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ON CONSTRUCTION OF INVOLUTORY MAXIMUM
DISTANCE SEPARABLE RHOTRICES USING SELF DUAL

BASES OVER GALOIS FIELD
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Abstract

Self-dual bases are useful in many applications like the construction of devices for the arithmetic in 
finite fields such as multiplication, exponentiation, discrete logarithms and in applications to coding 
theory, cryptography and the discrete Fourier transforms. The Maximum Distance Separable (MDS) 
matrices have important applications in cryptography as these offer diffusion properties. In order to 
simplify the implementation process, it is crucial to explore involutory MDS matrices. Rhotrices, depicted 
as coupled matrices, serve as an alternative representation. Consequently, substituting matrices with 
rhotrices effectively enhances security twofold. This paper presents construction of involutory MDS 
rhotrices within the F33 , F53 and F24 , employing self-dual basis and finite field elements.
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1. Introduction

As studied in [2], back in 2003, Ajibade has firstly introduced the concept of a 3-
dimensional rhotrix. This structure lies between 2 × 2 dimensional and 3 × 3 matrices.
A 3-dimensional rhotrix, denoted as R3 of the form:

R3 =

〈 l
m n o

p

〉
.

In this representation, the variables l,m, n, o, p represent real numbers, and the param-
eter h (R3) = n is referred to as the heart of the rhotrix R3. It is very much clear
from the structure of rhotrix that, it is always of odd dimension. Its generalisation is
given by Mohammad et al. [8] to include any finite dimensional (2n + 1) rhotrix where
n = 1, 2, ... .

In literature of rhotrix, algebra and analysis of rhotrices is discussed by Ajibade [2].
Sani [15, 16] introduced an alternative approach to rhotrix multiplication, while Aminu
[3] explored linear systems involving rhotrices. Tudunkaya and Makanjuola [25]
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presented the concept of rhotrix polynomials. Absalom et al. [1] introduced the idea
of heart-oriented rhotrix multiplication. Authors in references [14, 15] discussed the
relationship between invertible rhotrices and their associated invertible rhotrices. The
adjoint of rhotrices and bilinear forms over rhotrices was detailed in reference [16].
Sharma et al. [22–24] explored Hadamard rhotrices over finite fields and constructed
MDS rhotrices from companion rhotrices, one may refer to, [18]. Decompositions of
a special type of Vandermonde rhotrices were elaborated in [26]. Circulant rhotrices
were introduced by Sharma et al. [13] in the realm of rhotrices. Tudunkaya et al. [25]
discussed rhotrices over finite fields.

A square matrix A is called an MDS matrix if and only if all its square sub-
matrices are non-singular, as explained in [6]. This condition implies that all entries
in an MDS matrix must be non-zero. MDS matrices find various applications in
cryptographic hash functions and block ciphers, as discussed by Gupta and Ray
[4, 5]. Several methods for constructing MDS rhotrices have been explored. Sharma
et al. [13, 17, 19, 20] utilized various rhotrix types, such as Pascal rhotrices,
Circulant rhotrices, and Hadamard rhotrices for MDS rhotrix construction. The
use of Vandermonde matrices for the construction of involutory MDS rhotrices was
discussed by Sajadieh et al. [10], and Lacan and Fimes [6]. Nakahara and Abraho
[9] constructed a 16-order involutory MDS matrix using a Cauchy matrix, which was
subsequently used in MDS-AES design. Usaini [26] discussed the construction of
involutory rhotrices.

In present work, the construction of MDS involutory rhotrices, are demonstrated
using a self-dual basis of the finite field of odd characteristics. In the following section,
we discuss the preliminaries, algebra of rhotrices and previously obtained results. In
section 3, we propose the construction of MDS involutory rhotrices, using a self-dual
basis of the finite field of odd characteristics. We demonstrate our proposition with the
help of supporting example over F32 and F52 . We construct the MDS rhotrices, using
elements of the finite field in section 4. In section 5, some illustrations are given to
show that multiplication of an involutory rhotrix with a diagonal rhotrix is again an
MDS rhotrix. Lastly, we conclude our paper.

