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RADICAL TRANSVERSAL SCREEN SEMI-SLANT
LIGHTLIKE SUBMERSIONS

SARVESH KUMAR YADAV ), S. S. SHUKLA and SHIVAM OMAR

Abstract

We introduce radical transversal screen semi-slant lightlike submersions from an indefinite Kaehler 
manifold onto a lightlike manifold. We give examples and obtain a characterization theorem for such 
submersions. Integrability conditions of distributions involved in the definition of these submersions have 
been studied. Further, we investigate the geometry of foliations which are arisen from above distributions 
and find necessary and sufficient conditions for these foliations to be totally geodesic.
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1. Introduction

A Riemannian submersion between Riemannian manifolds M and B is defined as the 
mapping f : M → B such that f has maximum rank and the derivative map f∗ pre-
serves the length of horizontal vectors . In [1], Sahin defined screen lightlike submer-
sions from lightlike manifolds onto semi-Riemannian manifolds. Later on, Sahin and 
Gündüzalp [2] defined lightlike submersions from semi-Riemannian manifolds onto 
lightlike manifolds.

On the other hand, lightlike submanifolds of semi-Riemannian manifolds were 
introduced by Duggal and Bejancu [3]. Sahin [4, 5] introduced the notion of a 
slant and screen-slant lightlike submanifold of an indefinite Hermitian manifold [6]. 
Following this, Shukla and Yadav defined screen semi-slant lightlike submanifolds of 
an indefinite Kaehler manifold in [7]. The concept of radical transversal, transversal, 
semi-transversal lightlike submanifolds is dealt in [8]. From [9], we conclude that, 
contrary to the Riemannian slant submersions [10], slant lightlike submersions do 
not include complex and screen real subcases. To fill this gap, Shukla and Omar 
introduce the notion of screen slant lightlike submersions from an indefinite Kaehler 
manifold onto a lightlike manifold [11], which includes complex (invariant) and screen 
real (anti-invariant) lightlike submersions. In this article, we introduce the notion of
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radical transversal screen semi-slant lightlike submersions from an indefinite Kaehler
manifold onto a lightlike manifold.

The paper is arranged as follows. In section(2), we give basic formulas and
definitions related to this paper. In section (3), we introduce radical transversal screen
semi-slant lightlike submersions from an indefinite Kaehler manifold onto a lightlike
manifold with a non-trivial example, give a characterization theorem for a lightlike
submersion to be radical transversal screen semi-slant lightlike submersion and obtain
a necessary and sufficient condition for integrability of distributions ∆, D1, and D2

involved in the definition. Section (4) is devoted to the study of foliations determined
by distributions involved in the definition of the above submersions from an indefinite
Kaehler manifold onto a lightlike manifold.

2. Preliminaries

Suppose (M, J) is a 2m-dimensional almost complex manifold with an almost
complex structure J and semi-Riemannian metric g of index r, where 0 < r ≤ 2m.
In this case, M is said to be an indefinite almost Hermitian manifold, if

g(JX, JY) = g(X,Y), ∀X,Y ∈ Γ(T M). (2.1)

Further, if J is a complex structure on M, then (J, g) and (M, J, g) are said to be an
indefinite Hermitian structure and indefinite Hermitian manifold respectively. Now,
we assume that (M, J, g) is an indefinite almost Hermitian manifold and ∇ be the Levi-
Civita connection on M. Then M is called an indefinite Kaehler manifold if

(∇X J)Y = 0, ∀X,Y ∈ Γ(T M). (2.2)

Let (M, g) be a real m-dimensional smooth manifold, then the radical or null space
Rad TpM of TpM is defined as Rad TpM = {ξ ∈ TpM : g(ξ, X) = 0, ∀X ∈ TpM}.
If the mapping Rad T M : p ∈ M → Rad TpM defines a smooth distribution of rank
r > 0 on M such that 0 < r ≤ m, then we call Rad T M, a radical (or null) distribution
of M and the manifold M, an r-lightlike manifold.

