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CHARACTERIZATION OF F-PSEUDOCOMPACTNESS OF A
TOPOLOGICAL SPACE X VIA u-TOPOLOGY, m-TOPOLOGY

AND r-TOPOLOGY ON C(X, F)

PRITAM ROOJ

Abstract
Let F be a totally ordered field equipped with its order topology and X, a Hausdorff completely F-regular 
topological space(CFR space in short) in the sense that, points and closed sets in X could be separated by 
F-valued continuous functions on X. Suppose C(X, F) is the ring of all F-valued continuous functions 
on X, B(X, F) = { f ∈ C(X, F) : | f | < λ for some λ > 0 in F} and C∗(X, F) = { f ∈ C(X, F) : clF f (X) 
is compact}. A topological space X is said to F-pseudocompact if C(X, F) = B(X, F). It is shown that 
a topological space X is F-pseudocompact if and only if C(X, F) with the u-topology is a topological 
ring/topological vector space if and only if the u-topology and the relative m-topology on B(X, F) 
coincide. Also it is shown that if X(CFR space) is a F-pseudocompact, almost P-space then u-topology, 
m-topology and r-topology on C(X, F) coincide.
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1. Introduction

Let F be a totally ordered field equipped with its order topology. For any topological 
space X, the set C(X, F) = { f : X → F | f is continuous on X} makes a commutative 
lattice ordered ring with 1, if the relevant operations are defined pointwise on X. 
The set B(X, F) = { f ∈ C(X, F) : there exists λ > 0 in F with | f | ≤ λ on X} and
C∗(X, F) = { f ∈ C(X, F) : clF f (X) is compact} turn out to be subrings and sublattices
of C(X, F) with the inclusion relation C∗(X, F) ⊆ B(X, F) ⊆ C(X, F). With F = R,
C∗(X, F) is the same as B(X, F). However with F , R, it may well happen that
these two rings are different. This can be illustrated by choosing X = F = Q and
observing that the function f : Q → Q defined by f (x) = x

1+|x| where x ∈ Q, belongs
to B(X, F), without belonging to C∗(X, F). Indeed for this function f , clF f (X) is the
set {x ∈ Q : −1 ≤ x ≤ 1}, which is never compact. It is well known that, there
is a nice interaction between the topological structure of X and the algebraic ring
and order structure of C(X) and C∗(X) both. An excellent account of this interplay
can be found in [5]. It is worth mentioning in this context that a good many results
related to this interaction are still valid if C(X) ( respectively C∗(X)) is replaced by
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C(X, F) ( respectively B(X, F) and C∗(X, F)) for any totally ordered field F and this is
best realised if one sticks to the completely F-regular spaces. X is called completely
F-regular if it is Hausdorff and given a point x ∈ X and a closed set K in X with
x < K, there is an f ∈ B(X, F) such that f (x) = 0 and f (K) = 1. Thus complete
F-regularity reduces to Tychonoffness in case F = R. Incidentally if F , R then
complete F-regularity of X and zero-dimensionality of X are equivalent conditions.
Problems of this kind are already investigated by Acharyya, Chattopadhyay and Ghosh
in an earlier paper [2]. A seemingly similar kind of problem, albeit treated differently
is also addressed by Bachman, Beckenstein, Narici and Warner in [11]. For brevity
completely F-regular Hausdorff spaces will be termed as CFR spaces. The class of
all pseudo-compact spaces plays a significant role in many a problem related to rings
of continuous functions. A space is called pseudo-compact if C∗(X) = C(X). There
are numerous equivalent descriptions of pseudo-compact spaces in the literature. One
particularly interesting such description reads as follows : X is pseudo-compact if
and only if C(X) with the u-topology (or the topology of uniform convergence) is
a topological ring/topological vector space if and only if the u-topology and the m-
topology on C∗(X) coincide (See Exercise, Chapter 2, [5]). Now a topological space X
is said to be an almost P-space if every non-empty Gδ-set of X has non-empty interior.
With this notion another interesting description reads as follows: X (Tychonoff) is
pseudo-compact and almost P-space if and only if u-topology, m-topology and r-
topology on C(X) coincide (See Theorem 1.5, Theorem 1.8 and Theorem 1.9, [3]).
In this article, my principal intention is to show that these results could be deduced as
special cases of some analogous facts involving the rings C(X, F) and B(X, F). .

