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CHARACTERIZATION OF THE PERFECT FLUID
LORENTZIAN α-PARA KENMOTSU SPACETIMES
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Abstract

In this article, we explore the characteristics of the Ricci solitons (briefly, RS) together with Yamabe 
solitons (briefly, YS) on the perfect fluid Lorentzian α-para Kenmotsu spacetimes (briefly, (L α-PK)S T ). 
Certain conclusions corresponding to applications of such spacetimes in general relativity and cosmology 
are obtained. We have given an example to verify the results in the following different sections.
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1. Introduction

The Ricci flow concept was given by Hamilton in 1982 [7]. It is an outstanding tool 
to analyse the structure of a manifold. It is a process, which deforms the metric of 
a Riemannian manifold M by removing the irregularities. The following equation 
defines the Ricci flow,

∂g
∂t

+ 2Ric = 0, (1.1)

where, g, Ric and t are Riemannian metric, Ricci tensor and time, respectively. We
suppose that φt : M → M, t ∈ R is a family of diffeomorphisms, which is 1-parameter
group of transformations, then it gives rise to a vector field called the infinitesimal
generator and integral curves. In the space of metrics of φt : M → M, RS are static
points in Ricci flow. g(0) is the initial metric of φt and g(t) is the pullback of g(0).
RS on a Riemannian manifold (M, g) is a special solution to the Ricci flow and is a
natural generalization of Einstein metric, which is defined as triple (g,V, λ) with g, a
Riemannian metric, V , a vector field and λ, a real scalar s.t.

1
2

£Vg + S + λg = 0. (1.2)

In the above equation, S denotes a Ricci tensor, £Vg represents Lie-derivative of g
w.r.t. V on M and λ ∈ R. Here, RS is expanding, steady and shrinking, according as
λ > 0, λ = 0 and λ < 0, respectively.
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A YS on (M, g) is described by the relation

1
2

(£Vg) = (κ − λ)g, (1.3)

where, (M, g) is a Riemannian (or semi-Riemannian) manifold, V is vector field. In
relation (1.3), λ and κ denote soliton constant and scalar curvature, respectively [2].
If λ < 0, λ = 0 or λ > 0, then YS is expanding, steady or shrinking respectively.
Hamilton [7] gave the concept of Yamabe flow as a device to construct Yamabe metric
on the compact Riemannian manifolds. A time dependent metric g(_, t) on M is said
to evolve by the Yamabe flow, provided the metric g satisfies,

∂g(t)
∂t

+ κg(t) = 0, g(0) = g0, (1.4)

on M. A YS is a special solution of the Yamabe flow, which moves by 1-parameter
family of diffeomorphisms φt generated by a fixed vector field V on M [5]. Point-wise
elliptic gradient estimate for the Yamabe flow on a locally conformally flat compact
Riemannian manifold is found by Ye [19]. Hui et al. [10] considered Kenmotsu
manifolds and found some geometrical outcomes of the YS. In case of the Ricci flow,
the YS or the singularities of the Yamabe flow emerged naturally.
Actually, importance of Yamabe flow lies in the fact that it is a natural geometric
deformation to the metric of constant scalar curvature. Yamabe flow corresponds to
the rapid diffusion case of porous medium equation in mathematical physics. Like RS,
YS is also a special solution of Yamabe flow, which moves by 1-parameter family of
diffeomorphisms φt generated by a fixed vector field V on M and a homothetic, that is,
g(_, t) = ς(t)φ∗(t)g0.
For a YS, if V = D f is true for a smooth function f on M, then the relation (1.3) turns
into Hess f = (κ − λ)g, here Hess f represents the Hessian of f and D represents the
gradient operator of g on M. Here, we call f , the potential function of YS and D f , a
gradient of YS.

Definition 1.1. A vector field X on an almost contact Riemannian manifold M is an
infinitesimal transformation [2], provided there exists a smooth function γ on M s.t.

(£Xη)(Y) = γη(Y), (1.5)

∀ smooth vector fields X, Y on M. Let γ = 0, subsequently X is said to be strict
infinitesimal transformations on M.