2. Preliminaries

In present section, we recall some basic fundamentals of rhotrices and previously
obtained results which are required in of what follows.
2.1 Algebra of Rhotrices
Ajibade [2] defined a 3× 3–dimensional rhotrix, which is, in some way, between 2×2–
dimensional and 3×3–dimensional matrices as

R3 =

〈 l
m n o

p

〉
,

where l,m, n, o, p are real numbers and h (R3) = n is called the heart of rhotrix R3.
He also defined the operations of addition and scalar multiplication of two rhotrices
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and also have shown that there are many similarities in the operations of rhotrices and
matrices.

Let Q3 =

〈 r
s t u

v

〉
be another 3-dimensional rhotrix, then the addition of two

rhotrices is defined as

R3 + Q3 =

〈 l
m n o

p

〉
+

〈 r
s t u

v

〉
=

〈 l + r
m + s n + t o + u

p + v

〉
,

and for any real number α, the scalar multiplication of a rhotrix R3 is defined as

αR3 = α

〈 l
m n o

p

〉
=

〈 α l
αm α n α o

α p

〉
.

In the literature of rhotrix theory, two types of multiplications of rhotrices are dis-
cussed. First type of multiplication is heart oriented multiplication of rhotrices which
is discussed by Ajibade and second type of multiplication is row-column multiplica-
tion of rhotrices which was given by Sani. Ajibade in [2], discussed the heart-oriented
multiplication of 3-dimensional rhotrices as given below:

R3 o Q3 =

〈 lt + rn
mt + sn nt ot + un

pt + vn

〉
.

Further, the generalization of the heart-oriented multiplication of 3-dimensional rhotri-
ces to n-dimensional rhotrices is given by Mohammed in [8]. In [1], Sani defined the
row column multiplication of 3-dimensional rhotrices as follows:

R3 o Q3 =

〈 l
m n o

p

〉 〈 r
s t u

v

〉

=

〈 lr + os
mr + ps nt lu + ov

mu + pv

〉
.

R3 o Q3 =

〈 l
m n o

p

〉 〈 r
s t u

v

〉
=

〈 lr + os
mr + ps nt lu + ov

mu + pv

〉
.

2.2 Finite Fields
Let Fqn be an extension field over the field Fq. There exists an isomorphism between
the extension field Fqn and the n -dimensional vector space Fn

q. The special types of
basis namely normal basis, self-dual basis and self-dual normal basis are of particular
interest in studies regarding the finite fields and their applications. The following
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definitions provide the insight about the algebraic structure and properties of these
basis.
2.3 Self-dual basis
Consider a basis a = {a1, a2, . . . , an} of Fqn over Fq. Any other basis b = {b1, b2, . . . , bn}

of Fqn satisfying the relation tr(aib j) = δi j, where Tr is the trace, defined as Tr(α) =

α + αq + · · · + αqn−1
of an element α ∈ Fqn and δi j is the Kronecker delta function. A

basis a = {a1, a2, . . . , an} of Fqn over Fq is called self-dual basis if Tr(aia j) = δi j. A
self-dual basis exists in an extension field Fqn of the field Fq if q is even or both q and
n are odd.
A normal basis of Fqn over Fq is a basis of the form N = {a1, a2, . . . , an}, where
αi = αqi

, 1 ≤ i ≤ n. We say that α is a normal element of Fqn , or that α generates
the normal basis N. It is a well-known fact that the normal bases exist in any finite
field extension.
2.4 Maximum Distance Separable (MDS) matrices

Definition 2.1. [4] Let F be a finite field, and p, q be two positive integers. Let
x → M × x be a mapping from F p to Fq defined by the q × p matrix M. We say
that it is an MDS matrix if the set of all pairs (x,M × x) is an MDS code, that is a
linear code of dimension p, length p + q and minimum distance q + 1. In other form,
we can say that a square matrix A is an MDS matrix if and only if every square sub-
matrix of A are non-singular. This implies that all the entries of an MDS matrix must
be non-zero.

Definition 2.2. [18] An m × n rhotrix over a finite field K is an MDS rhotrix if it is
the linear transformation f (x) = Ax from Kn to Km such that no two different (m + n)-
tuples of the form (x, f (x)) coincide. The necessary and sufficient condition for a
rhotrix to be an MDS rhotrix is that all its sub-rhotrices are non-singular.

