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SOME NEW CLASSES OF PERMUTATION TRINOMIALS
OVER F22m
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Abstract

A polynomial f over finite field Fq is called a permutation polynomial if f permutes the elements of Fq. 
We present the constructions of permutation trinomials over finite fields with even characteristic by using 
the known permutations of the set of (2m + 1)-th roots of unity.

2010 Mathematics subject classification: 11T06; 11T55; 12E20.

Keywords and phrases: Finite fields, Permutation polynomials, Permutation trinomials, Trace function.

1. Introduction

Let Fq be a finite field with q elements and F∗q denotes its multiplication group, where 
q is a prime power. A polynomial f (x) ∈ Fq[x] is said to be a permutation polynomial 
over Fq if the associated function f : c → f (c) from Fq to Fq is one-to-one. Hermite 
and Dickson were the first to study permutation polynomials for finite prime fields and 
arbitrary finite fields. We refer the reader to [10, 11] for an overview of permutation 
polynomials. Permutation polynomials have many applications in mathematics and 
engineering such as coding theory, cryptography and combinatorial designs. A survey 
of recent advances paper on permutation polynomials is [5].

Permutation polynomials with few terms have been extensively explored because 
of their simple algebraic form and their extraordinary properties. Hence, we are es-
pecially interested in permutation trinomials over finite fields with even characteristic. 
The existence of the permutation polynomials of the form xrh(x(q−1)/d) can be found in 
[13], where r and d are positive integers with d | (q − 1). For the construction of classes 
of permutation polynomials with few terms, see [1, 4, 6–9, 16]. Some new classes 
of permutation trinomials over finite fields with even characteristic can be found in 
[2, 3, 12, 15]. Xu at el. [14] found some permutation pentanomials and trinomials over 
finite fields with even characteristic. We extend the work of [3, 14, 15] by constructing 
five classes of permutation trinomials over finite fields with even characteristic.
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2. Preliminaries

Throughout this paper, µd denotes the set of d-th roots of unity in the algebraic
closure of Fq. For each x ∈ Fq, we denote x2m

by x̄ in analogy with the usual complex
conjugation. The unit circle of F2m is defined as

µ2m+1 = {x ∈ Fq : x2m+1 = xx̄ = 1}.

The trace function from F2m to F2 is defined by

Trm
1 (x) = x + x2 + ... + x2m−1

.

Trace function Trm
1 (.) is linear and for k ∈ N,

Trm
1 (x2k

) = Trm
1 (x).

The following results are needed in the next sections.

Lemma 2.1. [16] Let d, r > 0 with d|(q − 1) and h(x) ∈ Fq[x]. Then f (x) = xrh(x(q−1)/d)
permute Fq if and only if the following two conditions hold:
(i) gcd(r, (q − 1)/d) = 1.
(ii) xrh(x)(q−1)/d permutes µd.

Lemma 2.2. [9] For a positive integer m, the quadratic equation x2 +ax+b = 0, a, b ∈
F2m , a , 0, has solutions in F2m if and only if Trm

1 ( b
a2 ) = 0.

Lemma 2.3. [3] For m ∈ N, the polynomial 1 + x + x3 has no roots in µ2m+1.

Lemma 2.4. For a positive integer m, the polynomials 1+ x2 + x5 and 1+ x3 + x5 have
no roots in µ2m+1.

Proof. Suppose α ∈ µ2m+1 is a root of 1 + x2 + x5, that is,

1 + α2 + α5 = 0. (2.1)

Raising both sides of (2.1) to the power 2m and multiplying it by α5, we get

1 + α3 + α5 = 0. (2.2)

On adding (2.1) and (2.2), we obtain α3 +α2 = 0, which implies that α = 1. But α = 1
does not satisfy (2.1), which is a contradiction. Hence the polynomial 1+x2+x5 has no
roots in µ2m+1. Using similar arguments, it is easy to show that polynomial 1 + x3 + x5

has no roots in µ2m+1. �

3. Main Results

In this section, we present permutation trinomials of the form xrh(xq−1/d) over F22m ,
where d = 2m + 1.

Theorem 3.1. The polynomial f1(x) = x5 + x2m+1+3 + x5.2m
is a permutation polynomial

over F22m if and only if m . 0 mod 4.
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Proof. The polynomial f1(x) is of the type xrh1(x(q−1)/d), where r = 5 and h1(x) =
1 + x2 + x5 ∈ F22m [x]. Since gcd(5, 2m − 1) = 1 as m . 0 mod 4, therefore by Lemma
2.1, f1(x) permutes F22m if and only if the polynomial u1(x) = x5h1(x)2m−1 permutes
µ2m+1.
The Lemma 2.4 concludes that h1(x) has no roots in µ2m+1, which implies u1(x) , 0
for x ∈ µ2m+1. It is easy to check that u1(µ2m+1) ⊆ µ2m+1.
Therefore, u1(x) permutes µ2m+1 if and only if u1(x) is one-one on µ2m+1. For this,
assume that u1(x) is not one-one, that is, there exist x, y ∈ µ2m+1 and x , y such that
u1(x) = u1(y). Then we have