Definition 1.2. A vector field V on semi-Riemannian manifold (M, g) of dimension-n
is called conformal vector field, provided

1
2

£Vg = ψg



Characterization of the perfect fluid (L α-PK)S T 91

satisfies for ψ, where ψ is smooth fuction [18]. Conformal vector field V on (M, g)
holds relations given below

(£VS )(X,Y) = −(n − 2)g(∇XDψ,Y) + (4ψ)g(X,Y) (1.6)

and
1
2

£Vκ = −ψκ + (n − 1)4ψ (1.7)

∀ vector fields X, Y on M, here, D represents the gradient operator, where as 4 is
Laplacian operator.

We construct this article in the manner given ahead: In the first section, introduc-
tion is given, while section 2 covers preliminaries. Section 3 contains RS on Lorentzian
α-para Kenmotsu manifold (M, φ, ξ, η, g). In section 4, we discuss about the perfect
fluid on LP-Kenmotsu spacetimes and section 5 contains YS on the (L α-PK)S T . In the
last section, an example is given to verify the results obtained in different sections.

2. Preliminaries

An n-dimensional (n may be even or odd) smooth manifold M is said to be
Lorentzian almost paracontact manifold, provided M is equipped with a (1, 1)-tensor
field φ, a contravariant vector field ξ, a covariant vector field η and a (0, 2) type
Lorentzian metric g. Let gm: Tm M × Tm M → R be an inner product of signature (-
,+,+,....., +), here m is a point in M,TmM represents tangent space of smooth manifold
M at m and R is real number space. Some basic results, given below hold:

φ2(X) = X + η(X)ξ, η(ξ) = −1, (2.1)

g(X, ξ) = η(X), g(φX, φY) = g(X,Y) + η(X)η(Y), (2.2)

∀ X,Y on M, and structure (φ, ξ, η, g) is said to be Lorentzian almost paracontact
structure. An n-dimensional smooth manifold M endowed with structure (φ, ξ, η, g)
is said to be Lorentzian almost paracontact manifold [6, 14]. Results given below hold
[14] for Lorentzian almost paracontact manifold,

φξ = 0, η(φX) = 0, Ω(X,Y) = Ω(Y, X), (2.3)

here, Ω(X,Y) = g(X, φY).

Definition 2.1. A Lorentzian almost paracontact manifold M is said to be Lorentzian
para-Kenmotsu manifold provided

(∇Xφ)(Y) = −g(φX,Y)ξ − η(Y)φX

∀ X, Y [8, 9, 16].

Hence, the following:
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Definition 2.2. A Lorentzian para-Kenmotsu manifold is said to be Lorentzian α-para
Kenmotsu manifold, provided

(∇ZΩ)(X,Y) + αη(X)Ω(Y,Z) + αη(Y)Ω(X,Z) = 0, (2.4)

∀ X,Y,Z on M, where α is a non-zero smooth function and

Ω(φX,Y) = −
1
α

(∇Xη)(Y).

We define,
Ω(X,Y) = Ω(φX,Y),

then, we have,

Ω(X,Y) = −
1
α

(∇Xη)(Y) (2.5)

and,
Ω(X,Y) = Ω(Y, X),

where, ∇ is covariant differential operator.

From equation (2.4), we get,

(∇Xφ)(Y) = −αg(φX,Y)ξ − αη(Y)φX. (2.6)

Putting Y = ξ in the above equaton, we get,

(∇Xφ)(ξ) = −αg(φX, ξ)ξ − αη(ξ)φX.

From the above equation, we have,

∇X(φξ) − φ(∇Xξ) = −αη(φX)ξ − αη(ξ)φX.

Using equations (2.1) and (2.3), we obtain,

−φ(∇Xξ) = αφX.

Operating φ on both sides of the above relation and using relation (2.1), it yields

∇Xξ + η(∇Xξ)ξ = −α(X + η(X)ξ).