Definition 2.3. [26] An involutory rhotrix is a rhotrix that is its own inverse, that is
R = R−1. It is also called self-invertible rhotrix.

Lemma 2.4. [18] Any rhotrix R7 over GF(2n) with all non-zero entries is known as an
MDS rhotrix iff its coupled matrices M1 = 4× 4 and M2 = 3× 3 are non-singular and
all their entries are non -zero.

A rhotrix is said to be involutory rhotrix if its coupled matrices are involutory.

3. Construction Of Involutory MDS Rhotrices Over The Finite Fields Of Odd
Charactristics

The construction of MDS involutory rhotrices from self- dual basis.
Consider a finite field Fq with q elements, where q = pn (p be an odd prime). Let
g = {α1, α2, ..., αn} be a self dual basis of Fq. Let the matrix of the q cycles of g i.e.
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g[i] for 1 ≤ i ≤ n, where [i] denotes the qi (i an integer) be denoted by A, given as:

A =


α1 α2 · · · αn

α1
[1] α2

[1] · · · αn
[1]

...
...

. . .
...

α1
[n] α2

[n] · · · αn
[n]

 .
Then, we know that AAT = In where In is the n × n identity matrix.
In order to construct an involutory MDS rhotrix RT = 〈A, B〉 of dimension T =

2n − 1 over Fq, consider A an n × n matrix constructed using a self-dual basis
g = {α1, α2, ..., αn} of Fq and B an arbitrary (n − 1) × (n − 1) involutory matrix with
entries in Fq. Thus for, A and B are the coupled matrices of the rhotrix RT , as long as
these are involutory matrices, the rhotrix RT is an involutory MDS rhotrix over Fq.
From above discussion, we propose the result in the form of following theorem.

Theorem 3.1. Let Fq be the finite field with q elements, where q = pn (p an odd prime).
Let {α1, α2, ..., αn} be a self-dual basis of Fq. Let RT = 〈C,D〉 be a 2n−1 dimensional
rhotrix whose coupled matrix C =

(
ci j

)
n×n

is generated by q − cycles of the self-dual

bases {α1, α2, ..., αn} of Fq and D =
(
di j

)
(n−1)×(n−1)

be an arbitrary involutory matrix
with entries in Fq. Then, RT = 〈C,D〉 is an involutory MDS rhotrix.

In support of our proposition, we provide illustration over the finite fields with odd
characteristics.
In this paper, we construct 5- dimensional MDS involutory rhotrices from self- dual
basis over F33 using irreducible polynomial p (x) = x3 + 2x2 + 1.
Example 1 Let R5 be a five dimensional rhotrix whose coupled matrices C =

(
ci j

)
3×3

and D =
(
di j

)
2×2

are generated by q− powers of self- dual bases {α, α3, α9} and
{α4, α23} respectively over F33 , where α is the root of the irreducible polynomial
p (x) = x3 + 2x2 + 1. Then, C and D are involutory matrices and hence R5 = 〈C, D〉 is
an involutory MDS rhotrix.

Proof. It is given that the coupled matrices C and D are generated by q− powers of
self- dual bases {α, α3, α9} and {α4, α23} respectively, therefore, C and D are given by

C =


α α3 α9

(α)3 (α3)3 (α9)3

(α)32
(α3)32

(α9)32


or

C =

 α α3 α9

α3 α9 α27

α9 α27 α81


and

D =

[
α4 α23

(α4)3 (α23)3

]
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or

D =

[
α4 α23

α12 α17

]
.

To show that C is involutory matrix, we find CCT

CCT =

 α α3 α9

α3 α9 α27

α9 α27 α81


 α α3 α9

α3 α9 α27

α9 α27 α81


or

CCT =

 1 0 0
0 1 0
0 0 1

 .
Hence, C is involutory matrix. Similarly, we can show that D is an involutory matrix.
Therefore, R5 = 〈C, D〉 is given by

R5 =

〈 α
α3 α4 α3

α9 α12 α9 α23 α9

α27 α69 α27

α81

〉
. (3.1)

As α is the root of the irreducible polynomial f (x) = x3 + 2x2 + 1 in F33 , therefore,

α27 = α, α69 = α17

and
α81 = α3.