x5 + x3 + 1
x5 + x2 + 1

=
y5 + y3 + 1
y5 + y2 + 1

. (3.1){
∵ u1(x) = x5h1(x)2m−1 = x5(1 + x2 + x5)2m−1 =

x5 + x3 + 1
x5 + x2 + 1

}
From (3.1), we obtain

(1 + x2y2)(x + y)3 + (1 + x3y3)(x + y)2 + (xy + x2y2 + x3y3)(x + y) = 0. (3.2)

As x , y, so dividing both sides of (3.2) by (x + y)5, we obtain

(1 + x2y2)
(x + y)2 +

(1 + x3y3)
(x + y)3 +

(xy + x2y2 + x3y3)
(x + y)4 = 0. (3.3)

This implies that

(ab)2 + ((a + b) + (a + b)2)ab + (a + b)2 + (a + b)3 = 0, (3.4)

where a = 1
x+y and b = xy

x+y . Note that a + b and ab ∈ F2m .

It follows from the Lemma 2.2 that the quadratic equation x2 + ax + b = 0; a, b ∈
F2m , a , 0 has solutions in F2m if and only if Trm

1 ( b
a2 ) = 0.

Therefore, from (3.4), we have

Trm
1

[
(a + b)2 + (a + b)3

(a + b)2 + (a + b)4

]
= 0. (3.5)

This implies that

Trm
1 (

1
1 + a + b

) = 0,

which is a contradiction, that means u1(x) is one-one. Hence, f1(x) is permutation
polynomial over F22m .
Conversely, if f1(x) is a permutation polynomial over F22m , then by Lemma 2.1, we
have gcd(5, 2m − 1) = 1, which implies that m . 0 mod 4. �

Theorem 3.2. The polynomial f2(x) = x5 + x3.2m+2 + x5.2m
is a permutation polynomial

over F22m if and only if m . 0 mod 4.
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Proof. The polynomial f2(x) is of the type xrh2(x(q−1)/d), where r = 5 and h2(x) =
1 + x3 + x5 ∈ F22m [x]. Since gcd(5, 2m − 1) = 1 as m . 0 mod 4. Thus, Lemma 2.1
concludes that f2(x) permutes F22m if and only if the polynomial u2(x) = x5h2(x)2m−1

permutes µ2m+1.
It follows from Lemma 2.4 that the polynomial h2(x) has no roots in µ2m+1, which
implies u2(x) , 0 for x ∈ µ2m+1. It is easy to check that u2(µ2m+1) ⊆ µ2m+1.
Therefore, u2(x) permutes µ2m+1 if and only if u2(x) is one-one on µ2m+1. For this,
assume that u2(x) is not one-one, that is, there exist x, y ∈ µ2m+1 and x , y such that
u2(x) = u2(y). Then for x ∈ µ2m+1,

u2(x) = x5(1 + x3 + x5)2m−1 =
x5 + x2 + 1
x5 + x3 + 1

=
1

u1(x)
. (3.6)

It is clear from (8) that u2(x) permutes µ2m+1 if and only if u1(x) permutes µ2m+1. Since
u1(x) permutes µ2m+1, see [Theorem 3.1]. Therefore, u2(x) permutes µ2m+1. Hence,
Lemma 2.1 concludes that f2(x) is a permutation polynomial over F22m . �

Theorem 3.3. The polynomial f3(x) = x6+x2m+1+4+x5.2m+1 is a permutation polynomial
over F22m if and only if m is odd.

Proof. The polynomial f3(x) is of the form xrh3(x(q−1)/d), where r = 6 and h3(x) =
1 + x2 + x5 ∈ F22m [x]. Since gcd(6, 2m − 1) = 1 as m is odd, therefore by Lemma
2.1, f3(x) permutes F22m if and only if the polynomial u3(x) = x6h3(x)2m−1 = x6+x4+x

x5+x2+1
permutes µ2m+1.
It follows from Lemma 2.4 that h3(x) has no roots in µ2m+1, which implies u3(µ2m+1) ⊆
µ2m+1.
Now, we need to prove that u3(x) is one-one on µ2m+1, assume that there exist
x, y ∈ µ2m+1 and x , y such that u3(x) = u3(y). Then

x6 + x4 + x
x5 + x2 + 1

=
y6 + y4 + y
y5 + y2 + 1

. (3.7)

After solving (3.7), we have

(x + y)6 + (1 + xy + x2y2)(x + y)4 + (1 + xy + x4y4 + x5y5)(x + y) = 0. (3.8)

Dividing both sides of (3.8) by (x + y)6 leads to

1 +
(1 + xy + x2y2)

