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A BIVARIATE POLYNOMIAL PROBLEM FOR MATRICES

DHARM PRAKASH SINGH, AMIT UJLAYAN ) and BHIM SEN CHOUDHARY

Abstract

This article proposes a bivariate polynomial problem for finite-order real matrices that endows a ‘sufficient 
condition’ for a map from the standard vector spaces of finite-order real matrices to the same dimensional 
bivariate polynomial subspaces (BVPSs) to be an isomorphism in some finite-dimensional BVPSs. In the 
process of solving, the article deals with the existence, uniqueness, and construction of the polynomials 
in some finite-dimensional BVPSs concerning the solution of the proposed problem. To this end, a 
relationship is established between the proposed problem and a class of Lagrange bivariate polynomial 
interpolation problems (LBVPIPs). As a result, the existence of a standard and a new class of finite-
dimensional BVPSs of various total degrees has been established in which the proposed problem always 
possesses a unique solution. In addition, some formulas are derived to construct the needed polynomials 
in these BVPSs. Further, the possible applicability of the proposed problem is discussed in LBVPIPs, 
focusing on the finite rectangular schemes of bivariate interpolation points on the natural Cartesian grid. 
At last, some numerical examples are considered to justify the theoretical findings.

2010 Mathematics subject classification: primary 41A05, 41A10, 41A63; secondary 15A04, 15A29. 
Keywords and phrases: Lagrange interpolation, a bivariate polynomial interpolation problem for matri-
ces, existence and uniqueness, sufficient condition, isomorphism.

1. Introduction

Over the field of real numbers R, let Π2 be the space of all bivariate polynomials, Π 
be (k + 1)(k + 2)/2-dimensional subspace of Π2 of degree at most k, Πk be (k + 1)-
dimensional vector space of all univariate polynomials of degree at most k, and Rm×n 

be mn-dimensional vector space of all m by n matrices, where m, n, k ∈ N (set of all 
positive integers), [1, 2].

The bivariate polynomials are used to improve mathematical modeling in medical 
applications [3], image processing [4, 5], signal processing [5], computer graphics [6], 
computer-aided design in control systems [7, 8], etc., in which “data" is stored as 2D 
arrays or finite-order real matrices. Therefore, by constructing corresponding bivariate 
polynomials that can map the data points to mathematical space, one can conduct
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advanced studies by utilizing well-defined mathematical properties of such polynomi-
als, such as linear transformations, interpolations, continuities, differentiabilities, etc.
Next, we consider a bivariate polynomial problem for matrices, stated as follows:
• For a given matrix (ai j) ∈ Rm×n and an mn-dimensional subspace P ⊂ Π2, find a

polynomial p ∈ P, such that

p(i, j) = ai j for all (i, j) ∈ X = {1, 2, . . . ,m} × {1, 2, . . . , n} (1.1)

is named as Dharm polynomial problem for matrices (DPPM). As an advanced
application, the DPPM (1.1) provides a sufficient condition for the map Dp : Rm×n →

P, defined as
Dp(A) = pA(x, y) for all A ∈ Rm×n, (1.2)

to be an isomorphism [9], where pA ∈ P denoes the unique polynomial satisfying the
DPPM (1.1).

This article focuses on the existence, uniqueness, and construction of the polyno-
mials satisfying the DPPM (1.1) in some mn-dimensional subspace of Π2 of various
total degrees and shows the possible applicability of results in bivariate polynomial
interpolation problems concerning the rectangular schemes of bivariate interpolation
points on the natural Cartesian grid X.

The rest of the article is organized as follows. Section 2 deals with the basic
concepts and preliminaries of the article. Section 3 focuses on the results of the
article. Section 4 discusses the possible applicability of the DPPM (1.1) in bivariate
polynomial interpolation problems. Section 5 considers some numerical examples to
justify the theoretical findings. At last, section 6 concludes the article.

2. Basic Concepts and Preliminaries

For a given vector F =
(

f (xi, y j) : i = 1, 2, . . . ,m; j = 1, 2, . . . , n
)

of prescribed
real values and a subspace Q ⊂ Π2, find a polynomial p ∈ Q, for a finite set
Θ =

{(
xi, y j

)
: i = 1, 2, . . . ,m; j = 1, 2, . . . , n

}
of mn pair-wise distinct interpolation

points in R2, such that

p(Θ) = F , i.e., p(xi, y j) = f (xi, y j) for all (xi, y j) ∈ Θ (2.1)

represents the Lagrange’s bivariate polynomial interpolation problem. In this case,
the interpolation points

(
xi, y j

)
, (xi, y j) ∈ Θ are also called nodes. The LBVPIP (2.1)

for Θ is called correct in Q, if there exists a unique polynomial p ∈ Q such that (2.1)
holds for any given vector F . For this, it is necessary that dim(Q) = mn. Also, if
the LBVPIP (2.1) with respect to Θ is correct in Q, then Q is called correct space or
interpolation space for the LBVPIP (2.1) with respect to Θ, cf. [10, 11].

Without loss of generality, for (ai j) =
(

f (xi, y j)
)
∈ Rm×n and the subspace P ⊂ Π2,

the LBVPIP (2.1) with respect to X is equivalent to the DPPM (1.1). Thus, if P is a
correct space for the LBVPIP (2.1) for X, then there must exist a unique polynomial
pA ∈ P that satisfies the DPPM (1.1) for any given choice of the matrix A ∈ Rm×n and
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the map (1.2) can always be defined. In other words, there exist a unique polynomial
pA ∈ P that satisfies the DPPM (1.1) for any choice of the matrix A ∈ Rm×n, if the
matrix (

u(i, j) : (i, j) ∈ X, u ∈ B
)
∈ Rmn×mn (2.2)

is non-singular for a basis B of P. Thus, the DPPM (1.1), equivalently the LBVPIP
(2.1) for X is correct in P if the determinant of the matrix (2.2) is non-zero for
any choice of the basis B of P. The interpolation theory in [10–12] tells that any
rectangular scheme of m by n bivariate nodes on the natural Cartesian grid X is Π2

k-
independent if and only if k = m + n−2, but then it cannot be Π2

k-complete. Therefore,
the DPPM (1.1) cannot be Π2

k-correct for any k (the only exception being the trivial
case m = n = 1: single node is of course 0-correct).