Let f : (M, g) → (B, g′) be a smooth submersion from a semi-Riemannian
manifold M onto an r-lightlike manifold B. Then, Ker f∗p = {X ∈ TpM : f∗pX = 0}.
It follows that (Ker f∗p)⊥ = {Y ∈ TpM : g(Y, X) = 0, ∀X ∈ Ker f∗p}. As TpM
is a semi-Riemannian vector space (Ker f∗p)⊥ may not be a complementary space to
Ker f∗p. Assume that Ker f∗p ∩ (Ker f∗p)⊥ = ∆p , {0}. In this case ∆ : p → ∆p

is said to be a radical distribution on M at p ∈ M. As ∆ is a lightlike distribution,
we have Ker f∗ = ∆ ⊥ S (Ker f∗). Similarly (Ker f∗)⊥ = ∆ ⊥ S (Ker f∗)⊥.
Here S (Ker f∗)⊥ is the complementary distribution to ∆ in (Ker f∗)⊥. Assume that
dim(∆) = r > 0. Since ∆ ⊂ (S (ker f∗)⊥)⊥ and (S (ker f∗)⊥)⊥ is non-degenerate, then
there exists null vectors N1,N2...,Nr, such that g(Ni,N j) = 0, g(ξi,N j) = δi j. Here
{Ni} are smooth null vector fields of S (Ker f∗)⊥ and {ξi} is the lightlike basis of ∆. The
distribution generated by vector fields N1,N2...,Nr is denoted by ltr(ker f∗). Then we
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have tr(ker f∗) = ltr(ker f∗) ⊥ S (ker f∗)⊥. Here ltr(Ker f∗) and Ker f∗ are not orthogonal
to each other. Moreover, we have the following decomposition

T M = (∆ ⊕ ltr(Ker f∗)) ⊥ S (Ker f∗) ⊥ S (Ker f∗)⊥. (2.3)

A Riemannian submersion f : (M, g)→ (B, g′) is called
(a) r-lightlike submersion if dim ∆ = dim{(Ker f∗) ∩ (Ker f∗)⊥} = r,

0 < r < min{dim(ker f∗), dim(ker f∗)⊥},
(b) co-isotropic submersion if dim ∆ = dim(Ker f∗)⊥ < dim(Ker f∗),
(c) isotropic submersion if dim ∆ = dim(Ker f∗) < dim(Ker f∗)⊥,
(d) totally lightlike submersion if dim ∆ = dim(Ker f∗)⊥ = dim(Ker f∗).
The geometry of lightlike submersions is characterized by O’ Neill’s tensors T and A
given by

TXY = h∇νXνY + ν∇νXhY, (2.4)

AXY = ν∇hXhY + h∇hXνY. (2.5)

Tensors T and A are vertical and horizontal tensors, respectively. Also, T has
symmetric property for vertical vector fields, that is,

TXY = TY X, ∀ X,Y ∈ Γ(Ker f∗). (2.6)

Let f be a lightlike submersion from a real (m + n)-dimensional semi-Riemannian
manifold (M, g) onto a lightlike manifold (B, g′), where m, n > 1. Next, we assume that
Ker f∗ is an m-dimensional lightlike distribution on M and tr(Ker f∗) is the comple-
mentary distribution of Ker f∗ in M with respect to the pair {S (Ker f∗), S (Ker f∗)⊥}.
Let us denote by ∇ the Levi-Civita connection on M and by ĝ the induced metric on
Ker f∗ of g. Then from (2.4), we have

∇UV = ∇̂UV + TUV, (2.7)
∇U X = TU X + ∇⊥U X, (2.8)

∀ U,V ∈ Γ(Ker f∗), X ∈ Γ(Ker f∗)⊥, where ∇̂UV = ν∇UV and ∇⊥U X = h∇U X. Here
{∇̂UV,TU X} and {TUV,∇⊥U X} belong to Γ(Ker f∗) and Γ(tr(Ker f∗)), respectively. Let
S (Ker f∗)⊥ , {0}. Denote by L and S the projection of tr(Ker f∗) on ltr(Ker f∗) and
S (Ker f∗)⊥, respectively. Then, for any U,V ∈ Γ(Ker f∗),N ∈ Γ(ltr(Ker f∗)) and
W ∈ Γ(S (Ker f∗)⊥), we obtain

∇UV = ∇̂UV + T l
UV + T s

UV, (2.9)

