since *U* is invertible].

Hence, Γ is a *g-p*-fusion frame for X with bounds $B \parallel U \parallel$ and $A \parallel U^{-1} \parallel^{-1}$. \square

Theorem 2.3. Let Λ be a g-p-fusion frame for X with respect to $\{X_i\}_{i\in I}$ having bounds A, B and $U: X \to X$ be a bounded linear operator such that for each $i \in I$, $P_{V_i}UP_{UV_i} = P_{V_i}U$. Then the family $\Gamma = \{(UV_i, \Lambda_i P_{V_i}U, v_i)\}_{i\in I}$ is a g-p-fusion frame for X if and only if U is bounded below.

PROOF. Let Γ be a g-p-fusion frame for X with bounds C and D. Then

$$C \|f\| \le \left(\sum_{i \in I} v_i^p \| \Lambda_i P_{V_i} U P_{UV_i}(f) \|^p \right)^{1/p} \le D \|f\| \ \forall f \in X.$$

$$\Rightarrow C \|f\| \le \left(\sum_{i \in I} v_i^p \| \Lambda_i P_{V_i} U(f) \|^p \right)^{1/p} \le D \|f\|$$
(2.2)

Since Λ is a g-p-fusion frame with bounds A and B, in (2.1), replacing f by Uf, we get

$$A \| U f \| \le \left(\sum_{i \in I} v_i^p \| \Lambda_i P_{V_i} U(f) \|^p \right)^{1/p} \le B \| U f \| \ \forall f \in X.$$
 (2.3)

Now, from (2.2) and (2.3), for each $f \in X$, we can write

$$C \|f\| \le B \|Uf\| \Rightarrow \|Uf\| \ge \frac{C}{B} \|f\|.$$

This shows that U is bounded below.

Conversely, suppose that there exists M>0 such that $\|Uf\|\geq M\|f\|$. Now, for each $f\in X$, we have

$$\left(\sum_{i \in I} v_i^p \| \Lambda_i P_{V_i} U P_{UV_i}(f) \|^p \right)^{1/p} = \left(\sum_{i \in I} v_i^p \| \Lambda_i P_{V_i} U(f) \|^p \right)^{1/p} \\ \ge A \| U f \| \ge A M \| f \|.$$

According to the proof of the Theorem 2.2, the upper frame condition is also satisfied. This completes the proof.

We now give a characterization of a g-p-fusion Bessel sequence in X.

THEOREM 2.4. The family Λ is a g-p-fusion Bessel sequence in X with respect to $\{X_i\}_{i\in I}$ having bound B if and only if the operator given by

$$T \,:\, l^{q}\left(\{X_{i}^{*}\}_{i\in I}\right) \to X^{*}, \ T\left(\{g_{i}\}_{i\in I}\right) = \sum_{i\in I} v_{i} P_{V_{i}} \Lambda_{i}^{*} g_{i}$$

is a well-defined, bounded linear operator with $||T|| \le B$.

PROOF. First we suppose that Λ is a g-p-fusion Bessel sequence in X with respect to $\{X_i\}_{i\in I}$ having bound B. Then for any $\{g_i\}_{i\in I}\in l^q\left(\left\{X_i^*\right\}_{i\in I}\right)$ and any subset $J\subset I$, we have

$$\left\| \sum_{i \in J} v_{i} P_{V_{i}} \Lambda_{i}^{*} g_{i} \right\| = \sup_{f \in X, \|f\| = 1} \left| \sum_{i \in J} v_{i} P_{V_{i}} \Lambda_{i}^{*} g_{i}(f) \right|$$

$$= \sup_{f \in X, \|f\| = 1} \left| \sum_{i \in J} g_{i} v_{i} \Lambda_{i} P_{V_{i}}(f) \right| \leq \sup_{f \in X, \|f\| = 1} \sum_{i \in J} \|g_{i}\| v_{i} \|\Lambda_{i} P_{V_{i}}(f) \|$$

$$\leq \sup_{f \in X, \|f\| = 1} \left(\sum_{i \in J} \|g_{i}\|^{q} \right)^{1/q} \left(\sum_{i \in J} v_{j}^{p} \|\Lambda_{i} P_{V_{i}}(f)\|^{p} \right)^{1/p}$$

$$\leq B \left(\sum_{i \in J} \|g_{i}\|^{q} \right)^{1/q} \text{ [since Λ is a g-p-fusion Bessel sequence]}.$$

This shows that the series $\sum_{i \in I} v_i P_{V_i} \Lambda_i^* g_i$ is unconditionally convergent in X^* . From the above calculation also it follows that

$$\left\| \sum_{i \in I} v_{i} P_{V_{i}} \Lambda_{i}^{*} g_{i} \right\| \leq B \left(\sum_{i \in I} \|g_{i}\|^{q} \right)^{1/q}$$

$$\Rightarrow \left\| T \left(\{g_{i}\}_{i \in I} \right) \right\| \leq B \left(\sum_{i \in I} \|g_{i}\|^{q} \right)^{1/q} = B \left\| \{g_{i}\}_{i \in I} \right\|_{q}.$$

Thus T is bounded and $||T|| \le B$.