In [13], the author Narumi correctly claims that the LBVPIP (2.1) with respect
to X can always be correct in a standard mn-dimensional tensor product subspace
Pn

m = Πm−1 ⊗ Πn−1 ⊂ Π2
m+n−2 [14], such that, if p ∈ Pn

m, then

p(x, y) =

m−1∑
k1=0

n−1∑
k2=0

λk1,k2 xk1 yk2 , λk1,k2 ∈ R for all 0 ≤ k1 ≤ m − 1, 0 ≤ k2 ≤ n − 1, (2.3)

where
{
xk1 yk2 : 0 ≤ k1 ≤ m − 1, 0 ≤ k2 ≤ n − 1

}
is the set of standard basis of Pn

m.
Moreover, a formula has been submitted to construct the coefficients of the required
polynomial, involving Newton-divided differences of the data values. However, the
proof of the existence and uniqueness of the needed polynomial in Pn

m has not been
included. The review article [12] guessed that the author Narumi might have pursued
the tensor product approach as that time, the tensor product of univariate interpolating
polynomials when the bivariate interpolation points lie on a natural Cartesian product
grid X, was the classical approach to bivariate polynomial interpolation, see also [15].
In general, Pn

m is used as a standard interpolation space for the LBVPIP (2.1) for X.
Moreover, given the Kergin interpolation [16], there is at least one mn-dimensional

subspace of Π2
mn−1 in which the LBVPIP (2.1) for X can always be correct. In

general, there may possibly exist infinitely many linearly independent mn-dimensional
subspaces of Π2, of various total degrees, in which the LBVPIP (2.1) for X can
always be correct. Indeed, the identification or construction of such correct spaces
is much more difficult in case of more than one variable, see [1, 10–12] for details.
Consequently, the DPPM (1.1) can always be correct in Pn

m and there may exist one or
more linearly independent mn-dimensional subspaces of Π2, of various total degrees,
in which the DPPM (1.1) can always be correct.

3. Main Results

Theorem 3.1. If P is a correct space for the DPPM (1.1), then the mapDp : Rm×n →

P, defined as (1.2), is an isomorphism.
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Proof. Let P be a correct space for the DPPM (1.1), then dim(P) = mn and there
always exist a unique polynomial pA ∈ P that satisfies the DPPM (1.1) for each
A = (ai j) ∈ Rm×n, i.e., the map (1.2) is well-defined. Now, let B = (bi j) ∈ Rm×n,
C = (ci j) ∈ Rm×n, and λ be a real scalar. Then, B + λC = (bi j + λci j) ∈ Rm×n.
Therefore, there exists pB ∈ P, pC ∈ P, and pB+λC ∈ P, such that

pB(i, j) = bi j for all (i, j) ∈ X, (3.1)
pC(i, j) = ci j for all (i, j) ∈ X, (3.2)
and pB+λC(i, j) = bi j + λci j for all (i, j) ∈ X. (3.3)

From (3.1), (3.2) and (3.3), we have

pB+λC(i, j) = pB(i, j) + λpC(i, j) for all (i, j) ∈ X,

i.e., the map (1.2) is linear. Again, for each p ∈ P, there exists (p(i, j)) ∈ Rm×n, i.e.,
the map (1.2) is surjective. Since, dim(Rm×n) = dim(P), thus the map (1.2) is bijective
and consequently invertible. Hence, the proof is completed. �

Remark 3.2. The inverse mapD−1
p : P → Rm×n, of the map (1.2), is given as

D−1
p (p(x, y)) = (p(i, j)) ∈ Rm×n for all p ∈ P. (3.4)

A straightforward consequence of Theorem 3.1 is as follows.

Corollary 3.3. If P is a correct space for the DPPM (1.1) and p, q ∈ P, then

1. p(x, y) = 0 in R2 if and only if p(x, y) = 0 in X, and
2. p(x, y) = q(x, y) in R2 if and only if p(x, y) = q(x, y) in X.

Remark 3.4. If P is a correct space for the DPPM (1.1), then the number of roots of
a polynomial p ∈ P can never exceed mn and two polynomials p, q ∈ P are said to be
equal if and only if p(x, y) = q(x, y) in X.

Theorem 3.5. For every (ai j) ∈ Rm×n, there exists a unique p ∈ Pn
m that satisfies the

DPPM (1.1).

Proof. The proof consists two parts, existence and uniqueness. To prove this,
it is sufficient to show that the matrix (2.2) is non-singular for the basis B ={
xk1 yk2 : 0 ≤ k1 ≤ m − 1, 0 ≤ k2 ≤ n − 1

}
. For better understanding, we will prove ex-

istence and uniqueness independently.
Existence: Let (ai j) ∈ Rm×n is a given matrix. For the set of interpolation points

Ωn = { j : j = 1, 2, . . . , n} (3.5)

concerning the kth row of the given matrix (ai j) ∈ Rm×n, there exists a univariate
polynomial pk ∈ Πn−1 that satisfy

pk( j) = ak j for all j = 1, 2, . . . , n (3.6)
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for all k = 1, 2, . . . ,m. Thus, (ai j) ∈ Rm×n can be represented as (ai j) =

(pk ∈ Πn−1 : k = 1, 2, . . . ,m)m×1. Again, for the set of interpolation points

Ωm = {i : i = 1, 2, . . . ,m} (3.7)

there exists a bivariate polynomial p ∈ Πm−1 × Πn−1 that satisfy

p(i, y) = pi(y) for all i = 1, 2, . . . ,m. (3.8)

Consequently, there exist a polynomial p ∈ Pn
m that satisfy the DPPM (1.1) for any

given choice of the matrix (ai j) ∈ Rm×n.
Uniqueness: Let p ∈ Pn

m be the polynomial, of the form (2.3), that satisfies the DPPM
(1.1). Then,

m−1∑
k1=0

n−1∑
k2=0

λk1,k2 ik1 jk2 = ai j for all (i, j) ∈ X. (3.9)

The system of equations (3.9) can be written as

ΞG = ν, (3.10)

where ν =
(

a11 a12 . . . a1n . . . . . . am1 am2 . . . amn

)
∈ Rmn×1,

G =
(
λ0,0 λ0,1 . . . λ0,n−1 . . . . . . λm−1,0 λm−1,1 . . . λm−1,n−1

)
∈ Rmn×1,

and

Ξ =



1010 1011 . . . 101n−1 . . . 1m−110 1m−111 . . . 1m−11n−1

1020 1021 . . . 102n−1 . . . 1m−120 1m−121 . . . 1m−12n−1

...
... . . .

