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Abstract

An analytical model for solute transport in two-dimensional homogeneous and anisotropic porous media 
with time dependent velocity field is studied and the result is compared with numerical model using 
explicit method. Mathematical models provide a very good description to observe the contaminant 
concentration pattern in finite and semi-infinite aquifer. This work deals with a two-dimensional solute 
transport model for a semi-infinite homogeneous and anisotropic porous formation. The impact of 
longitudinal, lateral as well as off-diagonal directions with temporally dependent dispersion coefficient 
is considered. Initial background concentration is assumed as space-dependent concentration. The input 
concentration is considered as logistic sigmoid function. The analytical solution is obtained, with the 
help of the Laplace Transform Technique and it is compared with the numerical solution obtained with 
the help of two-level explicit finite difference methods. The velocity distribution pattern is assumed to be 
transient in the form of the asymptotic, exponential and sigmoid function.
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1. Introduction

In groundwater modeling a two-dimensional advection-dispersion equation play vital 
role to observe the contaminant concentration pattern for small groundwater bodies 
where the longitudinal as well as lateral components of the aquifer are also taken into 
account. Due to high number of accuracy and large efficiency, analytical solution as-
sumed to be more reliable as compared to the numerical one. Considering a wide range 
of Reynolds number in two-dimensional isotropic porous media, an analytical and 
experimental investigation of the longitudinal and lateral dispersion coefficient was 
studied by Harleman and Rumer (1963).The analytical solution for chemical transport 
in two-dimensional aquifer was presented assuming a constant velocity field. The 
solution was obtained by integrating the solution of a modified dimensional differen-
tial equation (Latinopolous et al., 1988). Assuming time-dependent dispersion along
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uniform flow,the two-dimensional advection diffusion equation was solved analyti-
cally for instantaneous point injection and continuous point source. The dispersion
coefficient was considered as uniform, linear, asymptotically and exponentially vary-
ing temporally-dependent term (Aral and Liao, 1996). The analytical solution of the
advection-dispersion equation for unsteady flow from instantaneous sources and for
steady flow from continuous sources in one-, two-, and three- spatial dimensions was
derived for space dependent dispersion coefficient in infinite media (Hunt, 1998). Us-
ing Green’s function the analytical solution of one-, two- and three- dimensional solute
transport problem with time-dependent dispersion coefficient was obtained subjected
to Dirichlet as well as Neumann type boundary conditions (Marinoschi, et al., 1999).

Also, there are numerous three-dimensional analytical solutions published in the
literature. Sim and Chrysikopoulos (1998) employed Laplace and Fourier transforms
to derive an analytical solution for virus transport in infinite, there-dimensional, ho-
mogeneous, water saturated porous media, under continuous or point time-periodic
source loading. Subsequently, Sim and Chrysikopoulos (1999) employed Laplace,
Fourier and finite Fourier cosine transforms to derive analytical solutions for con-
taminant transport in homogeneous porous media with either semi-infinite or finite
thickness, accounting for continuous as well as periodic source loadings from either
a point or an elliptic source geometry. Chen (2007) derived an analytical solution
of two-dimensional advection-dispersion equation in cylindrical co-ordinates for non-
axisymmetrical solute transport in a tracer test system using a power series technique
coupled with the Laplace and finite Fourier cosine transform techniques. Here, the
longitudinal and transverse dispersivities were assumed to be a linear function of so-
lute distance. In fact recent studies indicate that dispersivities are positively correlated
with model sizes (solute distance) or spatial scales. Dai et al. (2007) presented repre-
senting aquifer architecture in macrodispersivity models with an analytical solution of
the transition probability matrix. Considering dispersion coefficient as directly propor-
tional to seepage velocity, the analytical solution of two- dimensional solute transport
problems were presented with the help of Laplace transform technique. The solution
was obtained for both the first and third type boundary conditions considering constant
longitudinal and lateral dispersion coefficient (Zhan et al., 2009).

