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1. Introduction, definitions and main results

Let f be a meromorphic function in the complex plane C. It is assumed that the reader 
is familiar with the standard notation and fundamental results of Nevanlinna theory 
of meromorphic functions, such as m(r, f ), N(r, f ), T (r, f ), N(r, f ) etc (see [8], [25]). 
The notation S (r, f ) = o(T (r, f )) as r → ∞, possibly outside a set E of r of finite 
logarithmic measure. Let k be a positive integer or infinity and a ∈ C ∪ {∞}. Set 
E(a, f ) = {z : f (z) − a = 0} where a zero point with multiplicity k is counted k times 
in the set. If these zero points are counted only once, then we denote by E(a, f ). Let 
f and g be two non constant meromorphic functions. If E(a, f ) = E(a, g), then we say 
that f and g share the value a CM. If E(a, f ) = E(a, g), then we say that f and g share 
the value a IM. We denote by Ek)(a, f ) the set of all a− points of f with multiplicities 
not exceeding k, where an a−point is counted according to its multiplicity. Also we 
denote by Ek)(a, f ) the set of distinct a− points of f with multiplicities not greater than 
k [25].

Definition 1.1. [24] Let a ∈ C ∪ {∞}. For a positive integer k, we denote by
(i) Nk)(r, 1

− ) the counting function of a− points of f with multiplicity ≤ k.
f a

(ii) N(k(r, 1
− ) the counting function of a− points of f with multiplicity ≥ k.

Similarly the reduced counting function Nk)(r, 1
f−a ) and N(k(r, 1

f−a ) are defined.

Definition 1.2. [11] For a complex number a ∈ C∪ {∞}, we denote by Ek(a, f ) the set
of all a− points of f where an a− point with multiplicity m is counted m times if m ≤ k
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and k + 1 times if m > k. If Ek(a, f ) = Ek(a, g) for a complex number a ∈ C ∪ {∞} we
say that f and g share the value a with weight k.

The definition implies that if f and g share a value a with weight k, then z0 is a zero
of f − a with multiplicity m(≤ k) if and only if it is a zero of g − a with multiplicity
m(≤ k) and z0 is a zero of f − a with multiplicity m(> k) if and only if it is a zero
of g − a with multiplicity n(> k), where m is not necessarily equal to n. We write f
and g share (a, k) to mean that f and g share the value a with weight k. Clearly if f
and g share (a, k) then f and g share (a, p) for all integer p, 0 ≤ p ≤ k. Also we note
that f and g share a value a IM or CM if and only if f and g share (a, 0) or (a,∞)
respectively.

Definition 1.3. [20] Let f and g be two meromorphic functions such that f and g
share the value 1 IM. Let z0 be a 1-point of f of order p, and a 1-point of g of order
q. We denote by NL(r, 1

f−1 ) the counting function of those 1-points of f and g such

that q < p, by N
(2
E (r, 1

f−1 ) the counting function of those 1-points of f and g such that

2 ≤ q = p, by N
1)
E (r, 1

f−1 ) the counting function of those 1-points of f and g such that

p = q = 1, and by N f>2(r, 1
g−1 ) the counting function of those 1-points of f and g such

that p > q = 2, each point in these counting functions is counted only once. In the
same way, we can define NL(r, 1

g−1 ), N
(2
E (r, 1

g−1 ), Ng>2(r, 1
f−1 ).

Definition 1.4. [13] Let n0 j, n1 j.....nk j be non-negetive integers. The expression
M j[ f ] = ( f )n0 j ( f (1))n1 j ...( f (k))nk j is called differential monomial generated by f of
degree dM j = d(M j) =

∑k
i=0 ni j and weight ΓM j =

∑k
i=0(i + 1)ni j. The sum

H[ f ] =
∑t

j=1 b jM j[ f ] is called differential polynomial generated by f of degree

d(H) = max{d(M j) : 1 ≤ j ≤ t},

and weight
ΓH = max{ΓM j : 1 ≤ j ≤ t}.

where T (r, b j) = S (r, f ) for j = 1, 2...t. The numbers d(H) = min{d(M j) : 1 ≤ j ≤ t}
and k (the highest order of the derivative of f in H[ f ] are called respectively the lower
degree and order of H[ f ].