2. Preliminaries

With this incur mind, we call a space X (not necessarily CFR) F-pseudocompact
if C(X, F) = B(X, F). It is clear that F-pseudocompact spaces with F = R are nothing
other than pseudocompact spaces. For any f ∈ C(X, F) and r ∈ F+, let u( f , r) =

{g ∈ C(X, F) : | f (x) − g(x) |≤ r for all x ∈ X}. Then there is a unique topology
on C(X, F) for which for any f ∈ C(X, F), the family {u( f , r) : r ∈ F+} forms a
base for the neighbourhood system of ‘ f ’. We call this topology as in the classical
case for C(X), the u-topology on C(X, F). A typical basic neighbourhood in the u-
topology restricted to the subring B(X, F) of C(X, F) will be denoted by u∗( f , r) where
f ∈ B(X, F) and we note that, u∗( f , r) = u( f , r)∩B(X, F). Also for any f ∈ C(X, F) and
u ∈ U+ let us set m( f , u) = {g ∈ C(X, F) : | f (x) − g(x) |≤ u(x), for all x ∈ X} here U+

is the set of all positive units in C(X, F). Then there is a unique topology on C(X, F)
for which for any f ∈ C(X, F), the family {m( f , u) : u ∈ U+} forms a base for the
neighbourhood system of ‘ f ’. We call this topology as in the classical situation, the m-
topology on C(X, F). For any f ∈ C(X, F), f is said to be a regular element of C(X, F)
if coz( f ) (i.e., X−Z( f )) is a dense subset of X. Let R+ = { f ∈ C(X, F) : f (x) > 0 and f
is regular element of C(X, F)}, the set of all positive regular elements of C(X, F). For
any f ∈ C(X, F) and λ ∈ R+, let r( f , λ) = {g ∈ C(X, F) : | f (x) − g(x) |≤ λ(x), for all
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x ∈ coz(λ)}. Then there is a unique topology on C(X, F) for which for any f ∈ C(X, F),
the family {r( f , λ) : λ ∈ R+} forms a base for the neighbourhood system of ‘ f ’. We
call this topology as in the classical case for C(X), the r-topology on C(X, F). Since
U+ ⊆ R+ we can say that the r-topology is finer than the m-topology on C(X, F).

Let A be a subring of C(X, F) on which a topology has been defined. Then A is
called a topological ring if the following two operations are continuous:
1. ‘−’ : A × A −→ A defined by −((g, h)) = g − h
2. ‘∗’ : A × A −→ A defined by ∗((g, h)) = g.h

If A contains the constant functions, then it is a topological vector space if the
following two operations are continuous:
1. ‘+’ : A × A −→ A defined by +((g, h)) = g + h.
2. ‘�’ : F ×C(X, F) −→ C(X, F) defined by �((α, h)) = αh.

Lemma 2.1. Let U∗ be the set of all units of B(X, F). Then U∗ is an open subset of
B(X, F) in the u-topology.

Proof. Choose u ∈ U∗; then u is bounded away from zero on X which means that
there exists λ > 0 in F such that | u |≥ λ. i.e, for all x ∈ X, u(x) ≥ λ or u(x) ≤ −λ.
Let us consider the set E = { f ∈ B(X, F) : | f (x) − u(x) |≤ λ

2 , for all x ∈ X}. Then
E is a neighbourhood of ‘u’. Also it is clear that, each member of E is an unit of
B(X, F). Thus ‘u’ is an interior point of U∗. Hence U∗ is open in B(X, F) with respect
to u-topology. �

Lemma 2.2. B(X, F) with u-topology is a topological ring as well as a topological
vector space over F.

Proof. We have to show that, addition and multiplication on B(X, F) are continuous.
So let for f , g ∈ B(X, F), u∗( f + g, r) and u∗( f g, r) be arbitrary neighbourhoods of
f + g and f g respectively where r ∈ F+ = the set of all positive elements in F, surely
without loss of generality we can choose the same r for both the cases. Then u∗( f , r

2 )
and u∗(g, r

2 ) are neighbourhoods of ‘ f ’ and ‘g’ respectively and u∗( f , r
2 ) + u∗(g, r

2 ) ⊆
u∗( f + g, r). Since ‘ f ’, ‘g’ ∈ B(X, F) there exists n,m ∈ F+ such that | f (x) |≤ n and
| g(x) |≤ m, for all x ∈ X. It is routine to check that, u∗( f , r

2( r
2n +m) ).u

∗(g, r
2n ) ⊆ u∗( f g, r).