... . . .
...

... . . .
...

10n0 10n1 . . . 10nn−1 . . . 1m−1n0 1m−1n1 . . . 1m−1nn−1

2010 2011 . . . 201n−1 . . . 2m−110 2m−111 . . . 2m−11n−1

2020 2021 . . . 202n−1 . . . 2m−120 2m−121 . . . 2m−12n−1

...
... . . .

... . . .
...

... . . .
...

20n0 20n1 . . . 20nn−1 . . . 2m−1n0 2m−1n1 . . . 2m−1nn−1

...
... . . .

... . . .
...

... . . .
...

m010 m011 . . . m01n−1 . . . mm−110 mm−111 . . . mm−11n−1

m020 m021 . . . m02n−1 . . . mm−120 mm−121 . . . mm−12n−1

...
... . . .

... . . .
...

... . . .
...

m0n0 m0n1 . . . m0nn−1 . . . mm−1n0 mm−1n1 . . . mm−1nn−1


mn×mn

.
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Using the Kronecker (or tensor) product of matrices [17], one may get

Ξ =


10 11 . . . 1m−1

20 21 . . . 2m−1

...
... . . .

...
m0 m1 . . . mm−1


m×m

⊗


10 11 . . . 1n−1

20 21 . . . 2n−1

...
... . . .

...
n0 n1 . . . nn−1


n×n

and det(Ξ) =


∣∣∣∣∣∣∣∣∣∣∣∣
10 11 . . . 1m−1

20 21 . . . 2m−1

...
... . . .

...
m0 m1 . . . mm−1

∣∣∣∣∣∣∣∣∣∣∣∣


m

×


∣∣∣∣∣∣∣∣∣∣∣∣
10 11 . . . 1n−1

20 21 . . . 2n−1

...
... . . .

...
n0 n1 . . . nn−1

∣∣∣∣∣∣∣∣∣∣∣∣


n

.

Therefore, using the standard Vandermonde determinant [18], we get det(Ξ) , 0,
i.e., the system of equations (3.10) possesses a unique solution. Hence, the proof is
completed. �

Remark 3.6. Using the system of equations (3.10), the coefficients of the required
unique polynomial p ∈ Pn

m that satisfies the DPPM (1.1) for each (ai j) ∈ Rm×n can be
determined by setting G = Ξ−1ν.

The proof of existence part of Theorem 3.5 provides an algorithm to construct the
polynomial p ∈ Pn

m that satisfies the DPPM (1.1) for each (ai j) ∈ Rm×n, considering
univariate polynomial interpolation formulas [19, 20]. Next, we present the following
results for the algorithm given in the existence part of Theorem 3.5.

Corollary 3.7. For every (ai j) ∈ Rm×n, there exists a unique p ∈ Pn
m that satisfies the

DPPM (1.1) is given as

p(x, y) =

m∑
k=1

 m∏
α=1,α,k

( x − α
k − α

) pk(y), (3.11)

where

pk(y) =

n∑
r=1

 n∏
α=1,α,r

(y − α
r − α

) akr for all k = 1, 2, . . . ,m. (3.12)

Proof. Using univariate Newton-Lagrange’s polynomial interpolation formula, the
polynomials pk ∈ Πn−1, k = 1, 2, . . . ,m for the set of interpolation points (3.5) that
satisfy the problem (3.6) can be written as

pk(y) = lk,1(y)ak1 + lk,2(y)ak2 + . . . + lk,n(y)akn, (3.13)

where lk,r(y), r = 1, 2, . . . , n are the univariate polynomials in Πn−1. The polynomials
(3.13) satisfy (3.6), if and only if

lk,r(y j) =

0, if r , j
1, if r = j

for all r = 1, 2, . . . , n. (3.14)
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Therefore, the polynomials lk,r(y), r = 1, 2, . . . , n that satisfy (3.14) can be written as

lk,r(y) =

n∏
α=1,α,r

(y − α)
(r − α)

for all r = 1, 2, . . . , n. (3.15)

Thus, using (3.15) in (3.13), we get (3.12). Again, using univariate Newton-Lagrange’s
polynomial interpolation formula, the polynomial p ∈ Πm−1 × Πn−1 for the set
interpolation points (3.7) that satisfy the problem (3.8) can be written as

p(x, y) = p1(y)L1(x) + p2(y)L2(x) + . . . + pm(y)Lm(x), (3.16)

where Lk(x), k = 1, 2, . . . ,m are the univariate polynomials in Πm−1. The polynomial
(3.16) satisfy (3.8), if and only if

Lk(xi) =

0, if k , i
1, if k = i

for all k = 1, 2, . . . ,m. (3.17)

and the polynomials Lk(x) that satisfy the conditions (3.17) can be written as

Lk(x) =

m∏
α=1,α,k

(x − α)
(k − α)

for all k = 1, 2, . . . ,m. (3.18)

Therefore, combining (3.16) and (3.18), we get (3.11). Clearly, p ∈ Pn
m and the

uniqueness followed from Theorem 3.5. This completes the result. �

Corollary 3.8. For every (ai j) ∈ Rm×n, there exists a unique p ∈ Pn
m that satisfies the

DPPM (1.1) is given as

p(x, y) =

m−1∑
r=0

(
x
r

)
∆r p1(y), (3.19)

where

∆r p1(y) =

r∑
β=0

(−1)β
(
r
β

)
pr+1−β(y) for all r = 1, 2, . . . ,m − 1 (3.20)

and

pk(y) =

n−1∑
r=0

(
y
r

)
∆rak1 for all k = 1, 2, . . . ,m, (3.21)

where

∆rak1 =

r∑
α=0

(−1)α
(
r
α

)
ak(r+1−α) for all r = 1, 2, . . . , n − 1. (3.22)

Proof. Using univariate Newton-forward difference polynomial interpolation formula
instead of univariate Newton-Lagrange’s polynomial interpolation formula in the proof
of Corollary 3.7 completes the result. �
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Next, a class of mn-dimensional subspaces of Π2
s(mn−1) is considered, involving two

real parameters α and β, and it is proven that the DPPM (1.1) can be correct in these
subspaces for uncountably many choices of the pair (α, β).