Therefore, (3.1) reduces to

R5 =

〈 α
α3 α4 α3

α9 α12 α9 α23 α9

α α17 α
α3

〉
. (3.2)

Since the coupled matrices of R5 are involutory matrices, therefore, from Definition
2.2, R5 is an involutory rhotrix. Also, coupled matrices of R5 are non-singular and all
the elements of R5 are non-zero, therefore, from Lemma 2.4, it is clear that R5 is MDS
rhotrix. �

Example 2 Let R5 be a five dimensional rhotrix whose coupled matrices C =
(
ci j

)
3×3

and D =
(
di j

)
2×2

are generated by q− powers of self- dual bases {α8, α40, α7} and
{α17, α115} respectively over F53 where α is the root of the irreducible polynomial
p (x) = x3 + 3x + 2. Then, C and D are involutory matrices and hence R5 = 〈C, D〉 is
an involutory MDS rhotrix.
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Proof. It is given that the coupled matrices C and D are generated by q− powers of
self- dual bases {α8, α40, α76} and {α17, α115} respectively, therefore, C and D are given
by

C =


α8 α40 α76

(α8)5 (α40)5 (α76)
5

(α8)52

(α40)52

(α76)
52


or

C =

 α8 α40 α76

α40 α200 α380

α200 α1000 α1900

 . (3.3)

Since α is the root of the irreducible polynomial p (x) = x3 + 3x + 2 in F53 , therefore,
α200 = α76, α380 = α8, α1000 = α8 and α1900 = α40.
Hence, C in (3.3) reduces to

C =

 α8 α40 α76

α40 α76 α8

α76 α8 α40

 .
Also,

D =

[
α17 α115

(α17)5 (α115)5

]
or

D =

[
α17 α115

α85 α79

]
. (3.4)

To show that C is involutory matrix, we find CCT

CCT =

 α
14 α16 α22

α16 α22 α14

α22 α14 α16


 α

14 α16 α22

α16 α22 α14

α22 α14 α16


which gives,

CCT =

 1 0 0
0 1 0
0 0 1

 .
Hence, C is involutory matrix. Similarly, we can show that D is an involutory matrix.
Therefore, R5 = 〈C, D〉 is given by

R5 =

〈 α14

α16 α10 α16

α22 α4 α22 α25 α22

α14 α23 α14

α16

〉
.

Since the coupled matrices of R5 are involutory matrices, therefore, from Definition
2.2, we conclude that R5 is an involutory rhotrix. Also, all the elements of R5 are
non-zero, therefore, from Lemma 2.4, it is clear that R5 is MDS rhotrix. �
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4. Construction Of MDS Involutory Rhotrices Over The Finite Field Of Prime
Characteristics

Theorem 4.1. Let Fq be the finite field with q elements, where q = pn. Let
{α1, α2, ..., αn} be elements of Fq. Let RT = 〈C, D〉 be a 2n− 1 dimensional Maximum
Distance Separable rhotrix (but not involutory), whose coupled matrix C =

(
ci j

)
n×n

and D =
(
di j

)
(n−1)×(n−1)

both are generated by elements {α1, α2, ..., αn} of Fq and if ‘s’

is the sum of elements of any row then, s−1RT is a MDS involutory rhotrix.

In support of our proposition we provide illustrations over the finite field of prime
characteristics.
Example 1 Let R7 be a seven dimensional rhotrix whose coupled matrices A =(
ai j

)
4×4

and B =
(
bi j

)
3×3

are generated by elements {α2, α5, α10, α14} and {α3, α9, α11}

respectively over GF
(
24

)
where α is the root of the irreducible polynomial p (x) = x4+

x + 1 and if sum of each row is α6. Then, α−6A and α−6B are involutory matrices and
hence α−6R7 is an involutory MDS rhotrix.

Proof. Let α be a root of the irreducible polynomial p (x) = x4 + x + 1 over GF
(
24

)
.

As matrices C =
(
ci j

)
4×4

and D =
(
di j

)
3×3

are generated by elements {α2, α5, α10, α14}

and {α3, α9, α11}. Therefore, matrices C and D are given by

C =


α2 α5 α10 α14

α5 α2 α14 α10

α10 α14 α2 α5

α14 α10 α5 α2



C2 =


α12 0 0 0
0 α12 0 0
0 0 α12 0
0 0 0 α12


Matrix C is MDS but not involutory.
Sum of elements of each row is,

α2 + α5 + α10 + α14 = α6.