Relation (2.1) implies η(∇Xξ) = 0. Using this relation in the above equation, we get

∇Xξ = −αX − αη(X)ξ. (2.7)

Also,
(∇Xη)(Y) = ∇Xη(Y) − η(∇XY) = g(Y,∇Xξ). (2.8)

Relations (2.7) and (2.8) together yield

(∇Xη)(Y) = −(α)[g(X,Y) + η(X)η(Y)]. (2.9)
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In particular, if α satisfies (2.9) together with the following relation

∇Xα = dα(X) = ση(X), (2.10)

then ξ is said to be concircular vector field. Here, σ is a smooth function and η is
1-form.
For, Lorentzian α para-Kenmotsu manifold M(φ, ξ, η, g), following results hold good,

η(R(X,Y)Z) = (α2 + σ)[g(Y,Z)η(X) − g(X,Z)η(Y)], (2.11)

S (X, ξ) = (n − 1)(α2 + σ)η(X), (2.12)

R(X,Y)ξ = (α2 + σ)[η(Y)X − η(X)Y], (2.13)

R(ξ,Y)X = (α2 + σ)[g(X,Y)ξ − η(X)Y], (2.14)

(∇Xφ)(Y) = −αg(φX,Y)ξ − αη(Y)φX (2.15)

S (φX, φY) = S (X,Y) + (n − 1)(α2 + σ)η(X)η(Y), (2.16)

∀ X,Y,Z on M. Here, R and S represent the curvature tensor and Ricci tensor of the
manifold (M, g), respectively [12].
Semi-Riemannian geometry, applied in the theory of relativity, was discussed by
O’Neill in 1983 [15]. Kaigorodov has explored the curvature structure of the spacetime
[13]. Raychaudhary et al.[17] have extended the above ideas of the gerneral theory of
spacetime. Chaki and Roy have explored the spacetimes along the covariant constant
energy momentum tensor (briefly, EMT) [3].

3. Ricci solitons on Lorentzian α-para Kenmotsu manifold

The concept of RS is introduced by R.Hamilton in eighties of twentieth century [7].
So, the relation (1.2) is given by

1
2

(£Vg)(X,Y) + S (X,Y) + λg(X,Y) = 0, (3.1)

where, £V is the Lie derivative operator w.r.t. vector field V and λ is a real constant. For
vector field V , there are two conditions: V⊥ ξ and V ∈ Span {ξ} . Here, we consider
only the case V = ξ. In view of relations (2.2) and (2.7), equation (3.1) reduces to,

S (X,Y) = (α − λ)g(X,Y) + αη(X)η(Y), (3.2)

S (X, ξ) = S (ξ, X) = −λη(X), S (ξ, ξ) = λ. (3.3)

Q̧X = (α − λ)X + αη(X)ξ, (3.4)

κ = −λn + (n − 1)α, Q̧ξ = −λξ, (3.5)

λ = −(n − 1)(α2 + σ), (3.6)

here, α2 + σ , 0 and κ is the scalar curvature of M. To reach our aim, we examine
some proposition and lemma.
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Definition 3.1. A tensor β of second order is said to be a second order parallel tensor
provided ∇β = 0, here, ∇ denotes the operator of covariant differentiation w.r.t. metric
g.

Lemma 3.2. On a Lorentzian α-para Kenmotsu manifold M, a second order symmetric
parallel tensor is a constant multiple of associated metric g.

Proof. We assume that β is a (0, 2) type symmetric tensor, then by definition, it is
parallel, if ∇β = 0. This provides

β(R(W, X)Y,Z) + β(Y,R(W, X)Z) = 0, (3.7)

∀ X,Y,Z,W on M. Putting W = Y = Z = ξ in the above relation, we have

β(R(ξ, X)ξ, ξ) = 0,

here, β is symmetric.
On the Lorentzian α-para Kenmotsu manifold,

R(ξ, X)ξ = (α2 + σ)(X + η(X)ξ).

The above relation together with β(R(ξ, X)ξ, ξ) = 0 gives,

(α2 + σ)(g(X, ξ)β(ξ, ξ) + β(X, ξ)) = 0,

here, α2 + σ , 0. Therefore,

g(X, ξ)β(ξ, ξ) + β(X, ξ) = 0. (3.8)

By differentiating covariantly w.r.t. Y , relation (3.8) gives

(∇Yg)(X, ξ)β(ξ, ξ) + g(∇Y X, ξ)β(ξ, ξ) + g(X,∇Yξ)β(ξ, ξ)+
g(X, ξ)(∇Yβ)(ξ, ξ) + 2g(X, ξ)β(∇Yξ, ξ)

+ (∇Yβ)(X, ξ) + β(∇Y X, ξ) + β(X,∇Yξ) = 0. (3.9)