∇U N = TU N + ∇⊥l
U N + D⊥s(U,N), (2.10)

∇UW = TUW + D⊥l(U,W) + ∇⊥s
U W. (2.11)

Using (2.9-2.11) and that ∇ is a metric connection, we obtain

g(T s
UV,W) + g(V,D⊥l(U,W)) = −ĝ(TUW,V), (2.12)

g(D⊥s(U,N),W) = −g(N,TUW) (2.13)
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If f is either r-lightlike or co-isotropic submersion and φ : Ker f∗ → S (Ker f∗), then
we write

∇̂UφV = ∇̂∗UφV + T ∗UφV, (2.14)

∇̂Uξ = T ∗Uξ + ∇∗⊥U ξ, (2.15)

∀ U,V ∈ Γ(Ker f∗), ξ ∈ Γ∆, where {∇̂∗UφV, T ∗Uξ} and {T ∗UφV, ∇∗⊥U ξ} belong to
Γ(S (Ker f∗)) and Γ∆ respectively.

3. Radical Transversal Screen Semi-slant Lightlike Submersions

In this section, we introduce the notion of radical transversal screen semi-slant
lightlike submersions from an indefinite Kaehler manifold onto a lightlike manifold,
giving a non trivial example and obtain a characterization theorem. We recall the
following lemma for later use.

Lemma 3.1. [11] Let f : (M, g) → (B, g′) be a 2r-lightlike submersion from an
indefinite Kaehler manifold M onto a lightlike manifold (B, g′). Assume that Ker f∗
is a lightlike distribution of M. Then the screen distribution S (Ker f∗) is Riemannian.

Definition 3.2. Let f : (M, g, J) → (B, g′) be a lightlike submersion from a real 2m-
dimensional indefinite Kaehler manifold M onto a lightlike manifold B. We say that f
is a radical transversal screen semi-slant lightlike submersion if
(i) J∆ = ltr(ker f∗),
(ii) there exist non-null orthogonal distribution D1 and D2 such that

S (Ker f∗) = D1 ⊕ D2,

(iii) the distribution D1 is invariant with respect to J, that JD1 = D1,
(iv) the distribution D2 is slant with angle θ (, 0), that is, for every point p ∈ M and

each non-zero vector U ∈ (D2)p, the angle θ between JU and (D2)p is a non-zero
constant, which is independent of the choice of p and U.

Here θ is called the slant angle of the distribution D2. A radical transversal screen
semi-slant lightlike submersion is called proper if D1 , {0}, D2 , {0} and θ , π

2 .

From the definition, following decomposition is clear

Ker f∗ = ∆ ⊕ D1 ⊕ D2. (3.1)

Now, for any U ∈ Γ(Ker f∗), we assume

JU = PU + FU, (3.2)

where PU ∈ Γ(Ker f∗) and U ∈ Γ(tr(Ker f∗)). Also, for any U ∈ Γ(Ker f∗), we assume

U = P1U + P2U + P3U, (3.3)

where P1, P2 and P3 are projections on ∆, D1 and D2 respectively. Applying J on (3.2),
we have

JU = JP1U + JP2U + JP3U = JP1U + JP2U + f P3U + FP3U, (3.4)
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where f P3 (resp. FP3X) denotes the tangential (resp. transversal) component of
JP3X. Thus, we have JP1U ∈ Γ(ltr(Ker f∗)), JP2U ∈ Γ(D1), f P3U ∈ Γ(D2) and
FP3U ∈ Γ(S (Ker f∗)⊥). In the same way, for any W ∈ tr(Ker f∗), we write

W = Q1W + Q2W, (3.5)

where Q1W and Q2W denote the projections of tr(Ker f∗) on ltr(Ker f∗) and S (Ker f∗)⊥

respectively. Equation (3.5) gives

JW = JQ1W + BQ2W + CQ2W, (3.6)

where JQ1W ∈ Γ(∆), BQ2W ∈ Γ(D2) and CQ2W ∈ Γ(S (Ker f∗)⊥). In view of (2.1),
(3.3)-(3.6), comparing the components of ∆, D1, D2, ltr(Ker f∗) and S (Ker f∗)⊥, for
any U,V ∈ Γ(Ker f∗), we get the following equations