Also,

1(
α6)2 A2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


implies that,

1(
α6)2 A2 = I
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Hence, 1
α6 C is an involutory matrix.

Now,

D =

 α3 α9 α11

α9 α11 α3

α11 α3 α9


D2 =

 α
12 0 0
0 α12 0
0 0 α12


Matrix D is MDS but not involutory.
Sum of elements of each row is,

α3 + α9 + α11 = α6.

Also,

1(
α6)2 B2 =

 1 0 0
0 1 0
0 0 1


implies that,

1(
α6)2 B2 = I

Hence, 1
α6 D is an involutory MDS matrix.

Therefore,

1(
α6)2 R7

2 =

〈
1

0 1 0
0 0 1 0 0

0 0 0 1 0 0 0
0 0 1 0 0

0 1 0
1

〉
.

Hence, 1
α6 R7 is an involutory MDS rhotrix. �

Example 2 Let R5 be a five dimensional rhotrix whose coupled matrices C =
(
ci j

)
3×3

and D =
(
di j

)
2×2

are generated by elements {α3, α9, α11} and {α2, α3} respectively over

GF
(
24

)
where α is the root of the irreducible polynomial p (x) = x4 + x + 1 and if sum

of each row is α6. Then, α−6C and α−6D are involutory matrices and hence α−6R5 is
an involutory MDS rhotrix.

Proof. Let α be a root of the irreducible polynomial p (x) = x4 + x + 1 over GF
(
24

)
.

As matrices C =
(
ci j

)
3×3

and D =
(
di j

)
2×2

are generated by the elements {α3, α9, α11}
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and {α2, α3} respectively. Therefore matrices C and D are given by

C =

 α3 α9 α11

α9 α11 α3

α11 α3 α9


C2 =

 α
12 0 0
0 α12 0
0 0 α12

 .
Matrix C is MDS but not involutory.
Sum of elements of each row is,

α3 + α9 + α11 = α6.

Also,

1(
α6)2 A2 =

 1 0 0
0 1 0
0 0 1


implies that,

1(
α6)2 A2 = I

Hence, 1
α6 C is an involutory MDS matrix.

Now, matrix D is given by

D =

[
α2 α3

α3 α2

]
implies,

D2 =

[
α12 0
0 α12

]
.

Therefore,
Matrix D is MDS but not involutory.
Sum of elements of each row is,

α2 + α3 = α6.

Also,
1(
α6)2 D2 =

[
1 0
0 1

]
implies that,

1(
α6)2 D2 = I

Hence, 1
α6 D is involutory MDS matrix.
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Therefore,

1(
α6)2 R5

2 =

〈 1
0 1 0

0 0 1 0 0
0 1 0

1

〉
.

Hence, 1
α6 R5 is involutory MDS rhotrix. �

5. Construction Of MDS Rhotrices By Multiplication Of Involutory Rhotrix
With A Diagonal Rhotrix Using Self Dual Basis

Theorem 5.1. Let Fq be the finite field with q elements, where q = pn (p an odd prime).
Let {α1, α2, ..., αn} be a self-dual basis of Fq. Let RT = 〈C, D〉 be a 2n−1 dimensional
an involutory MDS rhotrix whose coupled matrix C =

(
ci j

)
n×n

is generated by q−cycles

of the self-dual basis {α1, α2, ..., αn} of Fq and D =
(
di j

)
(n−1)×(n−1)

be an arbitrary
involutory matrix with entries in Fq. Also M = 〈E, F〉 be any diagonal rhotrix,
where E =

(
ei j

)
n×n

is a diagonal matrix, whose diagonal entries are self dual basis

{α1, α2, ..., αn} of Fq and F =
(

fi j

)
n−1×n−1

is a diagonal matrix, whose diagonal entries
are arbitrary basis which are same as are used to form arbitrary involutory matrix D.
Then R.M = 〈C, D〉 . 〈E, F〉 is again a MDS rhotrix.