Replacing X = ∇Y X in (3.8), we obtain,

g(∇Y X, ξ)β(ξ, ξ) + β(∇Y X, ξ) = 0. (3.10)

Using ∇Yξ = -αY − αη(Y)ξ and equation (3.9) in the above relation, we get

β(X,Y) = −g(X,Y)β(ξ, ξ). (3.11)

Differentiating covariantaly the above equation w.r.t. Z on M, we conclude that β(ξ, ξ)
is constant. Hence, the lemma 3.2 is proved. �

Proposition 3.3. Let Lorentzian α-para Kenmotsu manifold M be of dimension n. If
it admits a skew-symmetric tensor φ and (0, 2) type symmetric tensor field h, then the
structure (φ, ξ, η, g) has RS (g, ξ, λ), provided h is parallel w.r.t. ∇ on M.
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Proof. Suppose that,
h(X,Y) = (£ξg)(X,Y) + 2S (X,Y). (3.12)

With the help of equation (2.7) and equation (3.2), equation (3.12) reduces to

h(X,Y) = −2λg(X,Y). (3.13)

Putting X = Y = ξ in (3.13) and comparing with (3.6) , we obtain

h(ξ, ξ) = 2λ = −2(n − 1)(α2 + σ) , 0. (3.14)

The foregoing lemma and equation (3.13) complete the statement of proposition. �

Corollary 3.4. An n-dimensional Lorentzian α-para Kenmotsu manifold M(φ, ξ, η, g),
n > 1, endowed with RS (g, ξ, λ) is an η-Einstein manifold and the RS (g, ξ, λ) is
expanding and shrinking provided α2 < σ and α2 > σ, respectively.

Specifically, if α = 1, the relation (3.14) provides λ = −(n − 1) < 0, if n > 1. So,
the following corollary can be stated:

Corollary 3.5. An RS (g, ξ, λ) on a Lorentzian para-Kenmotsu manifold of dimension
n, n > 1, is always shrinking.

4. Perfect Fluid LP-Kenmotsu Spacetimes

Under this section, we study (L α-PK)S T , i.e., Loentzian α-para Kenmotsu man-
ifold of dimension-4, here α is a constant coefficient. Because, α being constant,
therefore relation (2.10) gives σ= 0. Hence relation (2.12) yields

S (X, ξ) = 3α2η(X). (4.1)

Above equation implies that 3α2 is eigen value of Ricci tensor of (L α-PK)S T . Let d
be length of Ricci tensor, subsequently

d2 =

n∑
i=1

S (Q̧ei, ei), (4.2)

here, Q̧ is symmetric endomorphism of tangent space at a point corresponding to Ricci
tensor S . Let {ei, en = ξ}n−1

i=1 be an orthonormal basis of tangent space at each point of
the manifold. Putting X = Y = ei, 1 ≤ i ≤ 4, in (3.2) and take summation from 1 to 4,
we have,

4∑
i=1

εiS (ei, ei) = (α − λ)
4∑

i=1

εig(ei, ei) + α

4∑
i=1

εiη(ei)η(ei),

where εi = g(ei, ei). By the definition of scalar curvature,

κ = 4c1 + c2, (4.3)

where c1 = (α − λ) and c2 = −α. Again from (3.3) and (4.1), we obtain

S (ξ, ξ) = −c1 − c2 = λ = −3α2. (4.4)
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In view of (3.2), (4.2) and (4.4), we find

d2 = 3c2
1 + (c1 + c2)2. (4.5)

Due to d2 being constant, therefore £Xd2 = 0. Since a compact Riemannian manifold
of dimension-3 or more having scalar curvature constant admits an infinitesimal non-
isometric conformal transformation X s.t. £Xd2 = 0, subsequently, this is Einstein
manifold [18]. In view of the preceding and above relations, we express the proposition
in following way.

Proposition 4.1. If (L α-PK)S T together with RS (g, ξ, λ) admits an infinitesimal non-
isometric conformal transformation, then manifold is Einstein manifold, where as
soliton is always shrinking.

Taking into consideration the relation (4.3) together with propostion 4.1, we
express corollaries, written below

Corollary 4.2. An η-Einstein (L α-PK)S T along with an infinitesimal non-isometric
conformal transformation doesn’t admit a proper RS (g, ξ, λ).