H[ f ] is said to be homogeneous if d(H) = d(H).
H[ f ] is called a linear differential polynomial generated by f if d(H) = 1.

Otherwise H[ f ] is called a non-linear differential polynomial.
We denote by Q = max{ΓM j − d(M j) : 1 ≤ j ≤ t} = max{n1 j + 2n2 j + ... + knk j :

1 ≤ j ≤ t}.

Theorem 1.5. [18] If f be a non-constant entire function in the finite complex plane
and if f and f

′

share two distinct values(counting multiplicity), then f
′

= f .

Thus, L. A. Rubel and C. C. Yang [18], showed that a derivative is worth two
values. Since then the study of uniqueness of meromorphic functions sharing values
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with derivatives and recently with shifts, difference operator became a subject of much
interest ([15], [21], [22]).

In 2018, Qi, Li and Yang[17], considered the value sharing problem related to f
′

(z)
and f (z + c), where c is a complex number. They obtained the following result.

Theorem 1.6. [17] Let f be a non-constant meromorphic function of finite order
and n ≥ 9 be an integer. If [ f

′

(z)]n and f n(z + c) share a(, 0) and ∞ CM, then
f
′

(z) = t f (z + c), for a constant t that satisfies tn = 1.

In 2020, C. Meng and G. Liu[14], extended the above result by considering the kth

derivative of f and obtained the following results.

Theorem 1.7. [14] Let f be a non-constant meromorphic function of finite order and
n be a positive integer. If one of the following conditions is satisfied:
i) [ f (k)(z)]n and f n(z + c) share (1, 2), (∞, 0) and n ≥ 2k + 8;
ii) [ f (k)(z)]n and f n(z + c) share (1, 2), (∞,∞) and n ≥ 2k + 7;
iii) [ f (k)(z)]n and f n(z+c) share (1, 0), (∞, 0) and n ≥ 3k+14; then f (k)(z) = t f (z+c),

for a constant t that satisfies tn = 1.

Corollary 1.8. [14] Let f be a non-constant entire function of finite order and n ≥ 5
be an integer. If [ f (k)(z)]n and f n(z + c) share (1, 2) then f (k)(z) = t f (z + c), for a
constant t that satisfies tn = 1.

C. Meng and G. Liu [14], further studied the same problem by replacing the shifts
f (z + c) by q-difference, i.e., f (qz) and obtained the following results.

Theorem 1.9. [14] Let f be a non-constant meromorphic function of zero order and n
be a positive integer. If one of the following conditions is satisfied:
i) [ f (k)(z)]n and f n(qz) share (1, 2), (∞, 0) and n ≥ 2k + 8;
ii) [ f (k)(z)]n and f n(qz) share (1, 2), (∞,∞) and n ≥ 2k + 7;
iii) [ f (k)(z)]n and f n(qz) share (1, 0), (∞, 0) and n ≥ 3k + 14; then f (k)(z) = t f (qz),

for a constant t that satisfies tn = 1.

Corollary 1.10. [14] Let f be a non-constant entire function of zero order and n ≥ 5
be an integer. If [ f (k)(z)]n and f n(qz) share (1, 2), then f (k)(z) = t f (qz), for a constant
t that satisfies tn = 1.

In this paper, we replace the term [H( f )]n and ∆cF in Theorem C and [H( f )]n

and ∆cF(qz) in Theorem D and obtained the following results, where ∆cF(z) =

F(z + c) − F(z) and F(z) = f n(z), then ∆cF = f n(z + c) − f n(z).

Theorem 1.11. Let f be a non-constant meromorphic function of finite order and n be
a positive integer. If one of the following conditions is satisfied:
i) [H( f )]n and ∆cF share (1, 2), (∞, 0) and n ≥ σ + d(p) + 5;
ii) [H( f )]n and ∆cF share (1, 2), (∞,∞) and n ≥ σ + d(p) + 4;
iii) [H( f )]n and ∆cF share (1, 0), (∞, 0) and n ≥ 1

2 (3d(p) + 3σ + 20). then [H( f )] =

t f (z + c), for a constant t that satisfies tn = 1/2.
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Theorem 1.12. Let f be a non-constant meromorphic function of zero order and n be
a positive integer. If one of the following conditions is satisfied:
i) [H( f )]n and ∆cF(qz) share (1, 2), (∞, 0) and n ≥ σ + d(p) + 5;
ii) [H( f )]n and ∆cF(qz) share (1, 2), (∞,∞) and n ≥ σ + d(p) + 4;
iii) [H( f )]n and ∆cF(qz) share (1, 0), (∞, 0) and n ≥ 1

2 (3d(p) + 3σ + 20). where
∆cF = f n(qz + c) − f n(qz) then [H( f )] = t f (qz), for a constant t that satisfies
tn = 1/2.