Definition 3.9. For some real scalars α, β and s ∈ N, β
αΠ2

s(mn−1) is the space of
bivariate polynomials with real coefficients, of total degree up to s(mn − 1), such that
if p ∈ β

αΠ2
s(mn−1), then

p(x, y) =

mn−1∑
k=0

λk(αxs + βys)k, λk ∈ R for all 0 ≤ k ≤ mn − 1. (3.23)

where λk are some real scalars for all 0 ≤ k ≤ mn − 1.

Remark 3.10. The space β
αΠ2

s(mn−1) is an mn-dimensional subspace of Π2
s(mn−1) as

(µu + v) ∈ β
αΠ2

s(mn−1) for all u, v ∈ β
αΠ2

s(mn−1) and scalar µ, where a set of standard

bases of βαΠ2
s(mn−1) is

{
(αxs + βys)k : 0 ≤ k ≤ mn − 1

}
.

Theorem 3.11. For every (ai j) ∈ Rm×n, there exists a unique p ∈ β
αΠ2

s(mn−1) that satisfies
the DPPM (1.1), provided the pair (α, β) satisfy the condition

αis
1 + β js

1 , αis
2 + β js

2 for all (i1, j1) , (i2, j2) (3.24)

where (i1, j1), (i2, j2) ∈ X.

Proof. Consider the transformation φs : X → R, defined as

φs(i, j) = αis + β js for all (i, j) ∈ X. (3.25)

If the pair (α, β) satisfies the condition (3.24), the transformation (3.25) is a injective
that projects all of bivariate nodes of X onto a set of mn-univariate nodes to the
curve orthogonal to αxs + βys = 0 in such a manner that all projections are different.
Thus, using (3.25), the DPPM (1.1) can be transformed into a univariate polynomial
interpolation problem of the form

p(i, j) = p̃(φs(i, j)) = p̃(αis + β js) = ai j for all (i, j) ∈ X. (3.26)

Consequently, using a univariate polynomial interpolation formula for the interpola-
tion problem (3.26) for X, there exists a polynomial p ∈ β

αΠ2
s(mn−1) that satisfy the

DPPM (1.1). Again, let p ∈ β
αΠ2

s(mn−1) be the polynomial, as defined in (3.23), that
satisfies the DPPM (1.1) for the given (ai j) ∈ Rm×n. Then

mn−1∑
k=0

λk(αis + β js)k = ai j for all (i, j) ∈ X, (3.27)

i.e., the coefficients must satisfy the system of equations of the form

ΛK = µ, (3.28)
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where,K =
(
λ0 λ1 . . . λn−1 λn . . . λmn−1

)
∈ Rmn×1, µ =

(
a11 a12 . . . a1n a21 . . . amn

)
∈

Rmn×1 and

Λ =



1 (α + β) (α + β)2 . . . (α + β)mn−1

1 (α + 2sβ) (α + 2sβ)2 . . . (α + 2sβ)mn−1

...
...

...
...

1 (α + nsβ) (α + nsβ)2 . . . (α + nsβ)mn−1

1 (2sα + β) (2sα + β)2 . . . (2sα + β)mn−1

...
...

...
...

1 (msα + nsβ) (msα + nsβ)2 . . . (msα + nsβ)mn−1


mn×mn

.

Therefore, if the pair (α, β) satisfies the condition (3.24), then det(Λ) , 0, using
Vandermonde determinant. Thus, the system of equations (3.28) has a unique solution.
Hence, the proof is completed. �

Remark 3.12. The condition (3.24) holds for uncountably many choices of the pair
(α, β) for every s ∈ N. This establishes the existence of a class of mn-dimensional
subspaces of Π2, of the form β

αΠ2
s(mn−1), for each s ∈ N, in which the DPPM (1.1) can

always be correct. For a positive integer s, the coefficients of the required polynomial
p ∈ β

αΠ2
s(mn−1) that uniquely satisfies the DPPM (1.1) can also be determined from

the system of equation (3.28) using K = Λ−1µ, provided the pair (α, β) satisfies the
condition (3.24).

Remark 3.13. The system (3.27) is not the only one that gives the solution to the
DPPM (1.1). There is another:

Λ̄K = µ̄, (3.29)

where µ̄ =
(
a11 a21 . . . am1 a12 . . . amn

)
∈ Rmn×1 and

Λ̄ =



1 (α + β) (α + β)2 . . . (α + β)mn−1

1 (2sα + β) (2sα + β)2 . . . (2sα + β)mn−1

...
...

...
...

1 (msα + β) (msα + β)2 . . . (msα + β)mn−1

1 (α + 2sβ) (α + 2sβ)2 . . . (α + 2sβ)mn−1

...
...

...
...

1 (msα + nsβ) (msα + nsβ)2 . . . (msα + nsβ)mn−1


mn×mn

.

The proof of Theorem 3.11 also provides an algorithm to construct the polynomial
p ∈ β

αΠ2
mn−1 that uniquely satisfies the DPPM (1.1), provided the pair (α, β) satisfies the

condition (3.24) for each s ∈ N. On applying the univariate Newton-divided difference
polynomial interpolation formula for the interpolation problem (3.26) forX, we get the
following result.
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Corollary 3.14. For every (ai j) ∈ Rm×n and positive integer s, there exists a unique
p ∈ β

αΠ2
s(mn−1) that satisfies the DPPM (1.1), such that the pair (α, β) satisfy the

condition (3.24), is given as

p(x, y) = p̃(φs(x, y)) = p̃(αxs + βys)
= ãα+β + ((αxs + βys) − (α + β))F [̃aα+β, ãα+β2s ]

+ ((αxs + βys) − (α + β))((αxs + βys) − (α + β2s))F [̃aα+β, ãα+β2s , ãα+β3s ]
+ ... + ((αxs + βys) − (α + β))((αxs + βys) − (α + β2s)) . . .