Corollary 4.3. An (L α-PK)S T endowed with RS (g, ξ, λ) has a constant scalar
curvature.

We assume that the (L α-PK)S T is perfect fluid. Subsequently on it, Einstein’s field
equation (briefly, EFE) with cosmological term Λ is mentioned below

G(X,Y) = τT (X,Y) − Λg(X,Y). (4.6)

The Einstien tensor G(X,Y) is given by

G(X,Y) = S (X,Y) −
κ

2
g(X,Y).

From the above relation and the equation (4.6), we have

S (X,Y) −
κ

2
g(X,Y) = τT (X,Y) − Λg(X,Y), (4.7)

∀ X,Y . Here, τ reperesents gravitational constant and T is (0, 2)-type EMT. EMT is
defined to be a perfect fluid [15], provided

T (X,Y) = (ρ + p)B(X)B(Y) + pg(X,Y), (4.8)

where, ρ and p denote the energy density function and isotropic pressure function of
the fluid, respectively. In the above equation, B , 0 is 1-form s.t. g(X,U) = B(X), ∀
X and the flow vector field of the fluid is represented by U. In case, ρ and p are nil
identically, subsequently the matter of the fluid is not pure and dust. If Reeb vector
field ξ is a flow vector field of the fluid in (L α-PK)S T , so, EMT has the relation

T (X,Y) = (ρ + p)η(X)η(Y) + pg(X,Y). (4.9)

Using relation (3.2), (4.3), (4.4) and (4.7), we have

T (X,Y) =
1
τ

[(Λ −
1
2
α − 3α2)g(X,Y) + αη(X)η(Y)]. (4.10)

Thus, we conclude the following proposition:
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Proposition 4.4. If a perfect fluid (L α-PK)S T satisfies EFE with a cosmological term
Λ, then relation (4.10) defines EMT of the space.

Relations (4.4), (4.9) together with (4.10) give

λ = −{τρ + Λ −
3
2
α}.

So, the RS (g, ξ, λ) on a perfect fluid (L α-PK)S T expands, steady or shrinks, according

as τρ + Λ <
3
2
α, τρ + Λ =

3
2
α or τρ + Λ >

3
2
α, respectively.

Corollary 4.5. Let perfect fluid (L α-PK)S T endowed with RS (g, ξ, λ) satisfies the
EFE with cosmological term Λ, subsequently RS (g, ξ, λ) expands, steady or shrinks

according as τρ + Λ <
3
2
α, τρ + Λ =

3
2
α or τρ + Λ >

3
2
α, respectively.

Proposition 4.6. If a perfect fluid (L α-PK)S T satisfies EFE with cosmological term,
subsequently (L α-PK)S T is quasi-Einstein. Furthermore, the perfect fluid (L α-PK)S T

to be dust iff Lie-derivative of EMT along ξ vanishes.

Proof. Relation (4.9) as well as (4.10) give,

(ρ + p −
α

τ
)η(X)η(Y) = (

2Λ − α − 6α2 − 2τp
2τ

)g(X,Y), (4.11)

On putting X = ei and taking sumation i = 1, 2, 3, 4 the above equation gives

Λ =
1
4
{(3p − ρ)τ + 3α(4α + 1)}. (4.12)

Putting X = Y = ξ, relation (4.11) gives,

Λ = −τρ + 3α2 +
3
2
α. (4.13)

Equations (4.12) and (4.13) together give

(ρ + p) =
α

τ
, τ , 0. (4.14)

In view of (4.9) and (4.14), the equation (4.7) gives

S = (
κ

2
− Λ + pτ)g + αη ⊗ η.

Putting X = Y = ei, 1 ≤ i ≤ 4, in the above relation, it yields

κ = 4Λ + α − 4pτ. (4.15)

From last two results, we find

S = (Λ +
α

2
− pτ)g + αη ⊗ η, (4.16)
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which indicates that perfect fluid (L α-PK)S T is quasi-Einstein [4, 11].
Futhermore, relation (4.9), together with (4.14) gives,

τT = pτg + αη ⊗ η, (4.17)

if α , 0, τ , 0.
Lie derivative of (4.17) along ξ yields

τ(£ξT )(X,Y) = pτ(£ξg)(X,Y) + α{(£ξg)(X, ξ)g(Y, ξ)
+ g(X, £ξξ)g(Y, ξ) + g(X, ξ)(£ξg)(Y, ξ) + g(X, ξ)g(Y, £ξξ)}

∀ X,Y .
Clearly, (£ξg)(X,Y) = −2α{g(X,Y) + η(X)η(Y)} and £ξξ = 0. From here, the foregoing
equation takes the shape

τ(£ξT )(X,Y) = pτ(£ξg)(X,Y).