2. Preliminaries

In this section, we present some necessary lemmas.
Denote Ω by the following function.

Ω =

(
F′′

F′
−

2F′

F − 1

)
−

(
G′′

G′
−

2G′

G − 1

)
.

Lemma 2.1. [2] Let F, G be two non-constant meromorphic functions. If F, G share
(1, 2) and (∞, k), where 0 ≤ k ≤ ∞, and Ω . 0, then

T (r, F) ≤ N2

(
r,

1
F

)
+ N2

(
r,

1
G

)
+ N(r, F) + N(r,G) + N∗(r,∞; F,G) + S (r, F) + S (r,G),

where N∗(r,∞; F,G) denotes the reduced counting function of those poles of F whose
multiplicities of the corresponding poles of G.

Lemma 2.2. [23] Let f be a non-constant meromorphic function and let a1, a2, ....an be
finite complex numbers, an , 0. Then

T (r, an f n + ... + a2 f 2 + a1 f + a0) = nT (r, f ) + S (r, f ).

Lemma 2.3. [6, 19] Let f be a meromorphic function of finite order ρ( f ), and let c be
a nonzero constant. Then

T (r, f (z + c)) = T (r, f (z)) + O(rρ( f )−1+ε) + O(logr),

for any arbitrary ε > 0.
We mention that Lemma 2.3 holds also for c = 0 as in the case T (r, f (z + c)) =

T (r, f (z)).

Lemma 2.4. [12] Let f be a non-constant meromorphic function and p, k be positive
integers, then

Np

(
r,

1
f (k)

)
≤ Np+k

(
r,

1
f

)
+ kN(r, f ) + S (r, f ),

where Np

(
r, 1

f (k)

)
denotes the counting function of the zeros of f (k) where a zero of

multiplicity m is counted m times if m ≤ p and p times if m > p and N
(
r, 1

f (k)

)
=

N1

(
r, 1

f (k)

)
.
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Lemma 2.5. [7] Let f be a non-constant meromorphic function of finite order and let
c ∈ C and δ ∈ (0, 1). Then

m
(
r,

f (z + c)
f (z)

)
+ m

(
r,

f (z)
f (z + c)

)
= o

(
T (r, f )

rδ

)
= S (r, f ).

Lemma 2.6. [26] Suppose that two non-constant meromorphic functions F and G
share 1 and∞ IM. Let Ω be given as above. If Ω . 0, then

T (r, F) + T (r,G) ≤ 3N(r, F) + N2

(
r,

1
F

)
+ N2

(
r,

1
G

)
+ N1)

E

(
r,

1
F − 1

)
+ 2N(2

E

(
r,

1
F − 1

)
+ 3NL

(
r,

1
F − 1

)
+ 3NL

(
r,

1
G − 1

)
+ S (r, F) + S (r,G).

Lemma 2.7. [27] Let f be a zero-order meromorphic function, and q ∈ C \ {0}. Then
T (r, f (qz)) = (1 + o(1))T (r, f (z)) and
N(r, f (qz)) = (1 + o(1))N(r, f (z))

on a set of lower logarithmic density 1.

Lemma 2.8. [4] Let f be a zero order meromorphic function and q ∈ C \ {0}. Then

m
(
r, f (qz)

f (z)

)
= S (r, f ).

on a set of lower logarithmic density 1.

Lemma 2.9. [3] Let f be a non-constant meromorphic function and H[ f ] be a differ-
ential polynomial in f . Then

m
r, H[ f ]

f d(p)

 ≤ (d(p) − d(p))m
(
r,

1
f

)
+ S (r, f ),

N
r, H[ f ]

f d(p)

 ≤ (d(p) − d(p))N
(
r,

1
f

)
+ σ

(
N(r, f ) + N(r,

1
f

)
+ S (r, f ),

N(r,H[ f ]) ≤ d(p)N(r, f ) + σN(r, f ) + S (r, f ),

T (r,H[ f ]) ≤ d(p)T (r, f ) + σN(r, f ) + S (r, f ),

where σ = max{n1 j + 2n2 j + 3n3 j + ... + knk j; 1 ≤ j ≤ m}.