Conversely, suppose that T is well-defined and bounded linear operator. For fixed $f \in X$, consider the mapping $F_f : l^q\left(\left\{X_i^*\right\}_{i \in I}\right) \to \mathbb{C}$ defined by

$$F_f\left(\{g_i\}_{i\in I}\right) = T\left(\{g_i\}_{i\in I}\right)(f) = \sum_{i\in I} v_i g_i \Lambda_i P_{V_i}(f).$$

Then F_f is a bounded linear functional on $l^q\left(\left\{X_i^*\right\}_{i\in I}\right)$, so

$$\left\{v_i\Lambda_i P_{V_i}(f)\right\}\in l^p\left(\{X_i\}_{i\in I}\right)$$

P. Ghosh and T. K. Samanta

and

$$||F_f(\{g_i\}_{i\in I})|| \le ||T|| ||\{g_i\}_{i\in I}||_q ||f||.$$

Now, by the Hahn-Banach Theorem, there exists $\{g_i\}_{i\in I}\in l^q\left(\left\{X_i^*\right\}_{i\in I}\right)$ with $\left\|\{g_i\}_{i\in I}\right\|_q\leq 1$ such that

$$\left\|\left\{v_i\Lambda_i P_{V_i}(f)\right\}\right\|_p = \left|\sum_{i\in I} v_i g_i\Lambda_i P_{V_i}(f)\right|.$$

Thus

$$\left(\sum_{i \in I} v_i^p \| \Lambda_i P_{V_i}(f) \|^p \right)^{1/p} = \left\| \left\{ v_i \Lambda_j P_{V_i}(f) \right\} \right\|_p$$

$$\leq \sup_{\| \{g_i\}_{i \in I} \|_p \leq 1} \left| \sum_{i \in I} v_i g_i \Lambda_i P_{V_i}(f) \right| = \| F_f \| \leq \| T \| \| f \|.$$

This completes the proof.

DEFINITION 2.5. Let Λ be a g-p-fusion frame for X with respect to $\{X_i\}_{i \in I}$. Then the operator given by

$$U: X \to l^p(\{X_i\}_{i \in I}), \ Uf = \{v_i \Lambda_i P_{V_i}(f)\}_{i \in I} \ \forall f \in X.$$

is called the analysis operator and the operator $T: l^q\left(\left\{X_i^*\right\}_{i\in I}\right) \to X^*$,

$$T\left(\{g_{i}\}_{i \in I}\right) = \sum_{i \in I} v_{i} P_{V_{i}} \Lambda_{i}^{*} g_{i} \ \forall \{g_{i}\}_{i \in I} \in l^{q}\left(\{X_{i}^{*}\}_{i \in I}\right)$$

is called synthesis operator.

Lemma 2.6. Let Λ be a g-p-fusion frame for X with respect to $\{X_i\}_{i\in I}$. Then the analysis operator U has closed range.

PROOF. Since Λ be a g-p-fusion frame for X, by the definition of analysis operator U, the inequality (2.1), can be written as $A \parallel f \parallel \leq \parallel U f \parallel \leq B \parallel f \parallel$. Now, it is easy to verify that U is one-to-one, $X \cong \mathcal{R}_U$ and hence U has closed range. \square

Lemma 2.7. Let Λ be a g-p-fusion frame for X with respect to $\{X_i\}_{i \in I}$. If for each $i \in I$, X_i is reflexive then X is reflexive.

Proof. The proof is follows from the lemma 2.6.

Theorem 2.8. Let Λ be a g-p-fusion Bessel sequence in X with respect to $\{X_i\}_{i\in I}$. Then

- (i) $U^* = T$.
- (ii) If Λ has the lower g-p-fusion frame condition and for each $i \in I$, X_i is reflexive then $T^* = U$.

Proof. (i) For any $f \in X$ and $\{g_i\}_{i \in I} \in l^q\left(\left\{X_i^*\right\}_{i \in I}\right)$, we have

$$\begin{split} \left\langle Uf, \left\{g_{i}\right\}_{i \in I}\right\rangle &= \left\langle \left\{v_{i} \Lambda_{i} P_{V_{i}}(f)\right\}_{i \in I}, \left\{g_{i}\right\}_{i \in I}\right\rangle = \sum_{i \in I} \left\langle v_{i} \Lambda_{i} P_{V_{i}}(f), g_{i}\right\rangle, \\ \left\langle f, T\left(\left\{g_{i}\right\}_{i \in I}\right)\right\rangle &= \left\langle f, \sum_{i \in I} v_{i} P_{V_{i}} \Lambda_{i}^{*} g_{i}\right\rangle = \sum_{i \in I} \left\langle v_{i} \Lambda_{i} P_{V_{i}}(f), g_{i}\right\rangle. \end{split}$$

This shows that $U^* = T$.