For every τ , 0, from the above equation, we obtain

(£ξT )(X,Y) = p(£ξg)(X,Y). (4.18)

Generally, g(φX, φY) , 0, so ξ is not a Killing vector field on perfect fluid (L α-PK)S T ,
in otherwords, £ξg , 0. Hence, relation (4.18) gives (£ξT )(X,Y) = 0 iff p = 0, if τ , 0.
Thus, proposition 4.6 is proved. �

Corollary 4.7. Let EFE with cosmological term Λ be satisfied by the perfect fluid (L
α-PK)S T . If Lie-derivative of EMT w.r.t. ξ vanishes, then expansion scalar together
with acceleration vector becomes zero.

Proof. We mention energy density and force equation in the followiong way,

ξρ = −(p + ρ)divξ

and
(ρ + p)∇ξξ = −grad p − (ξp)ξ,

seperately, [15]. Relations (4.14), (4.18) and above two relations imply divξ = 0,
∇ξξ = 0, where, divξ and ∇ξξ denote expansion scalar as well as acceleration vector
of the perfect fluid, respectively. So, corollary 4.7 is proved. �

Proposition 4.8. Suppose that perfect fluid (L α-PK)S T satisfies the EFE with a
cosmological term. If Lie-derivative of EMT along ξ is zero, then

(∇XS )(Y,Z) = τ(∇XT )(Y,Z).
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Proof. With the help of relations (2.1), (4.1), (4.14) with (4.18), relation (4.16)
reduces to,

S (X,Y) = (Λ +
α

2
)g(X,Y) + αη(X)η(Y).

Replacing Y by ξ in the above equation, we have Λ = 3α2 +
α

2
. Thus above relation

turns into
S (X,Y) = α(1 + 3α)g(X,Y) + αη(X)η(Y). (4.19)

Now differentiating covariantly the above equation w.r.t. X, we get

(∇XS (Y,Z) = −α2{η(Z)g(X,Y) + η(Y)g(X,Z) + 2η(X)η(Y)η(Z)}.

Furthermore, differentiating covariantly the relation (4.17) w.r.t. X, we obatain

(∇XT )(Y,Z) = −ρα{η(Z)g(X,Y) + η(Y)g(X,Z) + 2η(X)η(Y)η(Z)}.

From above two relations, together with relations (4.14), (4.18), we obtain

τ(∇XT )(Y,Z)) = (∇XS )(Y,Z). (4.20)

�

Definition 4.9. Tensor U of type (0, 2) on a pesudo-Riemannian manifold is called
cyclic parallel and Codazzi tensors, provided

(∇XU)(Y,Z) + (∇YU)(Z, X) + (∇ZU)(X,Y)) = 0

and
(∇XU)(Y,Z) = (∇YU)(X,Z)

∀ X,Y , Z.

In the light of aforementioned definition as well as proposition 4.8, we state
corollaries in the manner decscribed below:

Corollary 4.10. Let a perfect fluid (L α-PK)S T satisfies EFE with a cosmological
term. If Lie-derivative of EMT w.r.t. ξ vanishes, then Ricci tensor is of Codazzi type iff
EMT is too Codazzi type.

Corollary 4.11. Suppose that perfect fluid (L α-PK)S T satisfies EFE with a cosmo-
logical term and Lie-derivative of EMT w.r.t. ξ vanishes. Then necessary and sufficient
condition for the Ricci tensor to-be cyclic parallel is that EMT is cyclic parallel.

5. Yamabe solitions on the Lorentzian α-para Kenmotsu spacetimes

The characteristics of YS on the (L α-PK)S T will be discussed in this part. At
present, we justify the presence of YS (g, ξ, λ) for V = ξ on an (L α-PK)S T in the
following proposition:
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Proposition 5.1. A YS (g, ξ, λ) on (L α-PK)S T , where α is constant coefficient, doesn’t
exist.