Lemma 2.10. Let f be a non-constant meromorphic function and n be a positive
integer, if F = f n(z + c) − f n(z), where c is a finite complex number and G = {H[ f ]}n,
where H[ f ] is a differential polynomial, then FG , 1.

Proof. On contrary, suppose FG = 1, i.e.,

( f n(z + c) − f n(z)){H[ f ]}n = 1,
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from above it is clear that the function f can’t have any zero and poles. Therefore
N(r, 1

f ) = S (r, f ) = N(r, f ). So by the First Fundamental Theorem and Lemma 2.9 we
have,

(2n + nd(p))T (r, f ) = T
r, 1

( f n(z + c) − f n(z)) f nd(p)

 + S (r, f )

≤ T
r, {H[ f ]}n

f nd(p)

 + S (r, f )

≤ nT
r, H[ f ]

f d(p)

 + S (r, f )

≤ n
m r, H[ f ]

f d(p)

 + N
r, H[ f ]

f d(p)

 + S (r, f )

≤ n
[
((d(p) − d(p))T (r, f )

]
+ nσ

[
N(r, f ) + N

(
r,

1
f

)]
+ S (r, f )

(2n + nd(p))T (r, f ) ≤ n
[
((d(p) − d(p))T (r, f )

]
+ S (r, f )

(2n + nd(p))T (r, f ) ≤ S (r, f ),

which is contradiction. In a similar way we can prove the following Lemma. �

Lemma 2.11. Let f be a non-constant meromorphic function and n be a positive
integer, if F = f n(qz + c)− f n(qz) where c is a finite complex number and G = {H[ f ]}n,
where H[ f ] is a differential polynomial, then FG , 1.

3. Proof of Theorems

Proof of Theorem 1.11.

Proof.
F = f n(z + c) − f n(z),G = {H[ f ]}n. (3.1)

Case 3.1. Let {H[ f ]}n and ∆cF share (1, 2), (∞, 0) and n ≥ σ + d(p) + 5. Then it
follows directly from the assumption of the theorem that F and G share (1, 2), (∞, 0).
Let Ω be defined as above. Suppose that Ω . 0. It follows from Lemma 2.1 that

T (r, F) ≤ N2

(
r,

1
F

)
+ N2

(
r,

1
G

)
+ N(r, F) + N(r,G) + N∗(r,∞; F,G) + S (r, F) + S (r,G).

(3.2)
According to Lemma 2.2 and Lemma 2.3 we have

T (r, F) = nT (r, f (z+c))+nT (r, f (z))+S (r, f ) = 2nT (r, f )+O(rρ( f )−1+ε)+S (r, f ). (3.3)

It is obvious that

N2

(
r,

1
F

)
= 2N

(
r,

1
f n(z + c) − f n(z)

)
≤ 4T (r, f ) + O(rρ( f )−1+ε) + S (r, f ).

(3.4)
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N(r, F) = N(r, f n(z + c) − f n(z))

≤ 2T (r, f ) + O(rρ( f )−1+ε) + S (r, f ).
(3.5)

N∗(r,∞; F,G) ≤ N(r, F) ≤ 2T (r, f ) + O(rρ( f )−1+ε) + S (r, f ). (3.6)

Since E(∞, f (k)) = E(∞, f ), we have

N(r,G) = N(r,H[ f ]) = N(r, f ). (3.7)

From Lemma 2.9 we have ,

N2

(
r,

1
G

)
= 2N

(
r,

1
H[ f ]

)
≤ 2T (r,H[ f ]) + S (r, f )

≤ 2(d(p) + σ)T (r, f ) + S (r, f ).
(3.8)

By combining (3.2) to (3.8), we deduce,

(2n − 2σ − 2d(p) − 9)T (r, f ) ≤ O(rρ( f )−1+ε) + S (r, f ), (3.9)

which contradicts that n ≥ 1
2 (2σ + 2d(p) + 10) ≥ σ + d(p) + 5.