(ii) The proof is directly follows from the lemma 2.6.

The following Theorem gives a characterization of a g-p-fusion frame for X.

THEOREM 2.9. The family Λ is a g-p-fusion frame for X with respect to $\{X_i\}_{i\in I}$ if and only if the synthesis operator T is a surjective and bounded linear operator.

PROOF. First we consider that Λ is a g-p-fusion frame for X. Then by Theorem 2.4, T is well-defined and bounded linear operator. Since U is one-to-one and $U^* = T$, by Theorem 1.1 T is onto.

Conversely, suppose that T is bounded and onto. Then by Theorem 2.4, Λ is a g-p-fusion Bessel sequence in X. Also, by Theorem 1.1, U has a bounded inverse and this gives the lower g-p-fusion frame condition. This completes the proof. \Box

We now develop the concept of generalized Riesz basis into the Banach space X.

Definition 2.10. Let $1 < q < \infty$. The family Λ is called a q-gf-Riesz basis for X with respect to $\{X_i\}_{i \in J}$ if

- (i) Λ is gf-complete, i.e., $\{f : \Lambda_i P_{V_i}(f) = 0, i \in I\} = \{0\}.$
- (ii) There exist constants $0 < A \le B < \infty$ such that for any subset $J \subset I$ and $g_i \in X_i^*$, $i \in J$,

$$A \left(\sum_{i \in J} \|g_i\|^q \right)^{1/q} \le \left\| \sum_{i \in J} v_i P_{V_i} \Lambda_i^* g_i \right\| \le B \left(\sum_{i \in J} \|g_i\|^q \right)^{1/q}.$$

Next theorem establish a relationship between q-gf-Riesz basis and the synthesis operator T.

Theorem 2.11. The family Λ is a q-gf-Riesz basis for X with respect to $\{X_i\}_{i\in I}$ having bounds A and B if and only if the synthesis operator T is a bounded linear and invertible such that

$$A \|g\| \le \|Tg\| \le B \|g\|$$
for any $g = \{g_i\}_{i \in I} \in l^q \left(\{X_i^*\}_{i \in I}\right)$. (2.4)

PROOF. Suppose Λ is a q-gf-Riesz basis for X with respect to $\{X_i\}_{i\in J}$ having bounds A and B. Then from the definition of q-gf-Riesz basis, it is easy to verify that $\sum_{i \in I} v_i P_{V_i} \Lambda_i^* g_i$ converges unconditionally for all $\{g_i\}_{i \in I} \in l^q \left(\left\{X_i^*\right\}_{i \in I}\right)$,

$$A\left(\sum_{i \in I} \|g_i\|^q\right)^{1/q} \le \left\|\sum_{i \in I} v_i P_{V_i} \Lambda_i^* g_i\right\| \le B\left(\sum_{i \in I} \|g_i\|^q\right)^{1/q}$$

and this implies that T is bounded, one-to-one and $A \|g\| \le \|Tg\| \le B \|g\|$.

Conversely, suppose that the operator T is a bounded linear and invertible operator from $l^q\left(\left\{X_i^*\right\}_{i\in I}\right)$ onto X^* and satisfying (2.4). Then by Theorem 2.9, Λ is a g-p-fusion frame for X with respect to $\{X_i\}_{i\in I}$ having bounds A and B. Now, for $f \in \{f : \Lambda_i P_{V_i}(f) = 0, i \in I\}$, we have

$$A \| f \| \le \left(\sum_{i \in I} v_i^p \| \Lambda_i P_{V_i}(f) \|^p \right)^{1/p} = 0 \implies f = 0.$$

Therefore, we obtain that $\{f : \Lambda_i P_{V_i}(f) = 0, i \in I\} = \{0\}$. Hence, Λ is a q-gf-Riesz basis for X with respect to $\{X_i\}_{i\in I}$ having bounds A and B.

Theorem 2.12. Let Λ be a q-gf-Riesz basis for X with respect to $\{X_i\}_{i\in I}$ having bounds A and B. Then Λ is also a g-p-fusion frame for X with respect to $\{X_i\}_{i\in I}$ having same bounds.

Proof. By Theorem 2.11, T is a bounded linear invertible operator with $||T|| \leq B$ and $||T^{-1}|| \le A^{-1}$. It is easy to verify that $||(T^*)^{-1}||^{-1} \ge A$. Then by Theorem 2.9, Λ is a g-p-fusion frame for X with respect to $\{X_i\}_{i \in I}$ having bounds A and В.