((αxs + βys) − (αms + β(n − 1)s))F [̃aα+β, ãα+β2s , . . . , ãαms+βns ],
(3.30)

where

F [̃aα+β, ãα+β2s ] =
F [̃aα+β2s ] − F [̃aα+β]
(α + β2s) − (α + β)

and
F [̃aα+β, ãα+β2s , . . . , ãαms+βns ]

=
F [̃aα+β2s , ãα+β3s , . . . , ãαms+βns ] − F [̃aα+β, ãα+β2s , . . . , ãαms+β(n−1)s ]

(αis + β js) − (α + β)

denotes 1st and (mn − 1)th Newton-divided difference of ãα+β respectively, for Table 1,
such that F [̃aαis+β js ] = αis + β js, for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Table 1: An ordered arrangements of the elements of the given (ai j) ∈ Rm×n.

ãα+β ãα+β2s ... ãα+βns ãα2s+β ... ... ãαms+β ãαms+β2s ... ãαms+βns

where ãαis+β js = ai j, for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Next, the particular choices (α, β) = (n, 1) and (α, β) = (1,m) for s = 1, lead to get
the following results.

Corollary 3.15. For every (ai j) ∈ Rm×n, there exists a unique p ∈ 1
nΠ2

mn−1 that satisfies
the DPPM (1.1) is given as

p(x, y) =

mn−1∑
k=0

(
(nx + y) − (n + 1)

k

)
∆kã1, (3.31)

where ∆kã1 is kth, k = 1, 2, . . . ,mn − 1 Newton-forward difference of ã1 for Table 2.

Table 2: An ordered arrangements of the elements of the given (ai j) ∈ Rm×n.

ã1 ã2 . . . ãn ãn+1 ... ... ã(m−1)n+1 ã(m−1)n+2 ... ãmn

where ã(i−1)n+ j = ai j, for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
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Proof. Consider the injective transformation φ̄1 : X → R given by

φ̄1(i, j) = (i − 1)n + j, for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. (3.32)

Using the transformation (3.32), the set of bivariate nodes X can be transformed into
a sequence of length mn and in an ordered arrangement can be written as

φ̄1(X) = {φ̄1(i, 1), φ̄1(i, 2), ..., φ̄1(i, n) : i = 1, 2, ...,m}. (3.33)

Here, the consecutive nodes in φ̄1(X) (in the given order) are equidistant with step size
1. Thus, using (3.32), the DPPM (1.1) can be transformed into a univariate polynomial
interpolation problem of the form

p(i, j) = p̃(φ̄1(i, j)) = p̃((i − 1)n + β j) = ai j for all (i, j) ∈ X. (3.34)

Therefore, on applying univariate Newton-forward difference interpolation formula for
the interpolation problem (3.34) with respect to X, we get

p(x, y) = p̃(φ̄1(x, y)) = p̃((x − 1)n + y)

= ã1 +
((nx + y) − (n + 1))

1!
∆ã1

+
((nx + y) − (n + 1))((nx + y) − (n + 2))

2!
∆2ã1

+ . . . +
(φ̄1(x, y) − φ̄1(1, 1))...(φ̄1(x, y) − φ̄1(m, n − 1))

(mn − 1)!
∆mn−1ã1.

(3.35)

On combining (3.35) and (3.32), we get (3.31). Here, p ∈ 1
nΠ2

mn−1 and (α, β) = (n, 1)
satisfy the condition (3.24) for s = 1. This completes the result. �

Corollary 3.16. For every (ai j) ∈ Rm×n, there exists a unique p ∈ m
1 Π2

mn−1 that satisfies
the DPPM (1.1) is given as

p(x, y) =

mn−1∑
k=0

(
(x + my) − (m + 1)

k

)
∆kã1, (3.36)

where ∆kã1 is kth, k = 1, 2, . . . ,mn − 1 Newton-forward difference of ã1 for Table 3.

Table 3: An ordered arrangements of the elements of the given (ai j) ∈ Rm×n.

ã1 ã2 . . . ãm ãm+1 ... ... ãm(n−1)+1 ãm(n−1)+2 ... ãmn

where ãi+( j−1)m = ai j, for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Proof. The proof is similar to Corollary 3.15. Particularly, the use of the injective
transformation φ̂1 : X → R, given as

φ̂1(i, j) = i + ( j − 1)m for all i = 1, 2, . . . ,m; j = 1, 2, . . . , n,

in place of (3.32) completes the result. �
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Remark 3.17. In general, there are uncountably many injective transformations from
X to R that can project all the bivariate nodes on the grid X onto a finite set of mn
univariate points such that all projections are distinct. Therefore, the use of distinct
injective transformation from X to R, in place of (3.25), can lead us to get several
classes of mn-dimensional subspaces of Π2, of various total degrees, in which the
DPPM (1.1) can always be correct. However, for every distinct choice of such injective
transformation, the resulting polynomials or correct spaces for the DPPM (1.1) need
not be distinct. For instance, on taking ¯̄φ1,

ˆ̂φ1 : X → R, ¯̄φ1(i, j) = (mn + n + 1)− ni− j
and ˆ̂φ1(i, j) = (mn + m + 1) − i − m j, in place of (3.25), the obtained polynomials
coincide with the polynomials (3.31) and (3.36) in 1

nΠ2
mn−1 and m

1 Π2
mn−1, respectively.