P1(TU JP1V) + P1(∇U JP2V) + P1(∇U f P3V) + P1(TU FP3V) = J(T l
UV), (3.7)

P2(TU JP1V) + P2(∇U JP2V) + P2(∇U f P3V) + P2(TU FP3V) = JP2(∇UV), (3.8)
P3(TU JP1V) + P3(∇U JP2V) + P3(∇U f P3V) + P3(TU FP3V) = B(T s

UV) + f P3(∇UV),
(3.9)

∇⊥l
U (JP1V) + T l

U(JP2V) + T l
U( f P3V) + D⊥l(U, FP3V) = JP1(∇UV), (3.10)

D⊥s(U, JP1V) + T s
U(JP2V) + T s

U( f P3V) + ∇⊥s
U (FP3V) = FP3(∇UV). (3.11)

Denote by Rn
r,q,p the space Rn equipped with the semi-Riemannian metric g defined by

g(ei, e j)r,q,p = (Gr,q,p)i j, i ∈ {1, ..., n}. Here ei is the standard basis of Rn and Gr,q,p is
the diagonal matrix determined by g, that is, Gi j = diagonal(0, ..., 0︸ ︷︷ ︸

r-times

,−1, ...,−1︸     ︷︷     ︸
q-times

, 1, ..., 1︸ ︷︷ ︸
p-times

).

Example 3.3. Let R12
0,2,10 and R6

2,0,4 endowed with the semi-Riemannian metric

g = −(dx1)2 − (dx2)2 + (dx3)2 + (dx4)2 + (dx5)2 + (dx6)2

+ (dx7)2 + (dx8)2 + (dx9)2 + (dx10)2 + (dx11)2 + (dx12)2

and degenerate metric g′ = (dy3)2 + (dy4)2 + (dy5)2 + (dy6)2, where x1, ... , x12 and
y1, ... , y6 are the canonical coordinates on R12 and R6, respectively. Define the map
f : (R12, g)→ (R6, g′) as

(x1, ..., x12) 7−→
( x1 + x7
√

2
,

x2 − x8
√

2
,

x3 + x6
√

2
, x5, x11, x12

)
.

Then

Ker f∗ = S pan
{
ξ1 =

1
√

2

( ∂

∂x1
−

∂

∂x7

)
, ξ2 =

1
√

2

( ∂

∂x2
+

∂

∂x8

)
,U1 =

∂

∂x3
−

∂

∂x6
,

U2 =
∂

∂x4
,U3 =

∂

∂x9
,U4 =

∂

∂x10

}
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and

(Ker f∗)⊥ = S pan
{
ξ1, ξ2,V1 =

1
√

2

( ∂

∂x3
+

∂

∂x6

)
,V2 =

∂

∂x5
,V3 =

∂

∂x11
,V4 =

∂

∂x12

}
.

Therefore f is a 2-lightlike submersion with ∆ = Ker f∗ ∩ (Ker f∗)⊥ = S pan{ξ1, ξ2}.
Moreover, we also have

ltr(Ker f∗) = S pan
{
N1 = −

1
√

2

( ∂

∂x1
+

∂

∂x7

)
,N2 =

1
√

2

(
−

∂

∂x2
+

∂

∂x8

)}
.

By easy computation, we can see that Jξ1 = N2 and Jξ2 = N1, therefore J∆ =

ltr(Ker f∗). Further, we have JU3 = U4, which implies D1 = S pan{U3,U4} is invariant
under J. Finally we observe D2 = S pan{U1,U2} is a slant distribution with slant angle
θ =

π

4
. Hence f is a radical transversal screen semi-slant lightlike submersion.

Now, we give a characterization theorem for radical transversal screen semi-slant
lightlike submersions:

Theorem 3.4. Let f : (M, g, J) → (B, g′) be a 2r-lightlike submersion from an
indefinite Kaehler manifold M onto a lightlike manifold B and Ker f∗ be a lightlike
distribution of M. Then f is a radical transversal screen semi- slant lightlike
submersion if and only if
(i) J(ltr(Ker f∗)) = ∆,
(ii) distribution D1 is invariant with respect to J, i.e. JD1 = D1,
(iii) there exists a constant λ ∈ [0, 1) such that P2X = −λX
Moreover, there also exists a constant µ ∈ (0, 1] such that BFX = −µx, for every
X ∈ Γ(D2), where D1 and D2 are non-degenerate orthogonal distributions on M such
that S (T M) = D1 ⊕ D2 and λ = cos2θ, θ is slant angle of D2.