However, sometimes the dispersion coefficient and seepage velocity may vary with
time. Keeping in view of this fact, a two-dimensional solute transport problem in a
homogeneous finite aquifer was solved by Hankel Transform Technique in which the
input source concentration was taken at the far end away from the origin. Initially
the aquifer was assumed to be clean and the input concentration was taken as time-
dependent exponentially decreasing function (Singh et al., 2010). The analytical
solution of two-dimensional advection-dispersion equation subject to first- and third-
type inlet boundary conditions was studied in the cylindrical co-ordinate system.
The finite Hankel transform technique of second kind and the generalized integral
transform technique were used to solve the problem (Chen et al., 2011). A hybrid
Laplace transform finite analytic method for solving transport problems with large
Peclet and Courant numbers were presented by Wang et al. (2012). Most of the
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problem solved in the previous studied, only the longitudinal and lateral dispersion
coefficient terms were taken into consideration. However, the impacts of off diagonal
dispersion coefficient terms were ignored in the previous studies which also affect the
contaminant concentration pattern of the aquifer.

Frind and Germain (1986) examined the evolution of narrow, sharply defined con-
taminant plumes often observed in the field by numerical techniques. The solution
was obtained by considering all the components of dispersion tensor as longitudinal,
transverse as well as off diagonal. In order to find the accuracy and efficiency in
the simulation of plumes the result was compared among principle direction method,
alternative direction Galerkin method and conventional finite element method. An
analytical solution for the advection-dispersion equation usually assumes that bound-
ary and initial conditions are orthogonal to the principal axes of the dispersion tensor.
However, this is not always the case in field studies or modeling scenarios. Using the
method of Green’s functions, a generalized analytical solution of the three-dimensional
advective-dispersive equation in a semi-infinite porous medium was obtained. The so-
lution was derived in an arbitrary Cartesian co-ordinate system subject to arbitrary ini-
tial condition and third type boundary condition with constant dispersion coefficients
(Ellsworth and Butters, 1993).In various cases, the analytical solution of solute trans-
port has been developed for simple geometrical problem whereas numerical solution
may be more applicable and convenient for the complex hydrogeological or boundary
conditions Batu(2006). Massabo et al., (2006) solved a two-dimensional advection
equation with anisotropic dispersion for a homogeneous semi-infinite aquifer consid-
ering the constant dispersion coefficient. The effect of chemical decay or adsorption
like reaction inside the liquid phase was also considered.

The analytical solution was obtained using Bessel function expansion for impul-
sive, continuous and finite pulse type pollutants release. In order to study the pollutant
transport characteristics of the Han River (Korea) a two-dimensional advection dis-
persion model was developed using Streamline-Upwind Petrov-Galarkin method. The
solution was obtained with the help of finite element method considering all the com-
ponents of dispersion tensor in the problem (Lee and Seo, 2007). To predict the depth
averaged concentration of solute transport in shallow water, a two-dimensional solute
transport equation was solved numerically. The solution was derived for the dispersion
diffusion tensor of depth-averaged mixing, whose principal direction coincides with
the flow direction. In the diffusion stage, a second-order accurate central scheme was
used while in the advection stage, a five-point total variation diminishing modification
was made to the standard Mac Cormack scheme (Liang et al., 2010). Kong et al.,
(2011) developed a high resolution model for solving the two-dimensional advection
and anisotropic diffusion problem of solute transport in shallow water. The numerical
solution was obtained with the help of finite volume method considering all the com-
ponents of diffusion coefficient tensor. In these problems, the dispersion coefficient
tensors were assumed as constant term, however it may vary with time.Djordjevich
and Savovic (2013)solved numerically a two dimensionalsolute transport model equa-
tion with variable coefficients in nonhomogeneoussemi-infinite medium. A uniform
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plus type source concentration was consideration for finding the numerical solution
using explicit finite difference method.Chen et al. (2016)developed general analyti-
cal technique to solve a solute transport model equation by considering random shape
sources in one-, two-, and three-dimensions.Guo et al. (2018)presented asymptotic ex-
pansion technique to obtainthe solution of two dimensionalsolute transport model for
input point source concentration on the open watersurface in a geological formation.
The results also analysed for concentration distribution along the longitudinal as well
as transversal direction of flow in a geological formation.Guerrero et al. (2009) dis-
cusssed an analytical solution of the solute transport equation under theconsideration
of linear sorption byusingintegral transform technique method. The leading equation
wasfirst transformed into diffusion equation by using a mathematical substitution and
found the solution for aquifer medium.