THEOREM 2.13. Let $\{X_i\}_{i\in I}$ be a sequence of reflexive Banach spaces and Λ be a g-p-fusion frame for X with respect to $\{X_i\}_{i\in I}$. Then the following are equivalent

- Λ is a q-gf-Riesz basis for X with respect to $\{X_i\}_{i\in I}$. If for any $g=\{g_i\}_{i\in I}\in l^q\left(\{X_i^*\}_{i\in I}\right), \sum\limits_{i\in I}v_iP_{V_i}\Lambda_i^*g_i=0$, then $g_i=\{g_i\}_{i\in I}$ $0 \ \forall i \in I.$
- (iii) $\mathcal{R}(U) = l^p(\{X_i\}_{i \in I})$

PROOF. From the definition of q-gf-Riesz basis, it is easy to verify $(i) \Rightarrow (ii)$.

- $(ii) \Rightarrow (i)$ Suppose that (ii) holds. Since Λ be a g-p-fusion frame for X with respect to $\{X_i\}_{i\in I}$, by Theorem 2.9, the operator T is bounded linear and surjective. Also by condition (ii), it is easy to verify that T is injective. Hence, by Theorem 2.11, Λ is a q-gf-Riesz basis for X with respect to $\{X_i\}_{i\in I}$.
 - $(i) \Rightarrow (iii)$ and $(iii) \Rightarrow (i)$ are directly follows from the Theorem 3.16 of [2]. \Box

3. Perturbation of *g-p*-fusion frame

In this section, the stability of g-p-fusion frame in X is presented.

THEOREM 3.1. Let Λ be a g-p-fusion frame for X with respect to $\{X_i\}_{i\in I}$ having bounds A and B. Suppose that $\Gamma_i \in \mathcal{B}(X, X_i)$, $i \in I$ such that

$$\left(\sum_{i \in I} v_i^p \left\| \left(\Lambda_i P_{V_i} - \Gamma_i P_{W_i} \right) (f) \right\|^p \right)^{1/p} \leq \lambda_1 \left(\sum_{i \in I} v_i^p \left\| \Lambda_i P_{V_i} (f) \right\|^p \right)^{1/p} + \\
+ \lambda_2 \left(\sum_{i \in I} v_i^p \left\| \Gamma_i P_{W_i} (f) \right\|^p \right)^{1/p} + \mu \|f\| \, \, \forall f \in X, \tag{3.1}$$

where $\lambda_1, \lambda_2 \in (-1, 1)$ and $-(1 + \lambda_1) B \leq \mu \leq (1 - \lambda_1) A$. Then $\Gamma = \{(W_i, \Gamma_i, v_i)\}_{i \in I}$ is a g-p-fusion frame for X with respect to $\{X_i\}_{i \in I}$.

Proof. For each $f \in X$, by Minkowski inequality, we have

$$\begin{split} \left(\sum_{i \in I} v_{i}^{p} \left\| \Gamma_{i} P_{W_{i}}(f) \right\|^{p} \right)^{1/p} & \leq \left(\sum_{i \in I} v_{i}^{p} \left\| \left(\Lambda_{i} P_{V_{i}} - \Gamma_{i} P_{W_{i}} \right) (f) \right\|^{p} \right)^{1/p} + \\ & + \left(\sum_{i \in I} v_{i}^{p} \left\| \Lambda_{i} P_{V_{i}}(f) \right\|^{p} \right)^{1/p} \\ & \leq (1 + \lambda_{1}) \left(\sum_{i \in I} v_{i}^{p} \left\| \Lambda_{i} P_{V_{i}}(f) \right\|^{p} \right)^{1/p} + \lambda_{2} \left(\sum_{i \in I} v_{i}^{p} \left\| \Gamma_{i} P_{W_{i}}(f) \right\|^{p} \right)^{1/p} + \mu \|f\| \end{split}$$

Therefore, since Λ is a *g-p*-fusion frame, we have

$$\begin{split} & \left(\sum_{i \in I} v_i^p \left\| \Gamma_i P_{W_i}(f) \right\|^p \right)^{1/p} \\ & \leq \frac{1 + \lambda_1}{1 - \lambda_2} \left(\sum_{i \in I} v_i^p \left\| \Lambda_i P_{V_i}(f) \right\|^p \right)^{1/p} + \frac{\mu}{(1 - \lambda_2)} \| f \| \\ & \leq \left[\left(\frac{1 + \lambda_1}{1 - \lambda_2} \right) B + \frac{\mu}{(1 - \lambda_2)} \right] \| f \| = \left[\frac{B (1 + \lambda_1) + \mu}{1 - \lambda_2} \right] \| f \|. \end{split}$$

On the other hand,

$$\left(\sum_{i \in I} v_{i}^{p} \| \Lambda_{i} P_{V_{i}}(f) \|^{p} \right)^{1/p} - \left(\sum_{i \in I} v_{i}^{p} \| \Gamma_{i} P_{W_{i}}(f) \|^{p} \right)^{1/p} \\
\leq \left(\sum_{i \in I} v_{i}^{p} \| (\Lambda_{i} P_{V_{i}} - \Gamma_{i} P_{W_{i}}) (f) \|^{p} \right)^{1/p}.$$