Thus, we have Ω ≡ 0 and hence,(
F′′

F′
−

2F′

F − 1

)
=

(
G′′

G′
−

2G′

G − 1

)
.

By integrating twice, we get

1
F − 1

=
A

G − 1
+ B. (3.10)

where A , 0 and B are constants, From (3.10) we have,

G =
(B − A)F + (A − B − 1)

BF − (B + 1)
(3.11)

Now, we have the following three subcases:
Subcase 3.1.1. Suppose that B , 0,−1. Then from (3.11), we have,

N
(
r,

1
F − B+1

B

)
= N(r,G). (3.12)

From the Second Fundamental Theorem, Lemma 2.3 and (3.7), we have,

2nT (r, f ) = T (r, F) + S (r, f )

≤ N(r, F) + N
(
r,

1
F

)
+ N

(
r,

1
F − B+1

B

)
+ S (r, f )

≤ (4 + d(p) + σ)T (r, f ) + O(rρ( f )−1+ε) + S (r, f ),

(3.13)



16 Harina P. Waghamore and Megha M. Manakame∗

which contradicts n ≥ σ + d(p) + 5.
Subcase 3.1.2 Suppose that B = −1. From (3.11) we have

G =
(A + 1)F − A

F
(3.14)

i) If A , −1, we obtain from (3.14), we get,

N
(
r,

1
F − A

A+1

)
= N

(
r,

1
G

)
. (3.15)

From the Second Fundamental Theorem, Lemma 2.3 and Lemma 2.9, we get

2nT (r, f ) = T (r, F) + S (r, f ) ≤ N(r, F) + N
(
r,

1
F

)
+ N

(
r,

1
F − A

A+1

)
+ S (r, f ),

≤ N(r,∆cF) + N
(
r,

1
∆cF

)
+ N

(
r,

1
H[ f ]

)
+ S (r, f ),

2nT (r, f ) ≤ (4 + d(p) + σ)T (r, f ) + O(rρ( f )−1+ε) + S (r, f ),

(3.16)

which contradicts n ≥ σ + d(p) + 5.
ii) If A = −1 and from (3.14), we get FG = 1,

[ f n(z + c) − f n(z)][{H[ f ]}n] = 1. (3.17)

which is a contradiction from Lemma 2.10.
Subcase 3.1.3. Suppose that B = 0. From (3.11)

G = AF − (A − 1) (3.18)

If A , 1, from (3.18) we obtain

N
(
r,

1
F − A−1

A

)
= N

(
r,

1
G

)
(3.19)

Then from the Second Fundamental Theorem, Lemma 2.3 and Lemma 2.9 we have

2nT (r, f ) = T (r, F) + S (r, f )

≤ N(r, F) + N
(
r,

1
F

)
+ N

(
r,

1
F − A−1

A

)
+ S (r, f )

≤ N(r,∆cF) + N
(
r,

1
∆cF

)
+ N

(
r,

1
H[ f ]

)
+ S (r, f ),

2nT (r, f ) ≤ (4 + d(p) + σ)T (r, f ) + O(rρ( f )−1+ε) + S (r, f ),

(3.20)

which contradicts n ≥ σ + d(p) + 5.
Hence A = 1. From (3.18), we have F = G, i.e.,

[ f n(z + c) − f n(z)] = [{H[ f ]}n].
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Hence H[ f ] = t f (z + c), for a constant t, such that tn = 1
2 .

This proves Case 3.1 of Theorem 1.11.
Case 3.2. Suppose {H[ f ]}n and ∆cF share (1, 2), (∞,∞) and n ≥ σ + d(p) + 4. Then
it follows directly from the assumption of the theorem that F and G share (1, 2) and
(∞,∞). Let Ω be defined as above. Suppose that Ω . 0. It follows from Lemma 2.1
we have,

T (r, F) ≤ N2

(
r,

1
F

)
+ N2

(
r,

1
G

)
+ N(r, F) + N(r,G) + N∗(r,∞; F,G) + S (r, F) + S (r,G).