Here are some illustrations
Example 1 Let R5 be a five dimensional an involutory MDS rhotrix, whose coupled
matrices C =

(
ci j

)
3×3

and D =
(
di j

)
2×2

are generated by q− powers of self- dual bases
{α14, α16, α22} and {α10, α25} respectively over F33 where α is the root of the irreducible
polynomial p (x) = x3 + 2x2 + 1, (C and D are involutory matrices). Let M = 〈E, F〉
be a five-dimensional diagonal rhotrix, where coupled matrices are E =

(
ei j

)
3×3

and

F =
(

fi j

)
2×2

whose diagonal entries are basis {α14, α16, α22} and {α10, α25} respectively
over F33 . Then R.M = 〈C, D〉 . 〈E, F〉 is again a MDS rhotrix.

Proof. Here coupled matrices C =
(
ci j

)
3×3

and D =
(
di j

)
2×2

are generated by q−
powers of self- dual bases {α14, α16, α22} and {α10, α25} respectively.
Therefore, matrices A and B are given by

C =


α14 α16 α22

(α14)3 (α16)
3

(α22)3

(α14)32

(α16)
32

(α22)32


C =

 α14 α16 α22

α42 α48 α66

α126 α144 α198


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C =

 α
14 α16 α22

α16 α22 α14

α22 α14 α16


and,

D =

[
α10 α25

(α10)3 (α25)3

]
or

D =

[
α10 α25

α4 α23

]
.

To show that C is involutory matrix, we find CCT

CCT =

 α
14 α16 α22

α16 α22 α14

α22 α14 α16


 α

14 α16 α22

α16 α22 α14

α22 α14 α16


implies,

CCT =

 1 0 0
0 1 0
0 0 1

 .
Hence, C is involutory matrix.
Similarly, we can show that D is an involutory matrix. Therefore, R5 = 〈C, D〉 is given
by

R5 =

〈 α14

α16 α10 α16

α22 α4 α22 α25 α22

α14 α23 α14

α16

〉
.

As α is the root of the irreducible polynomial f (x) = x3 + 2x2 + 1 in F33 , therefore,

α27 = α, α144 = α14

and
α198 = α16.

Also, M = 〈E, F〉 is a diagonal matrix, where matrices C and D are given by

E =

 α
14 0 0
0 α16 0
0 0 α22


and

F =

[
α10 0
0 α25

]
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Here,

C.E =

 α
14 α16 α22

α16 α22 α14

α22 α14 α16


 α

14 0 0
0 α16 0
0 0 α22


C.E =

 α
28 α32 α44

α30 α38 α36

α36 α30 α38


or

C.E =

 α2 α6 α18

α4 α12 α10

α10 α4 α12

 .
det (C.E) = α18 , 0 Therefore, C.E is MDS matrix. Similarly,

D.F =

[
α10 α25

α4 α23

] [
α10 0
0 α25

]

D.F =

[
α20 α50

α14 α48

]
or,

D.F =

[
α20 α24

α14 α22

]
.

det(D.F) = α22 , 0 Therefore, D.F is a MDS matrix. Hence,

R.M = 〈C, D〉 . 〈E, F〉

R.M =

〈 α28

α30 α20 α32

α36 α14 α38 α24 α44

α30 α22 α36

α38

〉
.

Therefore, R.M is a MDS rhotrix. �

Example 2 Let R5 be a five dimensional an involutory MDS rhotrix, whose coupled
matrices C =

(
ci j

)
3×3

and D =
(
di j

)
2×2

are generated by q− powers of self- dual
bases {α14, α70, α102} and {α17, α115} respectively over F53 where α is the root of the
irreducible polynomial p (x) = x3 + 3x + 2, (C and D are involutory matrices). And
M = 〈E, F〉 be a five-dimensional diagonal rhotrix, where coupled matrices are
E =

(
ei j

)
3×3

and F =
(

fi j

)
2×2

whose diagonal entries are basis {α14, α70, α102} and
{α17, α115} respectively, over F53 . Then R.M = 〈C, D〉 . 〈E, F〉 is again a MDS rhotrix.
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Proof. Here coupled matrices C =
(
ci j

)
3×3

and D =
(
di j

)
2×2

are generated by q−
powers of self- dual bases {α14, α70, α102} and {α17, α115} respectively.
Therefore, matrices A and B are given by

C =


α14 α70 α102

(α14)5 (α70)5 (α102)5

(α14)52

(α70)52

(α102)52


or

C =

 α14 α70 α102

α70 α350 α510

α350 α1750 α2550


implies,

C =

 α14 α70 α102

α70 α102 α14

α102 α14 α70


and

D =

[
α17 α115

(α17)5 (α115)5

]
or

D =

[
α17 α115

α85 α575

]
D =

[
α17 α115

α85 α79

]
.