4. An Application in Lagrange Bivariate Polynomial Interpolation

To be sure, together with Pn
m, the LBVPIP (2.1) with respect to X is also correct in

β
αΠ2

s(mn−1) for uncountably many choices of the pair (α, β), for each s ∈ N. Moreover,
for a bijective transformation ψ : Θ→ X, such that

ψ(xi, y j) = (i, j) for all (i, j) ∈ X, (4.1)

the LBVPIP (2.1) with respect to Θ can always be transformed into the LBVPIP (2.1)
with respect to X, or equivalently into the DPPM (1.1). Particularly, if

xi = x1 + (i − 1)h, i = 1, 2, . . . ,m and y j = y1 + ( j − 1)k, j = 1, 2, . . . , n,

where h and k be some real-scalars, then there exist a bijective map ψ : Θ→ X, given
as

ψ(x, y) =

(
1 +

x − x1

h
, 1 +

y − y1

k

)
for all (x, y) ∈ Θ,

which satisfies the condition (4.1). In this case, if a polynomial p(x, y) ∈ P satisfy the
DPPM (1.1), then the polynomial

p (x1 + (x − 1)h, y1 + (y − 1)k) ∈ P

must satisfy the LBVPIP (2.1) with respect to Θ, i.e., if P is a correct space for the
DPPM (1.1), then P must be a correct space for the LBVPIP (2.1) with respect to Θ.
In extension, if the pair (α, β) satisfy the condition

αxs
1 + βys

1 , αxs
2 + βys

2 for all (x1, x1) , (x2, x2),

where (x1, y1), (x2, x2) ∈ Θ. Then, the space β
αΠ2

s(mn−1) is correct space for the LBVPIP
(2.1) with respect to Θ for uncountably many choices of the pair (α, β), for each s ∈ N.

Again let I = [min(x1, x2, . . . , xm),max(x1, x2, . . . , xm)],
J =

[
min(y1, y2, . . . , yn),max(y1, y2, . . . , yn)

]
and f be a sufficiently smooth real-valued

bivariate function. Then, for some ξ, ξ′, ξ′′ ∈ I, η, η′, η′′ ∈ J, using the standard
univariate error formulas recursively based on the mean value theorem or equivalently
Taylor’s series expansion of f about (x1, y1), the remainder terms R(x, y) and Rs(x, y)
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for the interpolating polynomials in Pn
m and β

αΠ2
s(mn−1) respectively, for the LBVPIP

(2.1) for Θ can be written as

R(x, y) =
1

m!
∂m f (ξ, y)
∂xm

m∏
i=1

(x − xi)+
1
n!
∂n f (x, η)
∂yn

n∏
j=1

(
y − y j

)
−

1
m!n!

∂m+n f (ξ′, η′)
∂xm∂yn

m∏
i=1

(x − xi)
n∏

j=1

(
y − y j

)
and

Rs(x, y) =
1

(mn)!

mn∑
k=0

(
mn
k

)
∂mn f (ξ′′, η′′)

∂xmn−k∂yk

∏
(i, j)∈X

(
α(xs − xs

i ) + β(ys − ys
j)
)
.

However, some limitations in the interpolation spaces β
αΠ2

s(mn−1) for the LBVPIP (2.1)
with respect to Θ can be listed as follows:
• The degree of the interpolating polynomials is rather high from the computa-

tional point of view.
• The interpolants are all constant in the direction (−β, α), an unfortunate bias.

5. Numerical Experiments

Let PA ∈ P
n
m, pA ∈

1
nΠ2

mn−1, and qA ∈
m
1 Π2

mn−1 respectively, represent the unique
polynomials that satisfy the DPPM (1.1) for A ∈ Rm×n. We use these notations with
described meanings frequently throughout this section.

Example 1. Using the result of Corollary 3.7 or Corollary 3.8, the map DP :
R2×2 → P2

2, as defined as (1.2), is given as

DP

[(
a b
c d

)]
= (4a − 2b − 2c+d) − (2a − b − 2c + d)x

− (2a − 2b − c + d)y + (a − b − c + d)xy.
(5.1)

For A, B ∈ R2×2 and non-zero scalar λ, the map (5.1) implies that

DP(λA + B) = λDP(A) +DP(B),

i.e., the map (5.1) is linear. Again, since B1 =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
and

B2 = {1, x, y, xy} be the sets of standard bases of R2×2 and P2
2, respectively. Then,

using (5.1), we get

DP

[(
1 0
0 0

)]
= 4 − 2x − 2y + xy,

DP

[(
0 1
0 0

)]
= −2 + x + 2y − xy,
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DP

[(
0 0
1 0

)]
= −2 + 2x + y − xy,

and

DP

[(
0 0
0 1

)]
= 1 − x − y + xy.

Therefore, the co-ordinate matrix of the map (5.1), with respect to bases B1 and B2, is
written as

[DP]B2
B1

=


4 −2 −2 1
−2 1 2 −1
−2 2 1 −1
1 −1 −1 1

 . (5.2)

This implies, det
(
[DP]B2

B1

)
= −1 , 0, i.e., ker(DP) = {0}, i.e., the map (5.1) is

invertible. This verifies that the map (5.1) is an isomorphism that satisfies the DPPM
(1.1). Moreover, using (3.4), the mapD−1

P : P2
2 → R

2×2 is given as
D−1

P
(
λ0,0 + λ1,0x + λ0,1y + λ1,1xy

)
=

(
λ0,0 + λ1,0 + λ0,1 + λ1,1 λ0,0 + λ1,0 + 2λ0,1 + 2λ1,1
λ0,0 + 2λ1,0 + λ0,1 + 2λ1,1 λ0,0 + 2λ1,0 + 2λ0,1 + 4λ1,1

)
, (5.3)

for all λ0,0 + λ1,0x + λ0,1y + λ1,1xy ∈ P2
2. Then, using (5.3), we get

D−1
P (1) = 1

(
1 0
0 0

)
+ 1

(
0 1
0 0

)
+ 1

(
0 0
1 0

)
+ 1

(
0 0
0 1

)
,

D−1
P (x) = 1

(
1 0
0 0

)
+ 1

(
0 1
0 0

)
+ 2

(
0 0
1 0

)
+ 2

(
0 0
0 1

)
,

D−1
P (y) = 1

(
1 0
0 0

)
+ 2

(
0 1
0 0

)
+ 1

(
0 0
1 0

)
+ 2

(
0 0
0 1

)
,

and

D−1
P (xy) = 1

(
1 0
0 0

)
+ 2

(
0 1
0 0

)
+ 2

(
0 0
1 0

)
+ 4

(
0 0
0 1

)
.