In a similar way it can be shown that scalar multiplication is continuous. Hence the
result. �

Lemma 2.3. If X is not F-pseudocompact then the set U of all units of C(X, F) is not
an open subset of C(X, F).

Proof. Since X is not F-pseudocompact we can choose an f0 ∈ C(X, F) with f0 > 0
such that f0 < B(X, F). Take f = 1

f 2
0 +1 , then f ∈ U. Clearly f doesn’t vanish anywhere

on X but it takes values arbitrarily near to zero. We claim that, f is not an interior point
of U – indeed for any λ > 0 in F, u( f , λ) * U. Because corresponding to λ > 0 in F
there exists a ∈ X such that 0 < f (a) < λ, hence f − f (a) ∈ u( f , λ) but f − f (a) < U
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since ( f − f (a))(a) = 0 implies f − f (a) is not a unit of C(X, F). Therefore U is not
open in C(X, F) with respect to u-topology. �

Lemma 2.4. If X is not pseudocompact then C(X, F) with u-topology is neither a
topological ring nor a topological vector space over F.

Proof. Let X be not F-pseudocompact i.e, B(X, F) * C(X, F) so there exists, f ∈
C(X, F) \ B(X, F) such that f ≥ 1 on X. We claim that the function

ψ : C(X, F) × C(X, F) −→ C(X, F) defined by ψ((g, h)) = gh is not continuous
at the point (0, f ) where ‘0’ stands for the function identically equal to zero (and
this will prove that C(X, F) is not a topological ring). The set E = {g ∈ C(X, F) :
| g(x) |≤ 1, for all x ∈ X} is surely a neighbourhood of ‘0’ in C(X, F) and E ⊆ B(X, F).
Choose any neighbourhood u(0, λ1) of ‘0’ in C(X, F) and any neighbourhood u( f , λ2)
of ‘ f ’ in C(X, F). It is enough to check that, u(0, λ1).u( f , λ2) * E– indeed for
the constant function ‘ λ1

2 ’, λ1
2 ∈ u(0, λ1), f . λ1

2 < B(X, F) so that f . λ1
2 < E, while

f . λ1
2 ∈ u(0, λ1).u( f , λ2).
An almost analogous argument can be adopted to show that, φ : F × C(X, F) −→

C(X, F) defined by φ((α, f )) = α. f is not continuous at the point (0, f ). Thus C(X, F)
is not a topological vector space over F. �

3. Characterization of F-pseudocompactness via u-topology and m-topology

Combining the above four lemmas we can establish the following two theorems:

Theorem 3.1. For any topological space X and any ordered field F the following
statements are equivalent:
1. X is F-pseudocompact.
2. The set U of all units of C(X, F) is open in C(X, F) with respect to u-topology.
3. C(X, F) with u-topology is a topological ring.
4. C(X, F) with u-topology is a topological vector space over F.

Proof. Proof follows from Lemma 2.1, Lemma 2.2, Lemma 2.3, Lemma 2.4. �

Theorem 3.2. For any topological space X and any ordered field F the following
statements are equivalent:
1. X is F-pseudocompact.
2. The u-topology and the relative m-topology on B(X, F) coincide.

Proof. It is easy to see that the u-topology on B(X, F) is weaker than the relative m-
topology on B(X, F).

(1)⇒(2) : Let X be F-pseudocompact. Then any positive unit u of C(X, F) is a
unit of B(X, F) so that it is bounded away from zero meaning that u(x) ≥ λ > 0 for all
x ∈ X for some λ ∈ F+ and hence for any g ∈ C(X, F), m(g, λ) ⊆ m(g, u) and m(g, λ) =