Moreover, both explicit and implicit forms were considered for transient nature
of solute transport and inhomogeneity of the porous media. Soraganvi and Kumar
(2009) developed numerical solution of ADE by using finite difference technique
and finite volume methods to fictitious the flow and transport in a variably saturated
zone. However, the one-dimensional ADE was solved with explored the retardation
factor and zero-order production terms by employing Laplace integral transform
technique (Das et al. 2017). The exact and approximate solutions of the ADE with
spatial dispersion in semi-infinite heterogeneous geological formation were explored
by Singh and Das (2015). The solutions were developed for the effect of solute
retardation in terms of the linear isotherms and various decay parameters. Also, the
better agreement between exact and approximate results for one dimensional ADE
was found.Li et al. (2020) point out solute transport model equation for an injection
well in mobile immobile confined aquifer with the impact radial dispersion, first-order
reaction, linear sorption and first-order mass transfer. The breakthrough curves for
concentration distribution also investigated for larger dispersivity and smaller effective
porosityvalues for aquifer.

In the present study, a two-dimensional advection dispersion equation having
different components of dispersion tensor is considered. At the initial stage, aquifer is
assumed to be not clean i.e. there are some initial concentration exists in the aquifer
in the form of exponentially decreasing function of space dependent terms. At the
origin, the input point source concentration is taken as time-dependent in the form
of logistic sigmoid function with Dirichlet type boundary conditions. The logistic
sigmoid function is horizontally asymptotic in nature i.e. it increases continuously for
and tends to 1 as . In the solute transport modeling context, the input point source
concentration can be taken as of this form assuming that input concentration would
initially increase with time and after a certain time period it would stabilize at an
asymptotic value. The dispersion coefficient tensor is directly proportional to seepage
velocity concept is used. The transient velocity in the form of 1) asymptotic function
2) exponential function and 3) algebraic sigmoid function is considered. Banks and
Jerasate (1962) considered the problem of unsteady flow in porous media in which they
derived linear and exponentially time-dependent form of seepage velocity to study the
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salinity problems. In the present study, the first two types of velocity expressions i.e.,
asymptotic and exponentially time-dependent, have been taken from Aral and Liao
(1996). The algebraic sigmoid function that starts a progress from small beginning,
accelerates in the rainy season and reaches up to a limit over a period of time.
It shows the significance of different forms of time-dependent velocity expression
considered and studied depending upon the complexity of geological formations
i.e., homogeneous and anisotropic aquifer. Also, the effects of spatially variable
velocity on contaminant transport is of great interest to environmental engineers and
hydrogyologists and it has been explored extensively (Chrysikopoulos et al., 1992).
The analytical solution is derived with the help of Laplace transform technique and it
is compared with the numerical result obtained with the help of two level explicit finite
difference methods.

2. Materials &Methods

Consider a two-dimensional homogeneous semi-infinite aquifer subjected to a
time-dependent point source contamination in the form of logistic sigmoid function
at the origin. The longitudinal and lateral directions at the origin are taken as x and y
axes, respectively. Let c[ML−3] is the contaminant concentration in the aquifer at any
time t[T ]; u[LT−1] and v[LT−1] are and x and y groundwater velocity components,
respectively; Dxx[L2T−1], Dyy[L2T−1] are the dispersion coefficients along x and
y axes, respectively; Dxy[L2T−1] and Dyx[L2T−1] are the off diagonal dispersion
coefficients. Initially the aquifer has some initial background concentration, which

is function of space variable, say, ci exp[−γ (x + y

√
Dyy

Dxx
)],where γ [L−1] is the decay

parameter and ci[ML−3] is the solute concentration.

The advection-dispersion equation representing the two-dimensional homoge-
neous semi-infinite aquifer can be written as

δc
δt

=
δ

δx
(Dxx

δc
δx

+ Dxy
δc
δy

) +
δ

δy
(Dyy

δc
δy

+ Dyx
δc
δx

) − u
δc
δx
− v

δc
δy

(2.1)

Let u and v be expressed as

u = u0 f (t) and v = v0 f (t) (2.2)

where u0[LT−1] and v0[LT−1] are the initial values of u and v, respectively, and f (t) is
assumed to be a sinusoidally varying function or an exponentially decreasing function.
The dispersion coefficient terms Dxx, Dyy and Dxy or Dyx can be expressed as (Batu,
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2006).