Proof. Let f : M → B be a 2r-lightlike submersion and Ker f∗ be a lightlike
submanifold of M. Then Lemma (3.1) implies that S (Ker f∗) is a Riemannian vector
bundle. If f is a radical transversal screen semi-slant lightlike submersion, then
ditribution D1 is invariant with respect to J and J∆ = ltr(ker f∗). Thus JX ∈ ltr(T M),
for every X ∈ Γ(∆), which proves (i) and (ii).

Now for any X ∈ Γ(D2), we have |PX| = |JX| cos θ. This imlies that

cos θ =
|PX|
|JX|

. (3.12)

In view of (3.12), we get cos2 θ =
|PX|2

|JX|2 =
g(PX,PX)
g(JX,JX) =

g(X,P2X)
g(X,J2X) , which provides

g(X, P2X) = cos2θ g(X, J2X). (3.13)

Since f is radical transversal screen semi-slant lightlike submersion, cos2θ = λ(constant) ∈
(0, 1] and therefore from (3.12),we have g(X, P2X) = λg(X, J2X) = g(X, λJ2X). It
follows that

g(X, (P2 − λJ2)X) = 0.
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Now, for any X ∈ Γ(D2), we obtain J2X = P2X + FPX + BFX + CFX. Taking the
tangential components we get P2X = −X−BFX ∈ Γ(D2). Hence (P2−λJ2)X ∈ Γ(D2).
Now, since the induced metric g on D1 × D2 is non-null, we have (P2 − λJ2X) = 0.
This implies that

P2X = λJ2X = −λX. (3.14)

Next, suppose that X ∈ Γ(D2), we have

JX = PX + FX, (3.15)

where PX and FX are tangential and transversal components of JX. Equation (3.15)
gives

− X = P2X + BFX. (3.16)

From (3.14) and (3.15), we get BFX = −µX, where µ = 1 − λ ∈ (0, 1]. This proves
(iii). Conversely suppose that conditions (i), (ii) and (iii) hold. From (i), we have
JN ∈ ∆, for every N ∈ Γ(ltr(Ker f∗)). So, J(JN) ∈ J(∆), which gives −N ∈ J(∆), for
all N ∈ Γ(ltr(Ker f∗)). Thus J∆ = ltr(Ker f∗). From (3.16), for any X ∈ Γ(D2), we
get −X = P2X − µX, which implies P2X = −λX, where λ = 1 − µ(constant) ∈ [0, 1).
Now cos θ =

g(JX,PX)
|JX||Px| = −

g(X,JPX)
|JX||PX| = −

g(X,P2X)
|JX||PX| = −λ g(X,J2X)

|JX||PX| = λ g(JX,JX)
|JX||PX| .From the above

equation, we get

cos θ = λ
JX
PX

. (3.17)

Hence (3.12) and (3.17) provide cos2 θ = λ(constant). Thus f is a radical transversal
screen semi-slant lightlike submersion. �

Corollary 3.5. Let f be a radical transversal screen semi-slant lightlike sumersion
from an indefinite Kaehler manifold M onto a lightlike manifold B with slant angle θ.
Then for any X,Y ∈ Γ(D2), we have
(i) g(PX, PY) = cos2 θg(X,Y),
(ii) g(FX, FY) = sin2 θg(X,Y).

Proof. The proof is following by (2.1) and (3.17). �

Theorem 3.6. Let f be a radical transversal screen semi-slant lightlike submersion
from an indefinite Kaehler manifold M onto a lightlike manifold B. Then ∆ is
integrable if and only if
(i) P2(TU JP1V) = P2(TV JP1U) and P3(TU JP1V) = P3(TV JP1U),
(ii) D⊥s(U, JP1V) = D⊥s(V, JP1U), for all U,V ∈ Γ(∆).