To show that A is involutory matrix, we find AAT

CCT =

 α14 α70 α102

α70 α102 α14

α102 α14 α70


 α14 α70 α102

α70 α102 α14

α102 α14 α70


implies,

CCT =

 1 0 0
0 1 0
0 0 1

 .
Hence, C is involutory matrix. Similarly, we can show that D is an involutory matrix.
Therefore, R5 = 〈C, D〉 is given by

R5 =

〈 α14

α70 α17 α70

α102 α85 α102 α115 α102

α14 α79 α14

α70

〉
.
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As α is the root of the irreducible polynomial f (x) = x3 + 3x + 2 in F53 , therefore,

α124 = 1, α575 = α79

and
α1750 = α14.

Also, M = 〈E, F〉 is a diagonal matrix, where matrices E and F are given by

E =

 α
14 0 0
0 α70 0
0 0 α102


and

F =

[
α17 0
0 α115

]
.

Here,

C.E =

 α14 α70 α102

α70 α102 α14

α102 α14 α70


 α

14 0 0
0 α70 0
0 0 α102


C.E =

 α28 α140 α204

α84 α172 α116

α116 α84 α172


or

C.E =

 α28 α16 α80

α84 α48 α116

α116 α84 α48

 .
det(C.E) = α106 , 0 Therefore, C.E is MDS matrix. Similarly,

D.F =

[
α17 α115

α85 α72

] [
α17 0
0 α115

]
D.F =

[
α34 α230

α102 α194

]
or

D.F =

[
α34 α106

α102 α70

]
.

det(D.F) = α70 , 0 Therefore, D.F is a MDS matrix. Hence,

R.M = 〈C, D〉 . 〈E, F〉

R.M =

〈 α28

α84 α34 α16

α116 α102 α48 α106 α80

α84 α70 α116

α48

〉
.

Therefore, R.M is a MDS rhotrix. �
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6. Conclusion

Maximum Distance Separable involutory rhotrices are constructed from self- dual
bases over F33 , F53 and F24 using irreducible polynomials p (x) = x3 + 2x2 + 1 and
p (x) = x3 + 3x + 2 respectively. Similar constructions can be done over higher dimen-
sional finite fields. An MDS involutory rhotrix is also constructed using elements of
irreducible polynomial p (x) = x4 + x + 1 over F24 and it is also shown that multipli-
cation of an involutory rhotrix with a diagonal rhotrix using self-dual basis is again an
MDS rhotrix.

Conflicts of Interest: The authors declare no conflict of interest.

References

[1] E.E. Absalom, B. Sani and J.B. Sahalu, The concept of heart-oriented rhotrix multiplication,
Global J. Sci. Fro. Research, 11 (2011) 35-42.

[2] A.O. Ajibade, The concept of rhotrices in mathematical enrichment, Int. J. Math. Educ. Sci. Tech.,
34 (2003) 175-179.

[3] A. Aminu, On the linear system over rhotrices, Notes Number Theory Discret. Math., 15 (2009)
7-12.

[4] K.C. Gupta and I.G. Ray, On constructions of MDS matrices from companion matrices for
lightweight cryptography, Cryptography Security Engineering and Intelligence Informatics, Lec-
tures Notes in Computer Science, 8128 (2013) 29-43.

[5] K.C. Gupta and I.G. Ray, On constructions of MDS matrices from circulant-like matrices for
lightweight cryptography, Applied Statistics Unit, Indian Statistical Institute, Calcuta, India,
(2014).

[6] J. Lacan and J. Fimes, Systematic MDS erasure codes based on Vandermonde matrices, IEEE
Trans. Commun. Lett. 8 (2004) 570-572.