Dxx =
aLu2 + aT v2

√
u2 + v2

=
(aLu2

0 + aT v2
0) f (t)√

u2
0 + v2

0

= Dx0 f (t),

Dyy =
aLu2 + aT v2

√
u2 + v2

=
(aT u2

0 + aLv2
0) f (t)√

u2
0 + v2

0

= Dy0 f (t),

Dxy =
(aL + aT )uv
√

u2 + v2
=

(aL − aT )u0v0 f (t)√
u2

0 + v2
0

= Dxy0 f (t) = Dyx

(2.3)

where aL and aT are the dispersivity [L] along longitudinal and lateral directions that
depends on the distribution of aquifer heterogeneities and scale of the field problem
(Bedient et al., 1999); Dx0, Dy0 and Dxy0 are the initial values of Dxx, Dyy and Dxy or
Dyx, respectively.

As stated earlier, the initial contaminant concentration is a function of space say

ci exp[−γ (x + y

√
Dyy

Dxx
)] at t = 0 and at the origin the time dependent point source

concentration is taken in the form of logistic sigmoid function as c0
[1+exp(−qt)] . Here

q[T−1] is contaminant decay rate coefficient and c0[ML−3] is solute concentration.
Hence, the initial and boundary conditions are expressed below and physical system is
depicted in Fig.1.

c(x, y, t) = ci exp[−γ (x + y

√
Dyy

Dxx
)], x > 0, y > 0, t = 0 (2.4)

Using Eq. (2.3), Eq. (2.4) can be expressed as

c(x, y, t) = ci exp[−γ (x + y

√
Dy0

Dx0
)], x > 0, y > 0, t = 0 (2.5)

c(x, y, t) =
c0

[1 + exp(−qt)]
, x > 0, y > 0, t = 0 (2.6)

δc
δx

= 0,
δc
δy

= 0, x→ ∞, y→ ∞, t > 0 (2.7)

Using Eqs. (2.2) and (2.3), Eq. (2.1) becomes

1
f (t)

δc
δt

= Dx0
δ2c
δx2 + Dy0

δ2c
δy2 + 2Dxy0

δ2c
δxδy

− u0
δc
δx
− v0

δc
δy

(2.8)

Introducing a new time variable T ∗ by the following transformation (Crank, 1975):

T ∗ =

∫ t

0
f (t)dt (2.9)
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Figure 1. Physical Model of the problem

Here, the term f (t) represents time dependent form of velocity expression. Using
Eq. (2.9), Eq. (2.8) subject to Eqs. (2.5) - (2.7) reduces to

δc
δT ∗

= Dx0
δ2c
δx2 + Dy0

δ2c
δy2 + 2Dxy0

δ2c
δxδy

− u0
δc
δx
− v0

δc
δy

(2.10)

c(x, y,T ∗) = ci exp[−γ (x + y

√
Dy0

Dx0
)], x > 0, y > 0,T ∗ = 0 (2.11)

c(x, y,T ∗) =
c0

[1 + exp(−qT ∗)]
, x > 0, y > 0,T ∗ > 0 (2.12)

δc
δx

= 0,
δc
δy

= 0, x→ ∞, y→ ∞,T ∗ > 0 (2.13)

3. Analytical Solution

Let us define a new space variable as

ξ = x + y

√
Dy0

Dx0
or x + y

√
v0

u0
(3.1)

Using Eq. (3.1), Eqs. (2.10) - (2.13) can be written as

δc
δT ∗

= D1
δ2c
δξ2 − U1

δc
δξ

(3.2)

where, D1 = Dx0 +
D2

y0

Dx0
+ 2Dxy0

√
Dy0

Dx0
and U1 = u0 + v0

√
v0
u0

where,
c(ξ,T ∗) = ciexp(−γξ), ξ > 0,T ∗ = 0, (3.3)
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c(ξ,T ∗) =
c0

2
[1 +

qT ∗

2
], ξ = 0,T ∗ > 0 (3.4)

and
δc
δξ

= 0, ξ → ∞, T ∗ > 0 (3.5)

In order to reduce the convective term from Eq. (3.2), using the following transforma-
tion

c(ξ,T ∗) = K(ξ,T ∗) exp (
U1

2D1
ξ −

U2
1

4D1
T ∗) (3.6)

Eqs. (3.2)- (3.5) become

1
D1

δK
δT ∗

=
δ2K
δξ2 (3.7)

subject to

K(ξ,T ∗) = ci exp [−(γ +
U1

2D1
)ξ], ξ > 0, T ∗ = 0 (3.8)

K(ξ,T ∗) =
c0

2
[1 +

qT ∗

2
]exp(

U2
1T ∗

4D1
), ξ = 0, T ∗ > 0 (3.9)

δK
δξ

= −
U1K
2D1

, ξ → ∞, T ∗ > 0 (3.10)