(3.21)
It is obvious that

N∗(r,∞; F,G) = 0 (3.22)

By combining (3.21), (3.22), (3.3), (3.4), (3.5), (3.7) and (3.8), we have,

(2n − 2σ − 2d(p) − 7)T (r, f ) ≤ O(rρ( f )−1+ε) + S (r, f ), (3.23)

which contradicts that n ≥ σ+ d(p) + 4. Therefore Ω ≡ 0. Similar to the proof in Case
3.1, we can get the conclusion of Theorem 1.11.
Case 3.3. Suppose {H[ f ]}n and ∆cF share (1, 0), (∞, 0) and n ≥ 1

2 (3d(p) + 3σ + 20).
Then it follows directly from the assumption of the theorem that F and G share
(1, 0), (∞, 0). Let Ω be defined as above. Suppose that Ω . 0. It follows from Lemma
2.6, we have,

T (r, F) + T (r,G) ≤ 3N(r, F) + N2

(
r,

1
F

)
+ N2

(
r,

1
G

)
+ N1)

E

(
r,

1
F − 1

)
+ 2N(2

E

(
r,

1
F − 1

)
+ 3NL

(
r,

1
F − 1

)
+ 3NL

(
r,

1
G − 1

)
+ S (r, F) + S (r,G).

(3.24)

Since,

N1)
E

(
r,

1
F − 1

)
+ 2N(2

E

(
r,

1
F − 1

)
+ NL

(
r,

1
F − 1

)
+ 2NL

(
r,

1
G − 1

)
≤ N

(
r,

1
G − 1

)
≤ T (r,G) + O(1).

(3.25)

From (3.24) and (3.25) we get,

T (r, F) ≤ 3N(r, F) + N2

(
r,

1
F

)
+ N2

(
r,

1
G

)
+ 2NL

(
r,

1
F − 1

)
+ NL

(
r,

1
G − 1

)
+ S (r, F) + S (r,G).

(3.26)

According to Lemma 2.2 and Lemma 2.3,

T (r, F) = nT (r, f (z + c)) + nT (r, f (z)) + S (r, f ) = 2nT (r, f ) + O(rρ( f )−1+ε) + S (r, f ).
(3.27)
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It is obvious that

N2

(
r,

1
F

)
= 2N

(
r,

1
f n(z + c) − f n(z)

)
≤ 4T (r, f ) + O(rρ( f )−1+ε) + S (r, f ).

(3.28)

N(r, F) = N(r, f n(z + c) − f n(z))

≤ 2T (r, f ) + O(rρ( f )−1+ε) + S (r, f ).
(3.29)

NL

(
r,

1
F − 1

)
≤ N

(
r,

F
F ′

)
≤ N

(
r,

F
′

F

)
+ S (r, f )

≤ N(r, F) + N
(
r,

1
F

)
+ S (r, f )

≤ N(r,∆cF) + N
(
r,

1
∆cF

)
+ S (r, f )

≤ 4T (r, f ) + O(rρ( f )−1+ε) + S (r, f ).

(3.30)

N2

(
r,

1
G

)
= 2N

(
r,

1
H[ f ]

)
≤ 2T (r,H[ f ]) + S (r, f )

≤ 2(d(p) + σ)T (r, f ) + S (r, f ).
(3.31)

NL

(
r,

1
G − 1

)
≤ N

(
r,

G
G′

)
≤ N

(
r,

G
′

G

)
+ S (r, f )

≤ N(r,G) + N
(
r,

1
G

)
+ S (r, f )

≤ N(r, f ) + N
(
r,

1
H[ f ]

)
+ S (r, f )

≤ (d(p) + σ + 1)T (r, f ) + S (r, f ).

(3.32)

By combining (3.26)-(3.32), we deduce

(2n − 3d(p) − 3σ − 19)T (r. f ) ≤ O(rρ( f )−1+ε) + S (r, f ), (3.33)

which contradicts with n ≥ 1
2 (3d(p) + 3σ + 20).

Now by following the steps of the proof in Case 3.1, we can get the conclusion of
Theorem 1.11. This completes the proof of Theorem 1.11. �

Proof of Theorem 1.12.

Proof. Let us consider,

∆cF = f n(qz + c) − f n(qz),G = {H[ f ]}n. (3.34)

then [H( f )] = t f (qz), for a constant t that satisfies tn = 1
2 .

In a similar manner to the proof of Theorem 1.11, we will get the proof of Theorem
1.12. �
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