П

Now using (3.1), we obtain

$$(1 + \lambda_{2}) \left(\sum_{i \in I} v_{i}^{p} \| \Gamma_{i} P_{W_{i}}(f) \|^{p} \right)^{1/p}$$

$$\geq (1 - \lambda_{1}) \left(\sum_{i \in I} v_{i}^{p} \| \Lambda_{i} P_{V_{i}}(f) \|^{p} \right)^{1/p} - \mu \| f \|$$

$$\geq \left[(1 - \lambda_{1}) A - \mu \right] \| f \| \text{ [since } \Lambda \text{ is a } g\text{-}p\text{-fusion frame]}$$

$$\Rightarrow \left(\sum_{i \in I} v_{i}^{p} \| \Gamma_{i} P_{W_{i}}(f) \|^{p} \right)^{1/p} \geq \left[\frac{A (1 - \lambda_{1}) - \mu}{1 + \lambda_{2}} \right] \| f \|.$$

Hence, Γ is a g-p-fusion frame for X with respect to $\{X_i\}_{i\in I}$ having bounds

$$\left[\frac{A(1-\lambda_1)-\mu}{1+\lambda_2}\right] \text{ and } \left[\left(\frac{1+\lambda_1}{1-\lambda_2}\right)B+\frac{\mu}{(1-\lambda_2)}\right].$$

This completes the proof.

THEOREM 3.2. Let Λ be a g-p-fusion frame for X with respect to $\{X_i\}_{i\in I}$ having bounds A and B. Suppose that $\Gamma_i \in \mathcal{B}(X, X_i)$, $i \in I$ such that

$$\left(\sum_{i\in I}v_i^p\left\|\left(\Lambda_iP_{V_i}-\Gamma_iP_{W_i}\right)(f)\right\|^p\right)^{1/p}\leq R\|f\|\ \forall\ f\in X.$$

where 0 < R < A. Then $\Gamma = \{(W_i, \Gamma_i, v_i)\}_{i \in I}$ is a g-p-fusion frame for X with respect to $\{X_i\}_{i \in I}$ having bounds (A - R) and (B + R).

Proof. By Minkowski inequality, for $f \in X$, we get

$$\left(\sum_{i \in I} v_{i}^{p} \| \Gamma_{i} P_{W_{i}}(f) \|^{p}\right)^{1/p} \leq \left(\sum_{i \in I} v_{i}^{p} \| (\Lambda_{i} P_{V_{i}} - \Gamma_{i} P_{W_{i}}) (f) \|^{p}\right)^{1/p} + \left(\sum_{i \in I} v_{i}^{p} \| \Lambda_{i} P_{V_{i}}(f) \|^{p}\right)^{1/p}$$

 $\leq (B + R) || f || [since \Lambda is g-p-fusion frame].$

On the other hand,

$$\left(\sum_{i \in I} v_{i}^{p} \| \Gamma_{i} P_{W_{i}}(f) \|^{p}\right)^{1/p} \geq \left(\sum_{i \in I} v_{i}^{p} \| \Lambda_{i} P_{V_{i}}(f) \|^{p}\right)^{1/p} - \left(\sum_{i \in I} v_{i}^{p} \| (\Lambda_{i} P_{V_{i}} - \Gamma_{i} P_{W_{i}}) (f) \|^{p}\right)^{1/p} \\
\geq (A - R) \| f \|.$$

Hence, Γ is a *g-p*-fusion frame for X with bounds (A - R) and (B + R). This completes the proof.

We end this section by constructing *g-p*-fusion frames in Cartesian product of Banach spaces and tensor product of Banach spaces.

Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be two Banach spaces. Then the Cartesian product of X and Y is denoted by $X \oplus Y$ and defined to be an Banach space with respect to the norm

$$||f \oplus g||^p = ||f||_X^p + ||g||_Y^p,$$
 (3.2)

for all $f \in X$ and $g \in Y$. Now, if $U \in \mathcal{B}(X, X_i)$ and $V \in \mathcal{B}(Y, Y_i)$, then for all $f \in X$ and $g \in Y$, we define

$$U \oplus V \in \mathcal{B}(X \oplus Y, X_i \oplus Y_i)$$
 by $(U \oplus V)(f \oplus g) = U f \oplus V g$,

$$P_{V_i \oplus W_i}(f \oplus g) = P_{V_i} f \oplus P_{W_i} g,$$

where $\{Y_i\}_{i\in I}$ is a another sequence of Banach spaces and $\{W_i\}_{i\in I}$ is the collection of closed subspaces of Y and P_{W_i} are the linear projections of Y onto W_i such that $P_{W_i}(X) = W_i$, for $i \in I$.