Applying Laplace transform to Eqs. (3.7) - (3.10) it give

K̄(ξ, p) = c1 exp(
√

p
D1
ξ) + c2 exp(−

√
p

D1
ξ) +

ci

p − (γ + U1
2D1

)2D1
exp(−γ −

U1

2D1
)ξ

(3.11)
where c1 and c2 are constants.
Using Eqs. (3.9) and (3.10) in Eq. (3.11), the values of c1 and c2 can be obtained as

c1 = 0 and c2 =
c0

2
[

1

(p − U2
1

4D1
)

+
q
2

1

(p − U2
1

4D1
)2

] −
ci

p − (γ + U1
2D1

)2D1
(3.12)

Substituting values of c1 and c2 from Eq. (3.12), in Eq. (3.11), it can be written as

K̄(ξ, p) = [
c0

2
1

(p − U2
1

4D1
)

+
q
2

1

(p − U2
1

4D1
)2
−

ci

p − (γ + U1
2D1

)2D1
]exp(−

√
p

D1
ξ)

+
ci

p − (γ + U1
2D1

)2D1
]exp(−γ −

U1

2D1
)ξ (3.13)

Now, taking the inverse Laplace transform of Eq. (3.13) the required solution can
be written as

c(ξ,T ∗) =
c0

2
c1(ξ,T ∗) +

qc0

4
c2(ξ,T ∗) − cic3(ξ,T ∗) + cic4(ξ,T ∗) (3.14)
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where,

c1(ξ,T ∗) =
1
2

erfc(
ξ

2
√

D1T ∗
−

U1T ∗

2
√

D1T ∗
) +

1
2

exp(
U1ξ

D1
)erfc(

ξ

2
√

D1T ∗
+

U1T ∗

2
√

D1T ∗
)

c2(ξ,T ∗) =
1

2U1
(U1T ∗ − ξ)erfc(

ξ

2
√

D1T ∗
−

U1T ∗

2
√

D1T ∗
)

+
1

2U1
(U1T ∗ + ξ)exp(

U1ξ

D1
)erfc(

ξ

2
√

D1T ∗
+

U1T ∗

2
√

D1T ∗
)

c3(ξ,T ∗) =
1
2

exp(γ2D1T ∗ + γU1T ∗ − γξ)erfc(
ξ

2
√

D1T ∗
− (γ +

U1

2D1
)
√

D1T ∗)

+
1
2

exp(γ2D1T ∗ + γU1T ∗ + γξ +
U1ξ

2D1
)erfc(

ξ

2
√

D1T ∗
+ (γ +

U1

2D1
)
√

D1T ∗)

c4(ξ,T ∗) = exp(γ2D1T ∗ + γU1T ∗ − γξ)

4. Numerical Solution
The numerical solution of Eq. (2.10) with initial and boundary conditions Eqs.

(2.11) - (2.13), is obtained with the help of two-level explicit finite difference method.
In the present problem, the aquifer is of semi-infinite length. In order to convert
the problem of semi-infinite domain, x ∈ (0,∞), y ∈ (0,∞)into a finite domain
X ∈ (0,∞), Y ∈ (0,∞) following transformation is used

X = 1 − exp(−x) (4.1)

Y = 1 − exp(−y) (4.2)

Using Eqs. (4.1) and (4.2), Eqs. (2.10)-(2.13) become

δc
δT ∗

= Dx0(1 − X)2 δ
2c
δX2 + Dy0(1 − Y)2 δ

2c
δY2 + 2Dxy0(1 − X)(1 − Y)

δ2c
δXδY

− u0(1 − X)
δc
δX
− v0(1 − Y)

δc
δY
− Dx0(1 − X)

δc
δX
− Dy0(1 − Y)

δc
δY

(4.3)

c(X,Y,T ∗) = ci exp [γ(log(1 − X) + log(1 − Y)

√
Dy0

Dx0
)], X > 0, Y > 0, T ∗ = 0

(4.4)

c(X,Y,T ∗) =
c0

[1 + exp(−qT ∗)]
, X = 0, Y = 0, T ∗ > 0 (4.5)

δc
δX

= 0,
δc
δY

= 0, X = 1, Y = 1, T ∗ > 0 (4.6)
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The X, Y and T ∗ domains are divided into equal number of subinterval and represented
as