[7] A. Mohammed, Theoretical development and applications of rhotrices, Ph. D. Thesis, Ahmadu
Bello University, Zaria, (2011).

[8] A. Mohammed, E.A. Ezugwu and B. Sani, On generalization andalgorithmatization of heart-
based method for multiplication of rhotrices, International Journal of Computer Information
Systems, 2 (2011) 46-49.

[9] J. Nakahara and E. Abrahao, A new involutory MDS matrix for the AES, International Journal of
Computer Security, 9 (2009) 109-116.

[10] M. Sajadieh, M. Dakhilian, H. Mala and B. Omoomi, On construction of involutry MDS matrices
from Vandermonde matrices, Des. Codes and Cry., 64 (2012) 287-308.

[11] B. Sani, An alternative method for multiplication of rhotrices, Int. J. Math. Educ. Sci. Tech., 35
(2004) 777-781.

[12] B. Sani, Conversion of a rhotrix to a coupled matrix, Int. J. Math. Educ. Sci. Technol., 39 (2008)
244-249.

[13] P.L. Sharma, S. Gupta and M. Rehan, Construction of MDS rhotrices using special type of
circulant rhotrices over finite fields, Himachal Pradesh University Journal, 03 (2015) 25-43.

[14] P.L. Sharma and R.K. Kanwar, A note on relationship between invertible rhotrices and associated
invertible matrices, Bulletin of Pure and Applied Sciences, 30 E (Math & Stat.) (2011) 333-339.

[15] P.L. Sharma and R.K. Kanwar, Adjoint of a rhotrix and its basic properties, International J.
Mathematical Sciences, 11 (2012) 337-343.

[16] P.L. Sharma, and R.K. Kanwar, The Cayley-Hamilton theorem for rhotrices, International Journal
Mathematics and Analysis, 4 (2012) 171-178.

[17] P.L. Sharma and R.K. Kanwar, On involutory and pascal rhotrices, International J. of Math. Sci.
& Engg. Appls., 7 (2013) 133-146.



Involutory Maximum Distance Separable Rhotrices 139

[18] P.L. Sharma and S. Kumar, On construction of MDS rhotrices from companion rhotrices over
finite field, International Journal of Mathematical Sciences, 12 (2013) 271-286.

[19] P.L. Sharma, and S. Kumar, Some applications of Hadamard rhotrices to design balanced
incomplete block, International J. of Math. Sci. & Engg. Appls., 8 (2014) 389-406.

[20] P.L. Sharma and S. Kumar, Balanced incomplete block design (BIBD) using Hadamard rhotrices,
International J. Technology, 4 (2014) 62-66.

[21] P.L. Sharma and S. Kumar, On a special type of Vandermonde rhotrix and its decompositions,
Recent Trends in Algebra and Mechanics, Indo-American Books Publisher, New Delhi, (2014)
33-40.

[22] P.L. Sharma and S. Kumar and M. Rehan, On construction of Hadamard codes using Hadamard
rhotrices, International Journal of Theoretical & Applied Sciences, 6 (2014) 102-111.

[23] P.L. Sharma, S. Kumar and M. Rehan, On Hadamard rhotrix over finite field, Bulletin of Pure
and Applied Sciences, 32 E (Math & Stat.) (2013) 181-190.

[24] P.L. Sharma, S. Kumar and M. Rehan, On Vandermonde and MDS rhotrices over GF(2q),
International Journal of Mathematics and Analysis, 5 (2013) 143-160.

[25] S.M. Tudunkaya and S.O. Makanjuola, Rhotrices and the construction of finite fields, Bulletin of
Pure and Applied Sciences, 29 E (2010) 225-229.

[26] S. Usaini, On Construction of Involutory Rhotrices, International J. of Math. Edu. In Sci. & Tech.,
43 (2012) 510-515.

S. Gupta, Department of Mathematics & Statistics, Himachal Pradesh University,
Shimla, India
e-mail: shalini.garga1970@gmail.com

R. Narang, Department of Mathematics, G. C. Karsog, District Mandi, Himachal
Pradesh, India
e-mail: ruchinarang8878@gmail.com

M. Harish, Department of Mathematics & Statistics, Himachal Pradesh University,
Shimla, India
e-mail: mansihverma16@gmail.com