THEOREM 3.3. Let Λ be a g-p-fusion frame for X with respect to $\{X_i\}_{i\in I}$ having bounds A, B and $\Gamma = \{(W_i, \Gamma_i, v_i)\}_{i\in I}$ be a g-p-fusion frame for Y with respect to $\{Y_i\}_{i\in I}$ having bounds C, D, where $\Gamma_i \in \mathcal{B}(Y, Y_i)$ for each $i \in I$. Then $\Lambda \oplus \Gamma = \{(V_i \oplus W_i, \Lambda_i \oplus \Gamma_i, v_i)\}_{i\in I}$ is a g-p-fusion frame for $X \oplus Y$ with respect to $\{X_i \oplus Y_i\}_{i\in I}$ having bounds $\min(A^p, C^p)$ and $\max(B^p, D^p)$.

Proof. Since Λ and Γ are g-p-fusion frames for X and Y, respectively,

$$A^{p} \| f \|_{X}^{p} \leq \sum_{i \in I} v_{i}^{p} \| \Lambda_{i} P_{V_{i}}(f) \|_{X}^{p} \leq B^{p} \| f \|_{X}^{p} \ \forall f \in X$$
 (3.3)

$$C^{p} \|g\|_{Y}^{p} \leq \sum_{i \in I} v_{i}^{p} \|\Gamma_{i} P_{W_{i}}(g)\|_{Y}^{p} \leq D^{p} \|g\|_{Y}^{p} \forall g \in Y.$$
 (3.4)

P. Ghosh and T. K. Samanta

Adding (3.3) and (3.4) and then using (3.2), we get

$$A^{p} \| f \|_{X}^{p} + C \| g \|_{Y}^{p} \leq \sum_{i \in I} v_{i}^{p} \| \Lambda_{j} P_{V_{i}}(f) \|_{X}^{p} + \sum_{i \in I} v_{i}^{p} \| \Gamma_{i} P_{W_{i}}(g) \|_{Y}^{p}$$

$$\leq B^{p} \| f \|_{X}^{p} + D^{p} \| g \|_{Y}^{p}.$$

$$\Rightarrow \min(A^{p}, C^{p}) \{ \| f \|_{X}^{p} + \| g \|_{Y}^{p} \} \leq \sum_{i \in I} v_{i}^{p} (\| \Lambda_{i} P_{V_{i}}(f) \|_{X}^{p} + \| \Gamma_{i} P_{W_{i}}(g) \|_{Y}^{p})$$

$$\leq \max(B^{p}, D^{p}) \{ \| f \|_{X}^{p} + \| g \|_{Y}^{p} \}.$$

$$\Rightarrow \min(A^{p}, C^{p}) \| f \oplus g \|^{p} \leq \sum_{i \in I} v_{i}^{p} \| \Lambda_{i} P_{V_{i}}(f) \oplus \Gamma_{i} P_{W_{i}}(g) \|^{p}$$

$$\leq \max(B^{p}, D^{p}) \| f \oplus g \|^{p}.$$

$$\Rightarrow \min(A^{p}, C^{p}) \| f \oplus g \|^{p} \leq \sum_{i \in I} v_{i}^{p} \| (\Lambda_{i} \oplus \Gamma_{i}) (P_{V_{i}} \oplus P_{W_{i}}) (f \oplus g) \|^{p}$$

$$\leq \max(B^{p}, D^{p}) \| f \oplus g \|^{p} \forall f \oplus g \in X \oplus Y.$$

$$\Rightarrow \min(A^{p}, C^{p}) \| f \oplus g \|^{p} \leq \sum_{i \in I} v_{i}^{p} \| (\Lambda_{i} \oplus \Gamma_{i}) P_{V_{i} \oplus W_{i}} (f \oplus g) \|^{p}$$

$$\leq \max(B^{p}, D^{p}) \| f \oplus g \|^{p} \forall f \oplus g \in X \oplus Y.$$

Thus, $\Lambda \oplus \Gamma$ is a g-p-fusion frame for $X \oplus Y$ with respect to $\{X_i \oplus Y_i\}_{i \in I}$ having bounds min (A^p, C^p) and max (B^p, D^p) . This completes the proof.

The tensor product of X and Y is denoted by $X \otimes Y$ and it is defined to be an normed space with respect to the norm

$$||f \otimes g||^p = ||f||_X^p ||g||_Y^p,$$
 (3.5)

for all $f \in X$ and $g \in Y$. Then it is easy to verify that $X \otimes Y$ is complete with respect to the above norm. Therefore, $X \otimes Y$ is a Banach space.

Let $U, U' \in \mathcal{B}(X, X_i)$ and $V, V' \in \mathcal{B}(Y, Y_j)$, for $i \in I$ and $j \in J$. Then for $U \otimes V$, $U' \otimes V' \in \mathcal{B}(X \otimes Y, X_i \otimes Y_j)$, we define (i) $(U \otimes V)(f \otimes g) = U f \otimes V g$ for all $f \in X$, $g \in Y$.