Xi = Xi−1 + ∆X, i = 1, 2, ...,M, X0 = 0, ∆X = 0.1
Yi = Yi−1 + ∆Y, j = 1, 2, ...,N, Y0 = 0, ∆Y = 0.1

T ∗k = T ∗k−1 + ∆T ∗, k = 1, 2, ..., I, T ∗0 = 0, ∆T ∗ = 0.001
(4.7)

The contaminant concentration at a point (Xi,Y j) at kth sub-interval of time T ∗ is
denoted as ci, j,k . The first and second order derivative in Eq. (2.10) is approximated as
forward difference approximation and central difference approximation respectively.
Using two-level explicit finite difference methods; Eqs. (2.10) to (2.13) can be written
as

ci, j,k+1 = ci, j,k + Dx0(1 − Xi)2(ci+1, j,k − 2ci, j,k + ci−1, j,k)
∆T ∗

∆X2

+ Dy0(1 − Y j)2)
∆T ∗

∆Y2 (ci, j+1,k − 2ci, j,k + ci, j−1,k)

+ Dxy0(1 − Xi)(1 − Yi)(ci+1, j+1,k − ci−1, j+1,k + ci+1, j−1,k + ci−1, j−1,k)
∆T ∗

2∆X∆Y

− Dx0(1 − Xi)(ci+1, j,k − ci−1, j,k)
∆T ∗

2∆X
− Dy0(1 − Yi)(ci, j+1,k − ci, j−1,k)

∆T ∗

2∆Y

− u0(1 − Xi)(ci+1, j,k − ci−1, j,k)
∆T ∗

2∆X
− v0(1 − Y j)(ci, j+1,k − ci, j−1,k)

∆T ∗

2∆Y
(4.8)

ci, j,0 = ci exp [γ(log(1 − Xi) + log(1 − Y j)

√
Dy0

Dx0
)], i > 0, j > 0 (4.9)

c0,0,k =
1
2

[1 +
QT ∗

2
], k > 0 (4.10)

cM, j,k = cM−1, j,k and ci,N,k = ci,N−1,k i = M, j = N, k > 0 (4.11)

The limitation of an explicit scheme is that there is a certain stability criterion
associated with it, so that the size of time step cannot exceed a certain value. For
the present problem, the stability analysis has been done to improve the accuracy of
the numerical solution (Bear and Verrujit 1998) and the stability condition for the size
of time step is obtained as

0 < ∆T ∗ ≤
1

2( Dx0
(∆X)2 +

Dy0

(∆Y)2 +
Dxy0

(2∆X∆Y) +
(u0+Dx0)

2∆X +
(v0+Dy0)

2∆Y )
(4.12)

which satisfy the results and conditions obtained by Ashtiani and Hosseini (2005).

5. Results and Discussion

We consider three different time-dependent forms of velocity expression in which
the first two has been followed by Aral and Liao (1996) and last one is based on the
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properties of algebraic sigmoid function which include the error function. It starts a
progress from small beginning, accelerates in the rainy season and reaches up to a limit
over a period of time. These expressions can be written as follows:

1. Exponentially decreasing form of velocity

u = u0 f (t), f (t) = 1 − exp(
−mt
K

) =⇒ T ∗ =
1
m

(mt + K (exp(
−mt
K

) − 1)) (5.1)

2. Asymptotic form of velocity

u = u0 f (t), f (t) =
mt

(mt + K)
=⇒ T ∗ =

1
m

(mt − K
mt

(mt + K)
) (5.2)

3. Algebraic Sigmoid form of velocity

u = u0 f (t), f (t) =
mt√

(mt)2 + K2
=⇒ T ∗ =

1
m

(
√

(mt)2 + K2 − K) (5.3)

where K is the arbitrary constant. Considering K = 0 in Eq. (5.1) to (5.3); results as
f (t) = 1 . It represents the problem with uniform velocity and dispersion coefficient.

The two-dimensional analytical and numerical results are computed for the input
values aL = 5 km, aT = 0.5 km, ci = 0.01, c0 = 1, x = 1 km, y = 1 km, q =

0.0001(/day), γ = 0.001(/km) , u0 = 0.001 km/year and v0 = 0.0001 km/year. Fig. 2
represents the contaminant concentration pattern for uniform velocity and dispersion
coefficient i.e. at K = 0 . The analytical solution is compared with the numerical
result. Here, it is observed that the contaminant concentration decreases with distance.
The numerical solution follows the same pattern as obtained by the analytical solution.
Due to presence of numerical error may be up to 5-10%, the curve slightly deviates
from the analytical solution in the middle of the domain.