Therefore, the co-ordinate matrix of the map (5.3), with respect to bases B2 and B1, is
written as

[D−1
P ]B1
B2

=


1 1 1 1
1 1 2 2
1 2 1 2
1 2 2 4

 , (5.4)

such that det
(
[D−1

P ]B1
B2

)
= −1 , 0. Again, using (5.2) and (5.4), we get

[DP]B2
B1
.[D−1

P ]B1
B2

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = [D−1
P ]B1
B2
.[DP]B2

B1
.
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This verifies that the map (5.3) is the inverse map of (5.1). In a similar manner, using
the results of Corollary 3.15 and Corollary 3.16, the isomorphismsDp : R2×2 → 1

2Π2
3

andDq : R2×2 → 2
1Π2

3 respectively, as defined as (1.2), are given as

Dp

[(
a b
c d

)]
= (20a − 45b + 36c − 10d) +

(−74a + 189b − 162c + 47d)
6

(2x + y)

+
(5a − 14b + 13c − 4d)

2
(2x + y)2 +

(−a + 3b − 3c + d)
6

(2x + y)3

(5.5)
and

Dq

[(
a b
c d

)]
= (20a + 36b − 45c − 10d) +

(−74a − 162b + 189c + 47d)
6

(x + 2y)

+
(5a + 13b − 14c − 4d)

2
(x + 2y)2 +

(−a − 3b + 3c + d)
6

(x + 2y)3.

(5.6)
Also, using Remark 3.2, the inverse linear mapsD−1

p : 1
2Π2

3 → R
2×2 andD−1

q : 2
1Π2

3 →

R2×2 of the maps (5.5) and (5.6) respectively, are given as

D−1
p

(
p + qu + ru2 + su3

)
=

(
p + 3q + 9r + 27s p + 4q + 16r + 64s

p + 5q + 25r + 125s p + 6q + 36r + 216s

)
and

D−1
q

(
p + qv + rv2 + sv3

)
=

(
p + 3q + 9r + 27s p + 5q + 25r + 125s
p + 4q + 16r + 64s p + 6q + 36r + 216s

)
,

where u = 2x+y, v = x+2y and p, q, r, s are some scalars. Clearly, p+qu+ru2 + su3 ∈
1
2Π2

3 and p + qv + rv2 + sv3 ∈ 2
1Π2

3.

Example 2. Let δ ∈ R1×3 and ϑ ∈ R2×2 be two given matrices, such as

δ =
(
1 −1 −2

)
and ϑ =

(
−15 36
−1 96

)
. (5.7)

The DPPM (1.1) for δ ∈ R1×3 has no solution in 3-dimensional subspace Π2
1 ⊂ Π2

and the DPPM (1.1) for ϑ ∈ R2×2 does not hold the necessary condition of given data
points in (k+1)(k+2)/2-dimensional subspace Π2

k ⊂ Π2 for any k ∈ N. In other words,
the DPPM (1.1) for δ ∈ R1×3 or ϑ ∈ R2×2 does not possess any solution in Π2

k for any
k ∈ N. Now, using the results of Corollary 3.7 or 3.8, Corollary 3.15, and Corollary
3.16 respectively, we get

Pδ(x, y) =
1
2

y2 −
7
2

y + 4 ∈ P3
1, (5.8)

Pϑ(x, y) = 46xy − 32x + 5y − 34 ∈ P2
2, (5.9)

pδ(x, y) =
1
2

(3x + y)2 −
13
2

(3x + y) + 19 ∈ 1
3Π2

2, (5.10)
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pϑ(x, y) = 37(2x + y)3 − 488(2x + y)2 + 2098(2x + y) − 2916 ∈ 1
2Π2

3, (5.11)

qδ(x, y) =
1
2

(x + y)2 −
9
2

(x + y) + 8 ∈ 1
1Π2

2, (5.12)

and

qϑ(x, y) =
23
2

(x + 2y)2 −
133

2
(x + 2y) + 81 ∈ 2

1Π2
3. (5.13)
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Figure 1: Surface diagrams of the polynomials Pδ ∈ P
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1, Pϑ ∈ P
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2, pδ ∈ 1

3Π2
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qδ ∈ 1
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2 and qϑ ∈ 2
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3 indicating all the data points of the given matrices δ ∈ R1×3 and
ϑ ∈ R2×2 respectively.



A Bivariate Polynomial Problem for Matrices 17

Example 3. Let us consider a LBVPIP (2.1) with respect to the set of rectangular
bivariate nodes X̄ = {(1, 1), (1, 2)(2, 1), (2, 2)}, concerning the data points for the real-
valued function

f (x, y) = 3x2 + 2y3 − x2y + 2xy2 + x − y + 10. (5.14)

Without loss of generality, the LBVPIP (2.1) with respect to X̄ can be converted into
the DPPM (1.1) for κ = ( f (i, j)) ∈ R2×2. Therefore, using the results of Corollary 3.7
or 3.8 and Corollary 3.16, we get

Pκ(x, y) = 3xy + 6x + 15y − 8 (5.15)

and
qκ(x, y) =

1
2

(x + 2y)3 − 6(x + 2y)2 +
65
2

(x + 2y) − 41. (5.16)

Now, using (5.14) and (5.15), the absolute error of the interpolating polynomial
Pκ ∈ P

2
2 can be given as

EPκ∈ P2
2

= | f (x, y) − Pκ(x, y)|, (x, y) ∈ [1, 2] × [1, 2]. (5.17)

Also, using (5.14) and (5.16), the absolute error of the interpolating polynomial
qκ ∈ 2

1Π2
3 can be given as

Eqκ∈ 2
1Π2

3
= | f (x, y) − qκ(x, y)|, (x, y) ∈ [1, 2] × [1, 2]. (5.18)

Next, in Table 4, we calculate the difference of absolute errors of the interpolating
polynomials in qκ ∈ 2

1Π2
3 and Pκ ∈ P

2
2 respectively, for the LBVPIP (2.1) for X̄ at

the equally spaced mesh-grid points (x, y) ∈ [1, 2] × [1, 2] with step size 0.1, up to 4
decimal places.

Table 4: The difference of absolute errors for qκ ∈ 2
1Π2

3 and Pκ ∈ P
2
2 in [1, 2] × [1, 2].