Proof. Let f be a radical transversal screen semi-slant lightlike submersion from an
indefinite Kaehler manifold M onto a lightlike submanifold B. Let U,V ∈ Γ(∆). From
(3.8), we have P2(TU JP1V) = JP2∇UV . It follows that P2(TU JP1V)−P2(TV JP1U) =

JP2[U,V]. Also, from (3.9), we have P3(TU JP1V) − P3(TV JP1U = JP3[U,V].
In view of (3.11), we have D⊥s(U, JP1V) = FP3∇UV + CT s

UV , which provides
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D⊥s(U, JP1V) − D⊥s(V, JP1V) = FP3[U,V]. Now ∆ is integrable if and only if
[U,V] ∈ ∆. This concludes the theorem. �

Theorem 3.7. Let f be a radical transversal screen semi- slant lightlike submersion
from an indefinite Kaehler manifold M onto a lightlike manifold B. Then D1 is
integrable if and only if

(i) T l
U JP2V = T l

V JP2U and T s
U JP2V = T s

V JP2U,
(ii) P3(∇U JP2V) = P3(∇V JP2U).

Proof. Let U,V ∈ Γ(D1). From (3.10), we have T l
U JP2V = JP1∇UV . It follows that

T l
U JP2V − T l

V JP2U = JP1[U,V]. Also, from (3.11), we have T s
U JP2 = FP3∇UV +

CT s
UV , which gives T s

U JP2V − T s
V JP2U = FP3[U,V]. In view of (3.9), P3∇U JP2Y =

f P3∇UV + B(T s
UV), which provides P3∇U JP2V − P3∇V JP1U = f P3[U,V].Using the

fact D1 is integrable if and only if [U,V] ∈ D1, the proof follows. �

Theorem 3.8. Let f be a radical transversal screen semi-slant lightlike submersion
from an indefinite Kaehler manifold M onto a lightlike manifold B. Then D2 is
integrable if and only if

(i) T l
U f P3V + D⊥l(U, FP3V) = T l

V f P3X + D⊥l(V, FP3U),
(ii) P2(TU f P3V − TV f P3U) = P2(TU FP3V − TV FP3U).

Proof. Let f be a radical screen semi-slant lightlike submersion from an indefinite
Kaehler manifold M onto a lightlike manifold B. Let U,V ∈ Γ(D2). From (3.10), we
have T l

U( f P3V)+ D⊥l(U, FP3Y) = JP1∇UV , which gives T l
U( f P3V)+ D⊥l(U, FP3V)−

T l
V ( f P3U) − D⊥l(V, FP3u) = JP1[U,V]. Also from (3.8), we get P2(∇U f P3V) +

P2(TU FP3V) = JP2(∇UV), which implies P2(∇U f P3V − ∇V f P3U) + P2(TU FP3V −
TV FP3U) = JP2[U,V]. Using the fact D2 is integrable if and only if [U,V] ∈ D2, for
all U,V ∈ D2, we obtain the required result. �

Theorem 3.9. Let f be a radical transversal screen semi-slant lightlike submersion
from an indefinite Kaehler manifold onto a lightlike manifold B. Then the induced
connection ∇̂ is a metric connection if and only if

(i) f P3TU N = −BD⊥s(U,N),
(ii) JP2TU N = 0, for all U ∈ Γ(Ker f∗) and N ∈ Γltr(Ker f∗)

Proof. Let f be a radical screen semi-slant lightlike submersion from an indefinite
Kaehler manifold M onto a lightlike manifold B. Then the induced connection ∇̂ is
a metric connection if and only if ∆ is parallel distribution with respect to ∇̂. That
is, ∇̂ is metric connection if and only if ∇̂U JN ∈ ∆, for all U ∈ Γ(Ker f∗) and
N ∈ Γltr(Ker f∗). Let U ∈ Γ(Ker f∗) and N ∈ Γltr(Ker f∗). From (2.2), (2.9) and
(2.10), we obtain ∇̂U JN + T l

U JN + T s
U JN = JTU N + J∇⊥l

U N + JD⊥s(U,N). Now,
on comparing the tangential components of both sides of above equation, we have
∇̂U JN = JP2TU N + f P3TU N + J∇⊥l

U N + BD⊥s(U,N), which completes the proof. �
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4. Foliations determined by distributions

In this section, we obtain necessary and sufficient conditions for foliations deter-
mined by distributions on a radical transversal screen semi-slant lightlike submersion
from an indefinite Kaehler manifold onto a lightlike manifold B to be totally geodesic.