Fig. 3 represents the contaminant concentration pattern for asymptotic type of velocity
expression for different values of dispersivity parameters aL and aT . Here, the figure
shows that the contaminant concentration increases on increasing the longitudinal and
lateral dispersivities at each of the positions which may happen due to off diagonal im-
pact. The contaminant concentration values decreases with distance even we increase
the dispersivity parameters. Fig. 4 shows the contaminant concentration pattern for
asymptotic type of velocity expression for different values of initial seepage veloci-
ties. It represents that the contaminant concentration values increases with increasing
the uniform seepage velocity at each of the positions. However, the contaminant con-
centration values decreases with distance even we increase the seepage velocity.
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Fig. 5 represents the concentration profile for different values of arbitrary constant
K and it is observed that the contaminant concentration decreases on increasing the
value of K at each of the positions. The contaminant concentration values also de-
creases with distance even we increase the arbitrary constant. The impact of variation
in arbitrary constant is significantly observed in this figure.

Fig. 6 shows the concentration profile for asymptotic type of velocity expression for
different values of mt. It represents that contaminant concentration decreases with
distance and increases with time at each of the positions. The variation in time is
significantly observed in concentration pattern.

Fig. 7 shows the concentration profiles for all the three types of transient form of
velocity expression i.e., asymptotic, sigmoid and exponential and it is observed that
the contaminant concentration values decreases uniformly with distance in each of
the velocity expression. The concentration pattern with exponential type of velocity
expression decreases more rapidly as compared to the other two. The obtained con-
centration values are more in asymptotic form of velocity expression than sigmoid and
exponential one.

6. Summary and Conclusion

A comparative study of two-dimensional advection dispersion equation in a homo-
geneous, anisotropic, semi-infinite aquifer is made. Initially the aquifer is not consid-
ered as solute free, it is assumed to vary with distance in both longitudinal as well as
transverse direction. The input concentration is taken as in the form of logistic sig-
moid function at the origin while at the other end the concentration gradients in both
the directions are supposed to be zero. The seepage velocity and dispersion coefficient
are taken as three different types of time-dependent function 1) exponentially decreas-
ing function 2) asymptotic function 3) algebraic sigmoid function. The contaminant
concentration profile is also observed for uniform seepage velocity and dispersion co-
efficient. The solution is obtained by both analytical and numerical method. To find
the analytical solution, Laplace transform technique is used however, for numerical
result two-level explicit finite difference method is used. The effect of off diagonal
dispersion coefficient is also taken into consideration. The solution of this problem
may be applicable to groundwater resource management and assessment of various
significant parameters as a preliminary predictive tool. The following conclusions are
drawn:
1. The numerical results obtained that follows the same pattern as obtained from

the analytical one. This validates the accuracy of analytical method to solve the
problem.

2. The contaminant concentration increases on increasing the dispersivity parame-
ters but decreases on increasing the arbitrary constant K.

3. The contaminant concentration decreases gradually with distance in all the cases
and increases with time.
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4. On comparing all the three types of velocity expressions, the contaminant
concentration for exponential form of velocity expression decreases more rapidly
as compared to asymptotic and sigmoid type of velocity expressions.

5. The off diagonal impact i.e.,Dxy or Dyx is significantly observed in contaminant
concentration profile even for minimum values of dispersivities from each of the
Figs. (2-7).
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Figure 2. Concentration Profile for asymptotic type velocity expression for K = 0, mt = 2, aL = 5,
aT = 0.5, u0 = 0.001, v0 = 0.0001.
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Figure 3. Concentration Profile for asymptotic type velocity expression for K = 10, mt = 5, u0 = 0.001,
v0 = 0.0001.

Figure 4. Concentration Profile for asymptotic type velocity expression for K = 10, mt = 2, aL = 5,
aT = 0.5.
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Figure 5. Concentration Profile for asymptotic type velocity expression for mt = 2, aL = 5, aT = 0.5,
u0 = 0.001, v0 = 0.0001.

Figure 6. Concentration Profile for asymptotic type velocity expression for K = 5, aL = 5, aT = 0.5,
u0 = 0.001, v0 = 0.0001.
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Figure 7. Concentration Profile for three different types of velocity expression for K = 2, mt = 2, aL = 5,
aT = 0.5, u0 = 0.001, v0 = 0.0001.
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