u(g, λ). Hence the relative m-topology on B(X, F) ⊆ the u-topology on B(X, F) and so
the relative m-topology on B(X, F) = the u-topology on B(X, F).
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(2)⇒(1) : Let us assume that X be not F-pseudocompact. We shall show that,
B(X, F) with the relative m-topology is not a topological vector space over F and
this proves that, the u-topology on B(X, F) ⊂ the relative m-topology on B(X, F),
because B(X, F) with respect to u-topology is essentially a topological vector space
over F. Now the assumption that X is not F-pseudocompact guarantees that there
exists k ∈ C(X, F) such that ‘k’ is a positive unit of C(X, F) which takes values
arbitrarily near to zero. Then for any pair of distinct ‘r’, ‘s’ in F it will never happen
that | r − s |≤ k where ‘r’, ‘s’ meaning the functions identically equal to r and s
respectively. Hence for any r ∈ F, m(r, k) ∩ {s : s ∈ F} = {r}. In other words
the set {r : r ∈ F} of constant functions on X is a discrete subset of C(X, F) and
hence a discrete subset of B(X, F) also. Therefore the scalar multiplication map φ :
F × B(X, F) −→ B(X, F) defined by φ((α, f )) = α. f is not continuous at points like
(α, r) where ‘r’ stands for the constant function identically equal to r. Hence B(X, F)
with the relative m-topology is not a topological vector space over F. �

Corollary 3.3 (See Exercise, Chapter 2, [5]). For any topological space X following
statements are equivalent:
1. X is pseudocompact.
2. The u-topology and the relative m-topology on C∗(X) coincide.

Proof. The proof follows on choosing F = R in Theorem 3.2. �

4. Characterization of F-pseudocompact and almost P-spaces via u-topology,
m-topology and r-topology on C(X,F)

Theorem 4.1. For any topological space X and any ordered field F the following
statements are equivalent:
1. X is F-pseudocompact.
2. The u-topology and the m-topology on C(X, F) coincide.

Proof. It clearly follows from Theorem 3.2. �

A topological space X is said to be an almost P-space if every non-empty Gδ-set of
X has non-empty interior. We recall some equivalent conditions for a space X to be an
almost P-space.

Proposition 4.2. For any completely F-regular space X where F is any ordered field
the following statements are equivalent:
1. X is an almost P-space.
2. Each non-empty zero-set of X has non-empty interior.
3. Each zero-set of X is a regular closed subset of X.

Proof. It follows after closely monitoring the proof of the Proposition 1.1 of [7]. �

In terms of elements of C(X, F), X is an almost P-space if and only if every regular
element of C(X, F) is a unit. This leads to the following direction.
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Theorem 4.3. Let X be a completely F-regular space. The following statements are
equivalent.

1. The r-topology and m-topology of C(X, F) coincides.
2. X is an almost P-space.
3. R+= U+.

Proof. It is clear that (2) and (3) are equivalent. Since R+= U+ the family which
forms the base for the neighbourhood system of any f ∈ C(X, F) for both topologies
are equal. So the r-topology and m-topology of C(X, F) coincides. Now we want to
prove (1)⇒(2) by method of contradiction. Let us assume that X is not an almost P-
space. Then by Proposition 4.2 there exists f ∈ C(X, F) such that Z( f ) is non-empty
for which its interior is also non-empty. Now since Z( f ) = Z(| f |) so without loss of
generality we assume f ≥ 0 and hence f ∈ R+. Consider r(0, f ) where 0 stands for
the identically 0 function. Now if (1) holds then there exists some g ∈ U+ such that
r(0, g) ⊆ r(0, f ). Let x ∈ Z( f ). Then 0 < g(x)

2 < f (x) = 0, a contradiction. Therefore
(1)⇒(2) is proved. �

Theorem 4.4. Let X be a completely F-regular space. The following statements are
equivalent.

1. The r-topology and u-topology of C(X, F) coincides.
2. X is a F-pseudocompact, almost P-space.

Proof. The proof follows from Theorem 4.1 and Theorem 4.3. �

We are now in a position to prove our main result of this section.

Theorem 4.5. Let X be a completely F-regular space. The following statements are
equivalent.

1. The u-topology, r-topology and m-topology of C(X, F) coincides.
2. X is a F-pseudocompact, almost P-space.

Proof. The proof follows from Theorem 4.3 and Theorem 4.4. �

Corollary 4.6 ([3]). Let X be a Tychonoff space. The following statements are
equivalent:

1. The u-topology, r-topology and m-topology of C(X) coincides.
2. X is a pseudocompact, almost P-space.

Proof. It follows from Theorem 4.5 on choosing F = R. �
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