Proof. We shall prove the proposition by contradiction. Assume that the (L α-PK)S T

admit the YS (g, ξ, λ), then relation (1.3) for V = ξ provides

1
2

(∇ξg)(X,Y) = (κ − λ)g(X,Y), (5.1)

which indicates,
g(∇Xξ,Y) + g(X,∇Yξ) = 2(κ − λ)g(X,Y). (5.2)

Taking into consideration the relation (2.7), relation (5.2) gives,

− α{g(X,Y) + η(X)η(Y)} = (κ − λ)g(X,Y). (5.3)

After replacing X = ξ in relation (5.3), we obtain λ = κ, this implies to £ξg = 0. In
other words, ξ is a Killing vector field, contradicting our assumption, since normally
(£ξg)(X,Y) = −2α{g(X,Y)+η(X)η(Y)} , 0. This completes the proof of the proposition
5.1. �

Proposition 5.2. Any infinitesimal contact transformation on (L α-PK)S T endowed
with YS (g,V, λ) is infinitesimal strict contact transformation.

Proof. We assume that (M, g) is (L α-PK)S T . Consider a Lorentzian para-Kenmotsu
manifold of dimension 4 with constant coefficient α. Clearly, relations (4.15), together
with (4.16), implies that scalar curvature of spacetime is constant. Consequently,
relation (1.6), together with, (1.7) provides

(£VS )(X,Y) = −(n − 2)g(∇XDκ,Y) + ∆κg(X,Y) (5.4)

and
ψ = κ − λ.

Equation (5.4) gives
(£VS )(X,Y) = 0. (5.5)

Replacing, Y = ξ in (5.5), we obtain,

(£VS )(X, ξ) = 0. (5.6)

Alternatively,

(£VS )(X, ξ) = £V (S (X, ξ)) − S (£V X, ξ) − S (X, £Vξ).

With the help of equations (1.5), (4.1) and (5.6), the preceding equation gives

S (X, £Vξ) = 3α2(£Vη)(X) = 3α2γη(X). (5.7)

Putting X = ξ in (5.7), we have

S (ξ, £Vξ) = −3γα2. (5.8)
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In view of (4.1) and (5.8), we have,

η(£Vξ) = −γ. (5.9)

Repeatedly, relation (1.5), together with relation (5.9), gives,

(£Vη)(ξ) = −γ, (5.10)

which implies,
£V (η(ξ)) − η(£Vξ) = 0. (5.11)

Relation (5.9) and relation (5.11) give γ = 0. The definition 1.1, together with the
relation (5.11), completes the proof of the proposition 5.2. �

Afterwards, let YS (g,V, λ) has point-wise collinear potential vector field V with ξ,
in other words, V = µξ, where, µ is smooth function. So, V = µξ gives,

∇XV = ∇X(µξ) = (Xµ)ξ − αµφ2(X). (5.12)

Equations (2.1), (2.2), (2.7) and (5.12) yield

(£Vg)(X,Y) = (Xµ)η(Y) + (Yµ)η(X) − 2αµg(X,Y) − 2αµη(X)η(Y). (5.13)

From (1.3) and (5.13) taken together, give

(Xµ)η(Y) + (Yµ)η(X) − 2αµg(X,Y) − 2αµη(X)η(Y) = 2(κ − λ)g(X,Y). (5.14)

On contraction, relation (5.14) along X, Y gives

ξµ = 4(κ − λ) + 3αµ. (5.15)

Replacing Y = ξ in (5.14) and using (5.15), it gives

Xµ = {2(κ − λ) + 3αµ}η(X). (5.16)

Putting X = ξ in (5.16), we obtain,

ξµ = −(2(κ − λ) + 3αµ). (5.17)

Equation (5.15), together with the relation (5.17), gives λ = κ + αµ. Equation
λ = κ + αµ, together with the relation (5.16), gives

Xµ = αµη(X),

which gives,
g(Dµ, X) = αµg(X, ξ).

In other words,
Dµ = αµξ = αV.

So, the subsequent conclusions hold.