Theorem 4.1. Let f be a radical transversal screen semi-slant lightlike submersion
from an indefinite Kaehler manifold M onto lightlike manifold B. Then ∆ admits
a geodesic foliation on Ker f∗ if and only if g(TU FP3W, JV) = g(∇U JP2W +

∇U f P3W, JV), for all U,V ∈ Γ(∆) and W ∈ Γ(S (Ker f∗)).

Proof. Let f be a radical transversal screen semi-slant lighlike submersion from
an indefinite Kaehler manifold onto lightlike manifold B. To prove ∆ admits a to-
tally geodesic foliation, it is sufficient to show that ∇̂UV ∈ Γ∆, for all U,V ∈

Γ∆. Since ∇ is a metric connection, using (2.1), (2.2), (2.9) and (3.4), for any
U,V ∈ ∆ and W ∈ Γ(S (Ker f∗)), we obtain g(∇UV,W) = g(∇U JV, JW) =

−g(∇U JW, JV) = −g(∇U JP2W + ∇ f P3W + ∇U FP3W, JV) = g(P1TU FP3W −

P1∇̂U JP2W − P1∇U f P3W, JV), which completes the proof. �

Theorem 4.2. Let f be a radical transversal screen semi-slant lightlike submersion
from an indefinite Kaehler manifold M onto a lightlike manifold B. Then D1 defines a
totally geodesic foliation if and only if
(i) g(TU FW, JV) = g(∇U f W, JV), for every U,V ∈ Γ(D1) and W ∈ Γ(D2),
(ii) T ∗U JN = 0 on D1, for each N ∈ Γ(ltr(Ker f∗)).

Proof. Let f be a radical transversal screen semi-slant lightlike submersion from
an indefinite Kaehler manifold M onto a lightlike manifold B. The distribution D1
defines a tottaly geodesic foliation if and only if ∇UV ∈ Γ(D1), for all U,V ∈ Γ(D1).
Since ∇ is a metric connection, from (2.1), (2.2) and (2.9), we have g(∇̂UV,W) =

−g(∇U JW, JV) = −g(TU FW + ∇̂U f W, JV). Also from (2.1), (2.2), (2.9) and (2.14),
for any U,V ∈ Γ(D1) and N ∈ Γ(ltr(Ker f∗)), we have g(∇̂UV,N) = −g(∇U JN, JV) =

−g(T ∗U JN, JV). Thus we obtain the required result. �

Theorem 4.3. Let f be a radical transversal lightlike submersion from an indefinite
Kaehler manifold M onto a lightlike manifold B. Then D2 defines a totally geodesic
foliation on Ker f∗ if and only if
(i) g( f V,∇U JZ) = −g(FV,T s

U JZ),
(ii) g( f V,∇U JN) = −g(FV,T s

U JN), for all U,V ∈ Γ(D2), Z ∈ Γ(D1) and N ∈

Γ(ltr(Ker f ∗)).

Proof. Let f be a radical transversal screen semi-slant lightlike submersion from
an indefinite Kaehler manifold M onto a lightlike manifold B. The distribution D2
admits a totally geodesic foliation if and only if ∇̂UV ∈ Γ(D2), for all U,V ∈ Γ(D2).
Since ∆ is a metric connection, using (2.1), (2.2) and (2.9), we have g(∇̂UV,Z) =

−g(∇U JZ, JV) = −g(∇U JZ, f V) − g(T s
U JZ, FV) for any U,V ∈ Γ(D2) and Z ∈
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Γ(ltr(Ker f∗)). Again from (2.1), (2.2) and (2.9), for any U,V ∈ Γ(D2) and N ∈
Γ(ltr(Ker f∗)), we get g(∇̂UV,N) = −g(∇U JN, JV) = −g(∇U JN, f V) − g(T s

U JN, FV).
This completes the proof. �
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