- (ii) $(U \otimes V) (U' \otimes V') = UU' \otimes VV'$.
- $(iii) \ \ P_{V_i \otimes W_j}(f \otimes g) = P_{V_i} f \otimes P_{W_j} g \ \ \text{for all} \ \ f \in X, \ g \in Y.$

Let $\{v_i\}_{i\in I}$, $\{w_j\}_{i\in J}$ be two families of positive weights i.e., $v_i>0 \ \forall \ i\in I$ $I, w_j > 0 \quad \forall \quad j \in J \text{ and } \Lambda_i \otimes \Gamma_j \in \mathcal{B}(X \otimes Y, X_i \otimes Y_j) \text{ for each } i \in I \text{ and } j \in J. \text{ Then according to the definition (2.1), the family } \Lambda \otimes \Gamma = I \text{ and } I \text{ and } I \text{ and } I \text{ according to the definition (2.1)}$ $\{(V_i \otimes W_j, \Lambda_i \otimes \Gamma_j, v_i w_j)\}_{i,j}$ is said to be a g-p-fusion frame for $X \otimes Y$ with respect to $\{X_i \otimes Y_j\}_{i=1}$ if there exist constants A, B > 0 such that

$$A \, \| \, f \, \otimes \, g \, \| \leq \left(\sum_{i,j} v_i^p \, w_j^p \, \left\| \left(\Lambda_i \, \otimes \, \Gamma_j \right) \, P_{\, V_i \otimes \, W_j} \left(\, f \, \otimes \, g \, \right) \, \right\|^P \right)^{1/p} \leq B \, \| \, f \, \otimes \, g \, \|$$

for all $f \otimes g \in X \otimes Y$. The constants A and B are called the frame bounds.

Theorem 3.4. The family $\Lambda \otimes \Gamma$ is a g-p-fusion frame for $X \otimes Y$ with respect to $\{X_i \otimes Y_j\}_{i,j}$ if and only if Λ is a g-p-fusion frames for X with respect to $\{X_i\}_{i \in I}$ and Γ is a g-p-fusion frames for Y with respect to $\{Y_j\}_{i \in J}$.

PROOF. First we suppose that $\Lambda \otimes \Gamma$ is a g-p-fusion frame for $H \otimes K$ with respect to $\{H_i \otimes K_j\}_{i,j}$. Then there exist constants A, B > 0 such that for all $f \otimes g \in H \otimes K - \{\theta \otimes \theta\}$, we have

$$A \| f \otimes g \| \leq \left(\sum_{i,j} v_{i}^{p} w_{j}^{p} \| \left(\Lambda_{i} \otimes \Gamma_{j} \right) P_{V_{i} \otimes W_{j}}(f \otimes g) \|^{p} \right)^{1/p} \leq B \| f \otimes g \|$$

$$\Rightarrow A \| f \otimes g \| \leq \left(\sum_{i,j} v_{i}^{p} w_{j}^{p} \| \Lambda_{i} P_{V_{i}}(f) \otimes \Gamma_{j} P_{W_{j}}(g) \|^{p} \right)^{1/p} \leq B \| f \otimes g \|.$$

$$\Rightarrow A \| f \|_{X} \| g \|_{Y} \leq \left(\sum_{i \in I} v_{i}^{p} \| \Lambda_{i} P_{V_{i}}(f) \|_{X}^{p} \right)^{1/p} \left(\sum_{j \in J} w_{j}^{p} \| \Gamma_{j} P_{W_{j}}(g) \|_{Y}^{p} \right)^{1/p}$$

$$\leq B \| f \|_{X} \| g \|_{Y} \quad [by (3.5)].$$

Since $f \otimes g$ is non-zero vector, f and g are also non-zero vectors and therefore $\sum_{i \in I} v_i^p \| \Lambda_i P_{V_i}(f) \|_X^p$ and $\sum_{i \in I} w_j^p \| \Gamma_j P_{W_j}(g) \|_Y^p$ are non-zero. Then

$$\frac{A \|g\|_{Y}}{\left(\sum_{j \in J} w_{j}^{p} \|\Gamma_{j} P_{W_{j}}(g)\|_{Y}^{p}\right)^{1/p}} \|f\|_{X} \leq \left(\sum_{i \in I} v_{i}^{p} \|\Lambda_{i} P_{V_{i}}(f)\|_{X}^{p}\right)^{1/p} \\
\leq \frac{B \|g\|_{Y}}{\left(\sum_{j \in J} w_{j}^{p} \|\Gamma_{j} P_{W_{j}}(g)\|_{Y}^{p}\right)^{1/p}} \|f\|_{X} \\
\Rightarrow A_{1} \|f\|_{X} \leq \left(\sum_{j \in J} v_{j}^{p} \|\Lambda_{j} P_{V_{j}}(f)\|_{X}^{p}\right)^{1/p} \leq B_{1} \|f\|_{X} \quad \forall f \in X,$$

where

$$A_{1} = \min_{g \in Y} \left\{ \frac{A \|g\|_{Y}}{\left(\sum_{j \in J} w_{j}^{p} \|\Gamma_{j} P_{W_{j}}(g)\|_{Y}^{p} \right)^{1/p}} \right\}$$

and

$$B_{1} = \max_{g \in Y} \left\{ \frac{B \|g\|_{Y}}{\left(\sum_{j \in J} w_{j}^{p} \|\Gamma_{j} P_{W_{j}}(g)\|_{Y}^{p}\right)^{1/p}} \right\}.$$