(x + y)2 +
(1 + xy + x4y4 + x5y5)

(x + y)5 = 0. (3.9)

Let a = 1
x+y and b = xy

x+y , clearly a + b and ab ∈ F2m . By substituting the values of a
and b in (3.9), we obtain

(a + b)5 + (a + b)2 + ab + 1 = 0. (3.10)
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Dividing both sides of (3.10) by (a + b), we get

(a + b)4 + (a + b) +
(ab + 1)
(a + b)

= 0. (3.11)

Using the property Trm
1 (x)2 = Trm

1 (x) for any x ∈ F2m , (3.11) turns out to be

Trm
1 (

ab + 1
a + b

) = 0,

which is a contradiction. Therefore, u3(x) permutes µ2m+1. Hence, f3(x) is a permuta-
tion polynomial over F22m .
Conversely, if f3(x) is a permutation polynomial over F22m , then the Lemma 2.1 con-
cludes that gcd(6, 2m − 1) = 1, which implies that m is odd. �

Theorem 3.4. The polynomial f4(x) = x4+x3.2m+1+x5.2m−1 is a permutation polynomial
over F22m .

Proof. The polynomial f4(x) is of the form xrh4(x(q−1)/d), where r = 4 and h4(x) =
1 + x3 + x5 ∈ F22m [x]. From Lemma 2.1, f4(x) permutes F22m if and only if
gcd(4, 2m − 1) = 1 and the polynomial u4(x) = x4h4(x)2m−1 permutes µ2m+1.
Lemma 2.4 concludes that h4(x) has no roots in µ2m+1, which implies u4(x) , 0 for
x ∈ µ2m+1 and hence g4(µ2m+1) ⊆ µ2m+1. Because µ2m+1 is a finite set, u4(x) permutes
µ2m+1 if and only if u4(x) is one-one on µ2m+1.
For x ∈ µ2m+1, we have

u4(x) = x4(1 + x3 + x5)2m−1 =
x5 + x2 + 1
x6 + x4 + x

=
1

u3(x)
.

Therefore, u4(x) permutes µ2m+1 if and only if u3(x) permutes µ2m+1. It follows from
Theorem 3.3 that u3(x) permutes µ2m+1, and thus, u4(x) permutes µ2m+1. Hence, the
Lemma 2.1 concludes that f4(x) is a permutation polynomial over F22m . �

Theorem 3.5. The polynomial f5(x) = x5+ x2m+4+ x3.2m+2 is a permutation polynomial
over F22m if and only if m . 0 mod 4.

Proof. The polynomial f5(x) is of the type xrh5(x(q−1)/d), where r = 5 and h5(x) =
1+ x+ x3 ∈ F22m [x]. Since gcd(5, 2m − 1) = 1 as m . 0 mod 4, so by Lemma 2.1, f5(x)
permutes F22m if and only if the polynomial u5(x) = x5h5(x)2m−1 permutes µ2m+1.
It follows from Lemma 2.3 that h5(x) , 0 for all x ∈ µ2m+1, which implies that
u5(µ2m+1) ⊆ µ2m+1. Now, we need to prove that u5(x) is one-one on µ2m+1, assume
that there exist x, y ∈ µ2m+1 and x , y such that u5(x) = u5(y). Then

x5 + x4 + x2

x3 + x + 1
=

y5 + y4 + y2

y3 + y + 1
, (3.12)

{
∵ u5(x) = x5h5(x)2m−1 = x5(1 + x + x3)2m−1 =

x5 + x4 + x2

x3 + x + 1

}
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Now (3.12) implies that

(x + y)5 + (1 + xy)(x + y)4 + (1 + x3y3)(x + y)2 + (xy + x2y2 + x3y3)(x + y) = 0.

Since x , y. Therefore, we have

1 +
1 + xy
(x + y)

+
1 + x3y3

(x + y)3 +
xy + x2y2 + x3y3

(x + y)4 = 0. (3.13)

Substituting a = 1
x+y and b = xy

x+y in (3.13), we obtain

(ab)2 + ((a + b) + (a + b)2)(ab) + 1 + (a + b) + (a + b)3 = 0. (3.14)

As a + b and ab ∈ F2m , therefore, Lemma 2.2 concludes that the quadratic equation
x2 + ax + b = 0; a, b ∈ F2m , a , 0 has solutions in F2m if and only if Trm

1 ( b
a2 ) = 0.

Therefore, from (3.14), we have

Trm
1

[
1 + (a + b) + (a + b)3

(a + b)2 + (a + b)4

]
= 0,

which leads to a contradiction that u5(x) is not one-one which implies u5(x) permutes
µ2m+1. Thus, f5(x) is a permutation polynomial over F22m .
Conversely, if f5(x) is a permutation polynomial over F22m , therefore by Lemma 2.1,
gcd(5, 2m − 1) = 1, which implies that m . 0 mod 4. �
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