The difference of absolute errors
Eqκ∈2

1Π2
3
− EPκ∈P2

2
= | f (x, y) − qκ(x, y)| − | f (x, y) − Pκ(x, y)|

at the equally spaced mesh-grid points (x, y) ∈ [1, 2] × [1, 2]
with step size 0.1 by 0.2, up to 4 decimal places.

↓ y→ x 1.0 1.2 1.4 1.6 1.8 2.0
1.0 0 0.1439 0.1920 0.1679 0.0959 0
1.1 0.1439 0.1320 0.0479 -0.0839 -0.2400 -0.3959
1.2 0.1920 0.0479 -0.1440 -0.3599 -0.5759 -0.7680
1.3 0.1679 -0.0840 -0.3599 -0.6359 -0.8880 -1.0919
1.4 0.0959 -0.2399 -0.5760 -0.8880 -1.1519 -1.3440
1.5 0 -0.3959 -0.7680 -1.0919 -1.3440 -1.5000
1.6 -0.0959 -0.5280 -0.9119 -1.2239 -1.4399 -1.5360
1.7 -0.1680 -0.6119 -0.9840 -1.2600 -1.4160 -1.4280
1.8 -0.1919 -0.6240 -0.9600 -1.1760 -1.2480 -1.1519
1.9 -0.1440 -0.5399 -0.8160 -0.9480 -0.9119 -0.6840
2.0 0 0.0159 0.0480 0.0719 0.0640 0
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From Table 4, we can observe that the absolute error of the interpolating polyno-
mial qκ ∈ 2

1Π2
3 is moreover less (the values indicating ‘-’ ve sign) in comparison to the

absolute error the interpolating polynomial Pκ ∈ P
2
2, at most of the interpolating points

in the grid [1, 2] × [1, 2].

6. Concluding Remarks

For a given matrix (ai j) ∈ Rm×n and an mn-dimensional subspace P ⊂ Π2, the
article proposes a bivariate polynomial problem for matrices, namely DPPM (1.1).
As an advanced application, the DPPM (1.1) provides a sufficient condition for the
map (1.2) to be an isomorphism. In the process of solving, it is established that the
DPPM (1.1) and the LBVPIP (2.1) forX are equivalent. Theorem 3.1 proves that there
always exists an isomorphism, as defined as (1.2), if P is a correct space for the DPPM
(1.1). As well, Remark 3.2 provides the associated inverse linear map of the map (1.2)
and Corollary 3.3 proposes an important consequence to the DPPM (1.1). Further,
Theorem 3.5 proves the existence and uniqueness of the solution of the DPPM (1.1) in
Pn

m. For this, the standard tensor product approach of univariate polynomials is used
for the DPPM (1.1). Also, Corollary 3.7 and Corollary 3.8 provide two formulas to
construct the required unique polynomial in Pn

m that satisfies the DPPM(1.1), which
involve univariate Newton-Lagrange’s and Newton-forward differences of data values,
respectively.

Thereafter, Definition 3.9 and Remark 3.10 introduce an mn-dimensional subspace
of Π2

s(mn−1), involving two real parameters α and β, denoted as β
αΠ2

s(mn−1). Theorem
3.11 proves that there always exists a polynomial in β

αΠ2
s(mn−1) that uniquely satisfies

the DPPM (1.1) for uncountably many choices of the pair (α, β). This establishes
the existence of a new class of mn-dimensional subspaces of Π2

s(mn−1), of various
total degrees, for each s ∈ N, in which the DPPM (1.1) always possesses a unique
solution. For this, a transformation φs : X → R,(i, j) → αis + β js and z = αxs + βys,
for some α > 0 and β > 0, is used such that φs is injective. In other words,
all points of X are projected to the curve orthogonal to αxs + βys = 0, which
are chosen so that all projections differ. As well, Corollary 3.14 offers a common
formula to construct the required unique polynomial that satisfies the DPPM (1.1)
in β

αΠ2
s(mn−1), for each s ∈ N. For computational simplicity, the particular choices

of (α, β) = (n, 1) and (α, β) = (1,m) with s = 1 permit writing the interpolant in
terms of the standard formulas involving forward differences of the data values for
polynomial interpolation at consecutive integers, which are submitted in Corollary
3.15 and Corollary 3.16, respectively. In extension, Remark 3.17 asserts that using
distinct injective transformations from X to R, several classes of mn-dimensional
subspaces of Π2, of various total degrees, can be obtained in which the DPPM (1.1)
can also be solved uniquely.

In addition, section 4 provides possible applicability of the results in the LBVPIP
(2.1) for X and the LBVPIP (2.1) for Θ, respectively. The remainder formulas are
also submitted for the interpolating polynomials in Pn

m and β
αΠ2

s(mn−1) respectively,
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concerning the LBVPIP (2.1) for Θ. Moreover, some limitations in the interpolation
spaces βαΠ2

s(mn−1), s ∈ N have been discussed for the same. At last, Example 1, Example
2, and Example 3 validate, compare, and justify the theoretical findings and show
the possible applicability of the results in linear algebra, numerical linear algebra,
and interpolation theory. Particularly, Example 3 indicates that together with Pn

m, the
interpolation spaces βαΠ2

s(mn−1) can also be used to optimize the accuracy of the LBVPIP
(2.1) for the rectangular schemes of m by n bivariate nodes on X, for some suitable
choices of the pair (α, β) and s ∈ N that satisfy the condition (3.24).

Overall, the article appears to be new results and a significant contribution to
linear algebra and bivariate Lagrange polynomial interpolation, well-recognized and
historically rich fields. In extension, some algebraic and geometric properties of
bivariate polynomials can be constructed in Pn

m or βαΠ2
s(mn−1), corresponding to DPPM

(1.1) and the isomorphism (1.2), which can preserve the algebraic and geometric
structures of Rm×n. Such as algebra structure, ring structure, inner product structure,
norm structure, metric-space structure, etc. The authors consider them as one of their
future objectives.

7. Material and Methods

The figures given in Example 2 of the section 5 were obtained by using codes elab-
orated with software MATLAB [21] without using any extra precision. All computa-
tions were performed on the HP Envy Leapmotion Touchsmart 17 inch 2014 edition
Laptop (Intel(R) Core(TM) i7-4702MQ CPU @ 2.20GHz Processor with 8GB DDR3
SDRAM).
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