This shows that Λ is a *g-p*-fusion frame for X with respect to $\{X_i\}_{i\in I}$. Similarly, it can be shown that Γ is *g-p*-fusion frame for Y with respect to $\{Y_j\}_{j\in J}$.

Conversely, suppose that Λ and Γ are g-p-fusion frames for X and Y. Then there exist positive constants A, B and C, D such that

$$A \| f \|_{X} \le \left(\sum_{i \in I} v_{i}^{p} \| \Lambda_{i} P_{V_{i}}(f) \|_{X}^{p} \right)^{1/p} \le B \| f \|_{X} \quad \forall f \in X$$
 (3.6)

$$C \|g\|_{Y} \le \left(\sum_{j \in J} w_{j}^{p} \|\Gamma_{j} P_{W_{j}}(g)\|_{Y}^{p}\right)^{1/p} \le D \|g\|_{Y} \ \forall g \in Y.$$
 (3.7)

Multiplying (3.6) and (3.7), and using (3.5), we get

$$AC \| f \otimes g \| \le \left(\sum_{i,j} v_i^p w_j^p \| \Lambda_i P_{V_i}(f) \otimes \Gamma_j P_{W_j}(g) \|^p \right)^{1/p} \le BD \| f \otimes g \|.$$

Therefore, for each $f \otimes g \in H \otimes K$, we get

186

$$AC \| f \otimes g \| \leq \left(\sum_{i,j} v_i^p w_j^p \left\| \left(\Lambda_i \otimes \Gamma_j \right) P_{V_i \otimes W_j} (f \otimes g) \right\|^p \right)^{1/p} \leq BD \| f \otimes g \|.$$

Hence, $\Lambda \otimes \Gamma$ is a *g-p*-fusion frame for $X \otimes Y$ with respect to $\{X_i \otimes Y_j\}_{i,j}$ with bounds AC and BD. This completes the proof.

Acknowledgement

Authors are very grateful to the reviewer for suggesting some improvements to increase its readability.

References

- A. Aldroubi, Q. Sun and W. Tang, p-frame and shift subspaces of L^p, J. Fourier Anal. Appl., 7 (2001) 1–22.
- [2] M. R. Abdollahpour, M. H. Faroughi and A. Rahimi, PG-frames in Banach spaces, Methods of Functional Analysis and Topology, 13 (2007), no. 3, 201–210.
- [3] P. Casazza and G. Kutyniok, Frames of subspaces, Cotemporary Math, AMS 345 (2004), 87–114.
- [4] O. Christensen and Stoeva, *p-frames in separable Banach spaces*, Adv. Comput. Math., textbf18 (2003), no. 2-4, 117–126.
- [5] Laura Gavruta, Frames for operator, Appl. Comput. Harmon. Anal., 32 (1) (2012), 139–144.
- [6] H. Heuser, Functional Analysis, (Wiley, 1982).
- [7] P. Ghosh and T. K. Samanta, Stability of dual g-fusion frame in Hilbert spaces, Methods of Functional Analysis and Topology, 26 (2020) no. 3, 227–240.
- [8] P. Ghosh and T. K. Samanta, Generalized atomic subspaces for operators in Hilbert spaces, doi: 10.21136/MB.2021.0130-20.
- [9] P. Ghosh and T. K. Samanta, Generalized fusion frame in tensor product of Hilbert spaces, Journal of the Indian Mathematical Society, 89 (1-2) (2022), 58–71.

- [10] V. Sadri, Gh. Rahimlou, R. Ahmadi and Farfar R. Zarghami, *Construction of g-fusion frames in Hilbert Spaces*, Probl. Anal. Issues Anal., **9** (27), no. 1, 110–127.
- [11] Xiang-Chun Xiao, Yu-Can Zhu and Xiao-Ming Zeng, Generalized p-frame in separable complex Banach spaces, International Journal of Wavelets, Multiresolution and Information Processing, 8 (2010), no. 1, 133–148.
- [12] W. Sun, *G-frames and G-Riesz bases*, Journal of Mathematical Analysis and Applications, **322** (1) (2006), 437–452.

Prasenjit Ghosh, Department of Pure Mathematics, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India e-mail: prasenjitpuremath@gmail.com

T. K. Samanta, Department of Mathematics, Uluberia College, Uluberia, Howrah, 711315, West Bengal, India e-mail: mumpu_tapas5@yahoo.co.in