Proposition 5.3. Let YS (g,V, λ) be admitted by (L α-PK)S T , so potential vector field
V and Dµ are linearly dependent.

Corollary 5.4. Let YS (g,V, λ) be admitted by (L α-PK)S T . Also potential vector
field V is point-wise collinear with ξ, subsequently, (L α-PK)S T has space of constant
curvature.
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6. Illustration

We take a smooth manifold M = {(u, v,w, t) ∈ R4: u, v, w is non zero, t>0} of
dimension-4, here (u, v,w, t) is the standard coordinate in 4-dimensional real space R4.
Consider a set of linearly independent vector fields {e1, e2, e3, e4} at every point of M.
We define,

e1 = eu+bt ∂

∂u
, e2 = ev+bt ∂

∂v
, e3 = ew+bt ∂

∂w
, e4 =

∂

∂t
,

here, b , 0 constant. Lorentzian metric g on M is established in the following way:

gi j = g(ei, e j) =


0 if i , j
−1 if i = j = 4
1 or else.

Assuming η is one-form corresponding to g is defined by

η(X) = g(X, e4),

∀ X ∈ χ(T M), here χ(T M) be collection of vector fields on M. We define φ as (1, 1)-
tensor field as follows:

φ(e1) = e1, φ(e2) = e2, φ(e3) = e3, φ(e4) = 0,

from linearity property of φ and g, the following results can be easily proved:

η(e4) = −1, φ2(X) = X + η(X)e4, g(φX, φY) = g(X,Y) + η(X)η(Y),

∀ X,Y ∈ χ(T M). So, when e4 = ξ, structure (φ, ξ, η, g) leading to Lorentzian
paracontact structure as well as manifold M equipped with Lorentzian paracontact
structure is said to be Lorentzian paracontact manifold of dimension-4.
We represent [X,Y] as Lie-derivative of X, Y , defined as [X,Y] = XY − YX. The
non-zero constituents of Lie bracket are evaluated as below:

[e1, e4] = −be1, [e2, e4] = −be2, [e3, e4] = −be3.

Let Riemannian connection w.r.t. g be denoted by ∇. So, when e4 = ξ, we have the
following results:

∇e1 e1 = −be4,∇e1 e2 = 0,∇e1 e3 = 0,∇e1 e4 = −be1,

∇e2 e1 = 0,∇e2 e2 = −be4,∇e2 e3 = 0,∇e2 e4 = −be2,

∇e3 e1 = 0,∇e3 e2 = 0,∇e3 e3 = −be4,∇e3 e4 = −be3,

∇e4 e1 = 0,∇e4 e2 = 0,∇e4 e3 = 0,∇e4 e4 = 0.

Assuming X ∈ χ(T M), so X = a1e1 +a2e2 +a3e3 +a4e4, here {e1, e2, e3, e4} be the basis
of χ(T M). Above relations help verify ∇Xe4 = −b{X + η(X)e4} for each X ∈ χ(T M).
Hence M is a Lorentzian para-Kenmotsu manifold of dimension-4 with coefficient
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α = b , 0. From the above relations, the non-vanishing constituents of the curvature
tensor are evaluated as follows,

R(e1, e2)e1 = −b2e2,R(e1, e3)e1 = −b2e3,R(e1, e4)e1 = −b2e4,

R(e1, e2)e2 = b2e1,R(e2, e3)e2 = −b2e3,R(e2, e4)e2 = −b2e4,

R(e1, e3)e3 = b2e1,R(E2, e3)e3 = b2e2,R(e3, e4)e3 = −b2e4,

R(e1, e4)e4 = −b2e1,R(e2, e4)e4 = −b2e2,R(e3, e4)e4 = −b2e3.

From the definition of Ricci tensor S on M we have,
S (X,Y) = Σ4

i=1εig(R(ei, X)Y, ei), here εi = g(ei, ei). So, matrix representation of S is
given by

S =


3b2 0 0 0
0 3b2 0 0
0 0 3b2 0
0 0 0 −3b2

 .
Also, scalar curvature κ = Σ4

i=1εiS (ei, ei) = 12b2, this implies that (L α-PK)S T of
dimension-4 has constant scalar curvature. From here the relations (2.8), (2.9), (2.11)-
(2.16) together with (4.3) hold.
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